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ABSTRACT 
 
Accounting for inter- and intra-personal differences requires individual and cohort comfort models. For their 
development, emulators for thermal sensation of occupants are needed. Physiological signals can be acquired using 
both wearable and contactless devices. However, due to the widespread availability of sensing methods it is 
difficult to select the proper measuring method for the application. The objective of this study is to provide an 
overview of the capabilities of contemporary devices that measure physiological indicators used in literature and 
identify their capabilities and limitations. The analysis was made on a dataset of reviewed thermal comfort research 
studies that employed physiological sensing devices in experimental and field test campaigns. The physiological 
indicators investigated in literature were derived from the human thermoregulation mechanism. The physiological 
indicators measured were neural activity (brainwave frequency bands), heartbeat (heart rate and heart rate 
variability), blood flow (blood pressure, blood oxygen saturation, skin blood flow), activity (metabolic rate, 
activity, calorie consumption), temperature (core and skin), sweat (relative humidity, skin conductance, skin 
hardness, and amount of sweat). The wrist is the most investigated body part as it is a convenient area for acquiring 
multiple physiological indicators i.e., all physiological measurements except for ECG and EEG measurements. 
However, most devices are not “plug-and-play” solutions for thermal comfort assessment. As contact devices, 
smartbands acquire an extensive set of indicators but present 3rd party data privacy protocols which may limit their 
applicability. Cameras (RGB and infrared) can only be used to acquire skin temperature and heart rate but can be 
deployed in the space by the building owner. Further studies are required on the sensing accuracy and signal 
variability as a function of thermal sensation to determine the optimal measurement method. 
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1 INTRODUCTION 

 
In order to deal with inter- and intra-personal differences, personal and cohort thermal comfort 
models were proposed (Kim, Schiavon, and Brager 2018; Quintana et al. 2022). However, these 
models require input from or representative of the occupant in question (Deng and Chen 2020; 
Laftchiev and Nikovski 2017). As thermal comfort is a function of thermoregulatory aspects, 
emulators such as physiological signals could be used to distinguish between thermal sensation 
of different people and for the same person over time (Bogatu et al. 2023; Lee and Ham 2021). 



Further studies are though required on the set of indicators and their variability as a function of 
thermal sensation across people with different anthropometric characteristics and behaviour. 
With economically feasible physiological sensing methods emerging, wearable sensing devices 
become widespread and monitoring physiological indicators becomes simpler in both 
experiments and field studies. However, with a market under constant change it is difficult to 
select the proper measuring method for the application. The objective of this study is to provide 
an overview of the capabilities of current physiological indicator measuring devices used in 
literature and identify their benefits and limitations. 
 
2 METHODS 

 
The objective was to identify current physiological indicator measuring techniques in thermal 
comfort studies. The analysis was made on an existing dataset (Bogatu et al. 2023) where the 
objective was to determine relevant indicators for data driven thermal comfort prediction for 
HVAC control. The dataset was generated using Google Scholar, Scopus, and Web of Science, 
and the “reference by reference” method.  
For finding relevant research studies permutations, combinations, and specific keywords such 
as physiological, physiology, wearable, contactless, smart control, control, smart building, 
thermal comfort, sensing were used. The database consisted of 94 articles that measured 
physiological indicators, used either physiological, environmental, behavioural, or 
anthropometric measurements in personal comfort model development, or integrated occupant 
feedback or physiological indicators in the HVAC control.  
 
3 RESULTS  

 
3.1 Physiological indicators 

 
Physiological indicators used in thermal comfort studies are derived from human 
thermoregulation mechanism (Bogatu et al. 2023). Thermoregulation is controlled by the 
central nervous system, which sends nerve impulses based on signals received at skin level. 
The nervous system regulates blood flow through the heart and through the constriction and 
dilation of vessels, perspiration, and metabolic rate to regulate body temperature. Therefore, 
physiological indicators can be obtained from: 

• Neural activity: brainwave frequency bands. 
• Heartbeat: heart rate (HR) and heart rate variability (HRV). 
• Blood flow: blood pressure (BP), blood oxygen saturation (SpO2), skin blood flow (BF). 
• Activity: metabolic rate (MET), activity, calorie consumption. 
• Temperature: core (TCORE), skin temperature (TSK). 
• Sweat: skin relative humidity (RHSK), skin conductance (SC), skin hardness, and 

amount of sweat. 
 
