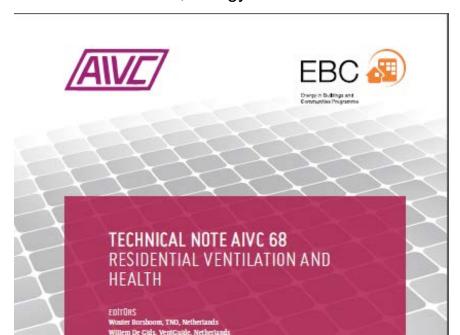


Wouter Borsboom, TNO Timothy Lanooy, ACIN Wim Kornaat, TNO Willem de Gids, VentGuide

innovation for life

AIVC Workshop BRANZ, Wellington 2018



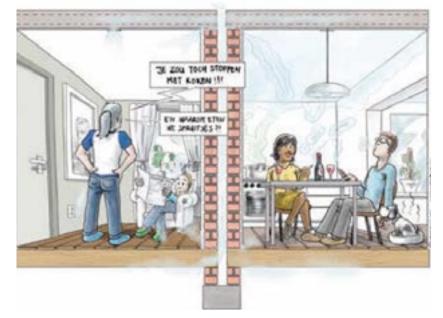
WOUTER BORSBOOM, TNO

Business consultant, energy built environment.

Example nearly zero energy dwelling: Rc=5-6, N50 ach 0.8, heat recovery, heat pump, PV -> can be built without subsidies

WHAT SHOULD A HEALTHY ENERGY EFFICIENT DWELLING OFFER?

- A dwelling with sufficient ventilation
- A cool house in the summer
- A dwelling with less exposure to conterminants



GOOD PERFORMANCE OF VENTILATION NEEDS AIRTIGHT DWELLINGS

- Airtightness at least N50 < 4</p>
- High preformance dwelling are mostly airtight N50 < 1 to:</p>
 - Reduce the installed capacity heating / cooling
 - Reduce energy demand Heating
 & Cooling

Darling, you told me that you stopped smoking..

Bron: Willem Koppen, Koppen Bouwexperts

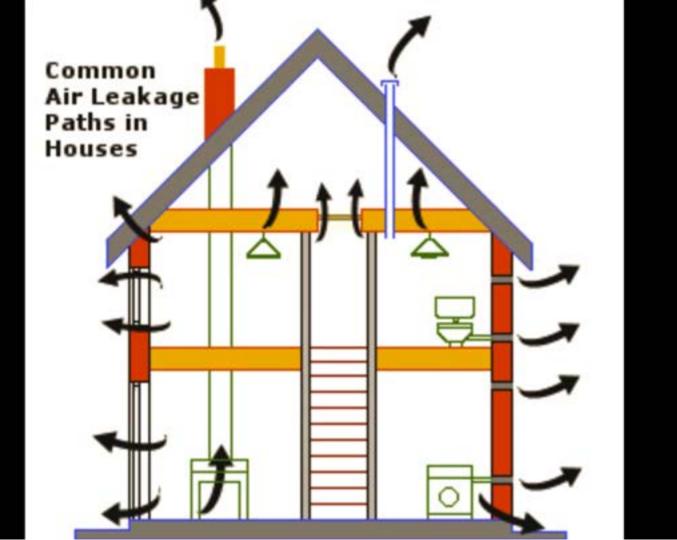
PROBLEMS IN QUALITY CONTROL

- Specified airtightness is not met in many cases
-) Effects:
 - Roomset points is not met through insufficient capacity
 - Thermal comfort
 - temperature control
 - draught
 - Reduced indoor air quality trough advantitious ventilation
 - Increased energy bill through extra heating and cooling demand
 - Example renovation: design ach 3, but
 realized ach 15

Top 3 air-leakages in 13 nearly zero energy dwellings

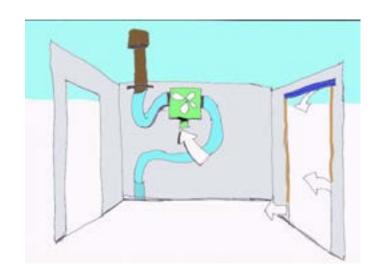
NEED FOR 100% QUALITY CHECKS AIRTIGHTNESS