3.2 Physiological indicator sensing 

 
Figure 1 shows the frequency of investigated body parts and the corresponding indicators. Most 
measurements were made at the wrist level, followed by the forehead, hand, upper arm, cheek, 
chest, forearm, thigh, ankle, neck, abdomen, waist, ankle, and calf. A collection of the sensors 
employed in literature and their characteristics can be found in the Appendix. 
Neural activity can be recorded at the head level by an electroencephalogram (EEG) instrument 
consisting of electrodes which measure brain electrical activity (Pigliautile et al. 2020). 
Advanced instruments are available where the electrodes are attached to a headset (Kim and 
Hong 2020; Pigliautile et al. 2020). Although portable, these devices must be in contact with 



the subject during the measurement and require dedicated software to analyse the obtained 
information. The analysis of the brainwaves power spectrum is made with a fast Fourier 
transform method to obtain the distribution of the magnitude of signals within particular 
frequency bands, such as Alpha, Beta, Delta, Theta, and Gamma ranges (Shan and Yang 2020). 
Recent devices are convenient, becoming light and easy to set up but highly intrusive if intended 
for long term use (Pigliautile et al. 2020; Shan and Yang 2020). 
HR can be derived from HRV which can be obtained by measuring the heart’s electrical activity 
(Chaudhuri et al. 2018; Nkurikiyeyezu, Suzuki, and Lopez 2018). Error! Reference source 

not found.The HRV is usually measured at the chest level or a combination of chest, arm, wrist, 
thigh, and ankle through electrodes placed on the skin (Gwak et al. 2016; Zhu et al. 2018). Since 
the electrodes are in contact with the skin, electrocardiogram (ECG) devices must be in 
occupant proximity. Although intrusive, wearable devices (medical and commodity sensors) 
for chest placement are available (Liu et al. 2019; Pigliautile et al. 2020). If other indicators 
than HR must be obtained, these devices are no longer “plug and play” and may require 
additional data processing. 

 
Figure 1. Frequency of physiological measurements across the human body. 

Photoplethysmography (PPG) measures blood volume changes in the vessels, where light 
transmitted from a source onto the skin tissue is being either absorbed or reflected. The increase 
in blood volume is obtained based on the relative change in the light captured by the 
photodetector (Jung and Jazizadeh 2018b). PPG measurements can be made at the skin level, 
e.g., on the face where there is a high density of blood vessels (Ghahramani et al. 2016), at the 
wrist (Laftchiev and Nikovski 2017), or finger (Chaudhuri et al. 2020). Wrist measurements  
usually make use of smartbands or smartwatches equipped with a PPG sensor (Lee and Ham 
2021). Blood volume changes measured at the face level are usually contactless and are 
obtained using Red Green Blue (RGB) cameras that track tiny colour changes in the reflected 
light of the region of interest (Dabiri and Jazizadeh 2014; Jung and Jazizadeh 2018a). Blood 
flow can be measured through laser Doppler flowmeters - similar principle to PPG using 
different light frequencies (Cheng, Lee, and Huang 2018). This technology was mainly used 
for measuring the microvascular blood flow at the finger (Cheng et al. 2018) or foot (Song et 
al. 2016) level. Blood pressure was measured by using a sphygmomanometer (inflatable cuff 
coupled to a manometer) and was rarely employed most likely due to the difficulty of obtaining 
a continuous measurement. SpO2 can also be obtained through PPG at the finger level 
(Chaudhuri et al. 2018, 2020). An indirect measurement of blood oxygen intake, respiration, 



was measured contactless using Doppler radar sensors through the motion of the chest and 
abdomen areas (Jung and Jazizadeh 2018a). BF, BP, and SpO2 were investigated using medical 
and research grade sensors where devices were placed in contact with the skin. 
The MET can be measured with a cardiopulmonary tester (Song et al. 2016). This involves a 
spiroergometer device where a mask is used to analyse the oxygen and carbon dioxide in the 
inhaled and exhaled air. Although portable products exist, they cannot be worn in daily life due 
to their intrusiveness. Activity level, representative of the MET, is usually measured instead 
(Lee and Ham 2021). Motion-based activity was measured using either wrist or chest connected 
tri-axial accelerometer devices. These sensors are relatively cheap and are usually integrated in 
smartwatches and smartbands (Laftchiev and Nikovski 2017). Other approaches involved the 
use of weight and calorie consumption estimation (Huang, Yang, and Newman 2015). 
TCORE is approximately measurable from the oesophagus, rectum, gastro-intestinal tract, mouth, 
tympanum, auditory canal regions (CEN 2021). Other options are radio-pills (Wang et al. 2007) 
or predicting it from heart rate measurements with high accuracy (Nazarian et al. 2021). The 
inner eye is also a suitable measurement point, obtainable using thermal cameras (Metzmacher 
et al. 2018). However, certain studies considered the eye temperature as the TSK (Cosma and 
Simha 2019a, 2019b). A wireless non-invasive thermometer which estimates TCORE based on 
TSK and heat flux is also available, though costly (Ajčević et al. 2022). 
TSK can be obtained using both wearable and contactless devices (Hwang et al. 2019; Salehi, 
Ghanbaran, and Maerefat 2020). Except for measurements on the eye, TSK represents the most 
investigated indicator for each human body part. The standard way of measuring TSK involves 
the use of low-cost thermocouples (Jung and Jazizadeh 2018b; Liu et al. 2020) and resistance 
temperature detectors (Lopez et al. 2016) which are wired to a logging system. This method is 
highly intrusive and makes it difficult to perform daily activities. Wireless TSK sensors are also 
available, consisting of button sized devices (Liu et al. 2019), which can be attached to the skin 
through e.g., medical tape. These devices cannot transfer data in real-time though, making them 
impractical for smart system integration. Smartwatches and smartbands were previously 
reported throughout literature as useful for measuring TSK in the wrist area due to the convenient 
placement of the sensors (Barrios and Kleiminger 2017; Deng and Chen 2020; W. Li, Zhang, 
and Zhao 2019; Yoshikawa et al. 2019). Still, few newer smartwatch/smartband devices make 
available TSK as a signal. The facial area has also drawn extensive attention due to the 
appearance of low-cost contactless monitoring technologies (Ranjan and Scott 2016; 
Warthmann et al. 2018). TSK was obtained through thermal infrared cameras generally pointed 
at the face, a feasible non-intrusive method (Cosma and Simha 2019b; Li et al. 2020; Lu et al. 
2019; Pavlin et al. 2017), or through infrared lasers which must be close to the skin level for a 
continuous measurement of the point of interest (Luo et al. 2018). An innovative solution was 
found in literature where infrared sensors were attached to a pair of glasses (Ghahramani et al. 
2016). The main advantage of contactless TSK measurements is that the measurement is not 
influenced by the sensor covering the skin area under investigation (Metzmacher et al. 2018).  
Skin relative humidity (RHSK) was measured using button sized sensors in studies involving 
high physical activity (Priego-Quesada et al. 2020). Sweat rate was also directly measured with 
an innovative sensor (watch-type device with a capacitive humidity sensor) with low operation 
power and weight (Sim, Yoon, and Cho 2018). SC, or electrodermal activity (EDA), can be 
obtained through electrodes connected to the fingers (Pigliautile et al. 2020) or at the wrist level 
through smartbands (Lee and Ham 2021). Only one mention of skin hardness was found in the 
literature measured using a durometer (not designed for skin hardness measurements) which 
was placed at the skin level of the arm or wrist (Yoon et al. 2018).  
 
3.3 Capabilities and limitations of current sensing strategies 

 



A summary of capabilities and limitations of the physiological measurement strategies are 
given in Table 1. The analysis was made by comparing wearable and contactless devices. 
Wearable devices represent relatively cheap and mature products. They can be wired or 
wireless. Device examples are probes, telemetry devices, smartwatches/smartbands, and 
headsets. Contactless examples found in literature are RGB cameras, infrared thermal cameras, 
and devices employing laser Doppler velocimetry. 

Table 1: Capabilities and limitations of measuring devices for physiological indicators. 

Device Capabilities Limitations 
Wearable • May be integrated in a device 

attached to an occupant 
• May measure multiple parameters 
• Clothing does not interfere with 

the measurement 
• Mature products 
• May be relatively cheap 
• Can be placed directly on the skin 
• Can be placed on different and 

multiple body areas 
• Can be connected via cloud-based 

solutions 

• Measurement length dependent on the battery life and data 
storage capacity of the equipment 