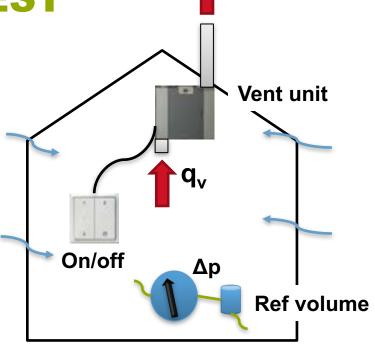
-) Both new and retrofitted dwellings
- Meet European Carbon reduction targets
- Last week in the Netherlands statement "healthy living without gas heating" by the building industry, 21 companies and associations to perform a 100% check of airtightness and ventilation and N50 < ach 1,5</p>


QUICK & SIMPLE AIRTIGHTNESS TEST

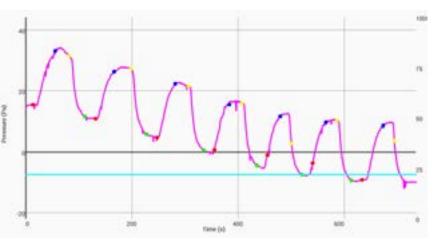
Reason of the research:

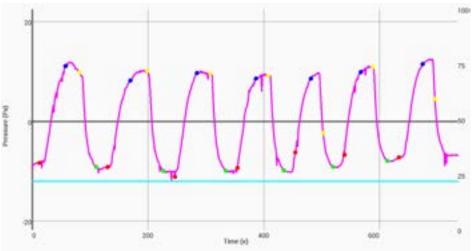
The association of manufactors of ventilation systems and installers joint forces: The challenge is to make an airtightness test method suitable for all kind of craftsmen and inspectors.





PRINCIPLE OF THE TEST





EXAMPLE TEST SIGNAL

Measurement signal

Corrected signal

PRACTICAL ISSUES

- Mechanical exhaust or supply, natural inlet or range hood
 - Closed grills

or

-) Balanced ventilation with heat recovery
 - Switch off the supply or exhaust and block it

SCOPE OF THE METHODOLOGY

- Required airtigthness N50 < 4</p>
- Sufficient mechanical flow > 20 l/s to have a pressure of > 10 Pa
 - Whole house ventilation (20-70 l/s)
 - Or a range hood

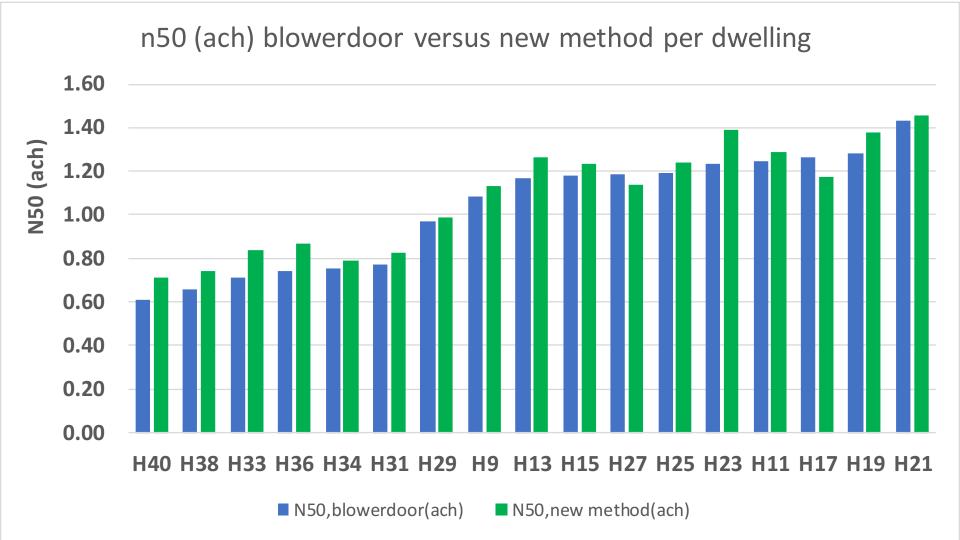
Every country has it's own rules how the measurements take place. For instance how to handle fire place, open gas boilers etc.