• Could be intrusive and invasive (e.g., chest strap) 
• Accuracy issues (improper use, movement, fastening option) 
• Sensor accuracies may be unknown 
• Covers body area where measurement is made  
• Narrow operating ranges 
• Single point measurement 
• Influenced by physical pressure, insulation from fitting 

material and thermal inertia of the sensor 
• Inconvenient if wired 

Contactless • Can gather data on body areas not 
covered by clothing, e.g. face 

• Non-invasive and non-intrusive 
• Can capture a bigger surface area  
• Can detect changes from the skin 

naturally and directly impacted by 
the surrounding environment 

• May require a complex system consisting of multiple nodes 
(e.g. depth and thermal image camera) 

• Privacy concerns 
• Little flexibility regarding placement 
• Correction regarding clothing might be required  
• May not be suitable for multi-occupancy spaces due to the 

limited field of view 
• Error in detecting area of interest for measurements  
• Can be difficult to implement in building due to size and 

compatibility issues (e.g. in Building Management Systems). 
• Higher cost compared to wearable sensors 

 
4 DISCUSSION 

 
As wearables, devices designed for measuring certain physiological indicators, e.g., HRV, 
brainwave frequency bands, SpO2, can be found though lacking wireless connectivity. Few 
commodity health monitoring telemetry devices designed to acquire multiple physiological 
indicators were observed (Chaudhuri et al. 2018). Smartbands/smartwatches were the most 
complete devices, being able to measure multiple indicators, such as TSK, HR, SpO2, and 
activity simultaneously. However, just as chest bands, they are commodity devices lacking 
standardized datasheets with information on the device’s accuracy, resolution, and range. 
Extracting real-time data from these devices may also not be possible or would require specific 
knowledge. On the other hand, medical and research-grade devices are costly and usually 
designed for measuring specific physiological indicators, e.g., SC and brainwave sensors. 
For quantifying physiological indicators in real-time, RGB and infrared thermal cameras could 
be feasible. RGB cameras are cheaper and usually available at the workspace. Although privacy 
measures such as discarding images after data collection must be taken into account when 
employing cameras (D. Li, Menassa, and Kamat 2019), these systems also enable pose tracking 
(Qian et al. 2020; Yang et al. 2019), age, and clothing estimation (Rida et al. 2023), which may 
complement TSK and HR measurements. Infrared thermal cameras present a wider working 
range than contact measurements  (e.g., thermocouples) but have a slightly worse correlation 
with the thermal sensation (Wu et al. 2019). When compared to resistance temperature sensors 
(usually with an accuracy of ±0.2 °C) only a maximum of 0.5 to 0.7 K difference was observed 
(Metzmacher et al. 2018). Low-cost options present low image resolution, which may lead to 
difficulties in detecting the human profile, but information from the surrounding pixels 



surrounding could reduce noise and thus improve stability. Combining RGB and infrared 
thermal cameras may even increase measurement accuracy as the influence of light is reduced 
generating clearer contours (Metzmacher et al. 2018). However, both solutions require 
additional data processing for obtaining the desired parameters (Dabiri and Jazizadeh 2014).  
From a practicality point of view, wearable devices are connected to the occupant which makes 
it difficult to determine ownership, operation, and maintenance responsibility. Contactless 
devices are deployed in the space. Although requiring the consent of the occupants, ownership, 
operation, and maintenance can be performed by the building owner. 
 
5 CONCLUSIONS 

 
Acquiring physiological indicators in real-time still represents a difficult task and thus further 
development of current sensing devices is required. Not all devices measuring physiological 
indicators present real-time data access while “plug-and-play” solutions specifically designed 
for thermal comfort assessment are lacking.  
Contactless devices (e.g., RGB and infrared cameras) can only be used to acquire skin 
temperature and heart rate and require extensive data processing. Wearable devices can be used 
to acquire an extensive range of indicators, with the wrist area being the most versatile. 
Smartwatches and smartbands are mature devices used to acquire multiple physiological 
indicators (TSK, HR, SpO2, and activity) simultaneously. Since they are mostly consumer 
products protected through 3rd party data privacy protocols, these devices cannot be deployed 
in buildings with ease. Measurement accuracy represents a limitation for low cost contactless 
solutions, which requires further investigation.  
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APPENDIX 

Table 2. Characteristics of sensors employed in literature (T: temperature, RH: relative humidity, HR: heart rate, 
EDA: electrodermal activity, SC: skin conductance, ACC: accelerometer, ECG: electrocardiogram, SpO2: blood 

oxygen saturation, EEG: electroencephalogram). 

Type Model Measurable parameters Details 

Smartwatch 
or 
Smartband 

Microsoft Band 2 
 

HR, T, EDA, ACC Smartwatch 

LG Watch R (W110) 
 

HR Smartwatch 

Hesvit S3 HR, T (Acc. ±0.3 °C, Res. 0.1 °C), RHSK Smartband 
Empatica E4 HR, T (Range -40 to +85 °C), ACC (± 2g), EDA (Range 

0.01 to 100 µS) 
Smartband 

Temperature 
sensor or 
probe 

Exacon D-S18JK T (Acc. ±0.1 °C, Range 0 to 50 °C)   Temperature 
probe 

TT-K-30-SLE T (Acc. ±1.1 °C or ±0.4 %, Range 0-350 °C) Thermocouple 
iButton DS1923 T (Acc. ±0.5 °C, Res. 0.5 °C, Range -10 to 65 °C), RH 

(Acc. ±5%, Range 0 to 100%, Res. 0.6% or 0.04%) 
Temperature and 
RH probe 

muRata NTC - Thermistor 
WZYCH4 T (Sens. 0.1 °C) Temperature 

probe 
SBS-BTA T (Acc. ±0.5 °C, Res. 0.03 °C) Thermistor 
Gigarise SG900 T (Acc. ±0.2 °C, Range -50 to +180 °C) - 
MLX90614 T (Acc. ±0.5 °C, Res. 0.02 °C) Infrared sensor 
Beurer FT70 T: ear (Acc. ±0.2 °C, Range 34-43 °C), forehead (Acc. ±0.2 

°C, Range 34-43 °C), object (Acc. ±1.5 °C, Range 0-100 °C) 
Medical device 

CORE T (Acc. ±0.05 °C from 20 °C to 42 °C), TCORE (± 0.28 (1σ) ± 
0.21 (MAD) – chest) 

Body 
temperature 
sensor 

Heart rate 
sensor 

Zephyr HXM-08L HR (Acc. ±3%, Range 0-200 bpm) Telemetry device 

 Polar H7 ECG, HR (Acc. ±4%) Chestband 
 HER-BTA HR (Freq. 5 kHz ±10 %)  
 HRV101 ECG (SRate 250 Hz and 400 Hz, BW 0.05-40Hz) ECG Holter 
 BioHarness 3.0 HR (Acc. ±1 bpm, Range 25-240 bpm), ECG, respiration 

rate, body orientation, ACC 
Physiological 
monitoring 
telemetry device 

Health 
monitoring 
device 

MySignals, Libelium 
CO. 

HR (Acc. ±5%, Range 25 to 250 bpm), SpO2 (Acc. ±2%, 
Range 35 to 100%, SC (Acc. ±5%, Range 0-20 μS), BP 
(Acc. ±3 mmHg, Range 0 – 300 mmHg) 

Pulse oximeter, 
Sphygmomanom
eter 

Laser 
Doppler 

moorVMS-LDF1 Blood flow (Acc. ± 10%, Range: 0-1000AU) Deeper tissue 
blood flow and 
temperature 
monitoring 

Neural 
headset 

EPOC+ 14 ch. EEG (Res. 14 bits, DRange 8400 µV, BW 0.2-45 Hz, 
BL 12 h) 

14 channel EEG 

B-Alert X10, ABM 9 ch. EEG (Res. 16 bit, DRange ±1000 µV, BL 8+ h) 9 channel EEG 
Camera Yukai USB Sweat area/sweat pore diameter Digital camera 

with microscope 
 Microsoft Kinect RGB-DT camera (Acc. ±4 cm at 5 m, depth range 0.8-5 m, 

$48) 
RGB-Depth 
Temperature 

 FLIR A35 TSK (Acc. ±5 °C or ±5 % of reading, Range -23 to 135 °C/-
40 to 550 °C, Sens. < 0.05 °C) 

Infrared 

 FLIR A655sc TSK (Acc. ±2 °C or ±2 % of reading, $22000) Infrared 
 FLIR T540 TSK (Acc. ±2 °C or ±2% of reading, Range -20 to 120 °C, 

Res. 464x348 px) 
Infrared 

 FLIR B8400 TSK (Range -20 to 120 °C) Infrared 
 FLIR Lepton TSK (Acc. ±0.5 °C, Res. 0.1 °C, $250) Infrared 



 FLIR Lepton 2.5 TSK (Acc. ±5 °C or ±5 % of reading, Range -10 °C to 65 
°C, Sens. < 50 mK, $200) 

Infrared 

 