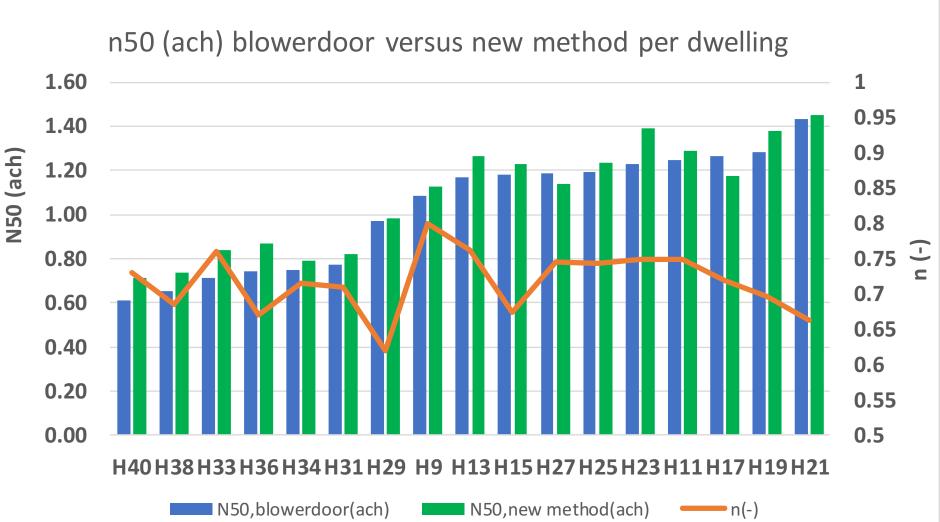
Calibrated opening	q _{v,} blower door (I/s)	n (-)	q _{v,system} (I/s)	q _{v,new} (I/s)	q _{v,new} (I/s)	$\Delta q_{_{V}}$ (I/s)	Δq _v (%)
			±1.0 l/s	n measured	n = 0.66 		
Closed	17.0	0.68	49.0	18.6±0.5	19.1±2.8	1.6	9.4
	16.1	0.70	48.5	17.6±0.4	18.9±2.8	1.5	9.3
12.5	30.5	0.62	48.5	30.7±1.3	29.8±2.6	0.2	0.7
	34.6	0.58	48.5	32.4±1.6	30.8±2.7	-2.2	-6.4
25	44.7	0.58	48.5	47.5±1.5	47.3±1.8	2.8	6.3
	51.7	0.53	48.5	42.9±9.3	41.7±11.4	-8.8	-17.0
50	86.7	0.53	48.5	77.7±10.1	86.0±16.0	-9.0	-10.4
	77.7	0.52	48.5	66.6±26.5	72.5±38.5	-11.1	-14.3
	77.7	0.52	65.0	72.8±3.4	74.9±4.6	-4.9	-6.3
	77.7	0.52	104.0	79.3±2.6	73.7±4.9	1.6	2.1
75	101.7	0.51	49.0	82.5±18.6	96.2±30.2	-19.2	-18.9
	101.2	0.51	65.5	97.9±15.1	110.1±23.8	-3.3	-3.3
	101.2	0.51	104.5	106.9±6.7	107.6±8.7	5.7	5.6
	101.2	0.51	104.5	101.5±6.9	100.6±8.9	0.3	0.3

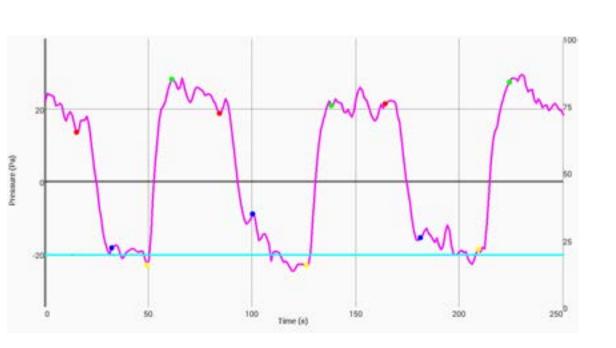
Calibrated opening	q _{v,} blower door (I/s)	n (-)	q _{v,system} (I/s)	q _{v.new} (I/s)	q _{v,new} (I/s)	$\Delta q_{_{V}}$ (I/s)	$\Delta q_{_{V}}(\%)$
			±1.0 l/s	n measured	n = 0.66 -		
Closed	17.0	0.68	49.0	18.6±0.5	19.1±2.8	1.6	9.4
	16.1	0.70	48.5	17.6±0.4	18.9±2.8	1.5	9.3
12.5	30.5	0.62	48.5	30.7±1.3	29.8±2.6	0.2	0.7
	34.6	0.58	48.5	32.4±1.6	30.8±2.7	-2.2	-6.4
25	44.7	0.58	48.5	47.5±1.5	47.3±1.8	2.8	6.3
	51.7	0.53	48.5	42.9±9.3	41.7±11.4	-8.8	-17.0
50	86.7	0.53	48.5	77.7±10.1	86.0±16.0	-9.0	-10.4
	77.7	0.52	48.5	66.6±26.5	72.5±38.5	-11.1	-14.3
	77.7	0.52	65.0	72.8±3.4	74.9±4.6	-4.9	-6.3
	77.7	0.52	104.0	79.3±2.6	73.7±4.9	1.6	2.1
75	101.7	0.51	49.0	82.5±18.6	96.2±30.2	-19.2	-18.9
	101.2	0.51	65.5	97.9±15.1	110.1±23.8	-3.3	-3.3
	101.2	0.51	104.5	106.9±6.7	107.6±8.7	5.7	5.6
	101.2	0.51	104.5	101.5±6.9	100.6±8.9	0.3	0.3

Calibrated opening	q _{v,} blower door (I/s)	n (-)	q _{v,system} (I/s)	$q_{v, m new}$ (I/s)	q _{v,new} (I/s)	Δq_{v} (I/s)	Δq _ν (%)
·			±1.0 l/s	n measured	n = 0.66 -		
Closed	17.0	0.68	49.0	18.6±0.5	19.1±2.8	1.6	9.4
	16.1	0.70	48.5	17.6±0.4	18.9±2.8	1.5	9.3
12.5	30.5	0.62	48.5	30.7±1.3	29.8±2.6	0.2	0.7
	34.6	0.58	48.5	32.4±1.6	30.8±2.7	-2.2	-6.4
25	44.7	0.58	48.5	47.5±1.5	47.3±1.8	2.8	6.3
	51.7	0.53	48.5	42.9±9.3	41.7±11.4	-8.8	-17.0
50	86.7	0.53	48.5	77.7±10.1	86.0±16.0	-9.0	-10.4
	77.7	0.52	48.5	66.6±26.5	72.5±38.5	-11.1	-14.3
	77.7	0.52	65.0	72.8±3.4	74.9±4.6	-4.9	-6.3
	77.7	0.52	104.0	79.3±2.6	73.7±4.9	1.6	2.1
75	101.7	0.51	49.0	82.5±18.6	96.2±30.2	-19.2	-18.9
	101.2	0.51	65.5	97.9±15.1	110.1±23.8	-3.3	-3.3
	101.2	0.51	104.5	106.9±6.7	107.6±8.7	5.7	5.6
	101.2	0.51	104.5	101.5±6.9	100.6±8.9	0.3	0.3

Calibrated opening	q _{v,} blower door (I/s)	n (-)	q _{v,system} (I/s)	$q_{v, m new}$ (I/s)	$q_{v, m new}$ (I/s)	$\Delta q_{_{V}}$ (I/s)	Δq _ν (%)
			±1.0 l/s	n measured	n = 0.66		
Closed	17.0	0.68	49.0	18.6±0.5	19.1±2.8	1.6	9.4
	16.1	0.70	48.5	17.6±0.4	18.9±2.8	1.5	9.3
12.5	30.5	0.62	48.5	30.7±1.3	29.8±2.6	0.2	0.7
	34.6	0.58	48.5	32.4±1.6	30.8±2.7	-2.2	-6.4
25	44.7	0.58	48.5	47.5±1.5	47.3±1.8	2.8	6.3
	51.7	0.53	48.5	42.9±9.3	41.7±11.4	-8.8	-17.0
50	86.7	0.53	48.5	77.7±10.1	86.0±16.0	-9.0	-10.4
	77.7	0.52	48.5	66.6±26.5	72.5±38.5	-11.1	-14.3
	77.7	0.52	65.0	72.8±3.4	74.9±4.6	-4.9	-6.3
	77.7	0.52	104.0	79.3±2.6	73.7±4.9	1.6	2.1
75	101.7	0.51	49.0	82.5±18.6	96.2±30.2	-19.2	-18.9
	101.2	0.51	65.5	97.9±15.1	110.1±23.8	-3.3	-3.3
	101.2	0.51	104.5	106.9±6.7	107.6±8.7	5.7	5.6
	101.2	0.51	104.5	101.5±6.9	100.6±8.9	0.3	0.3

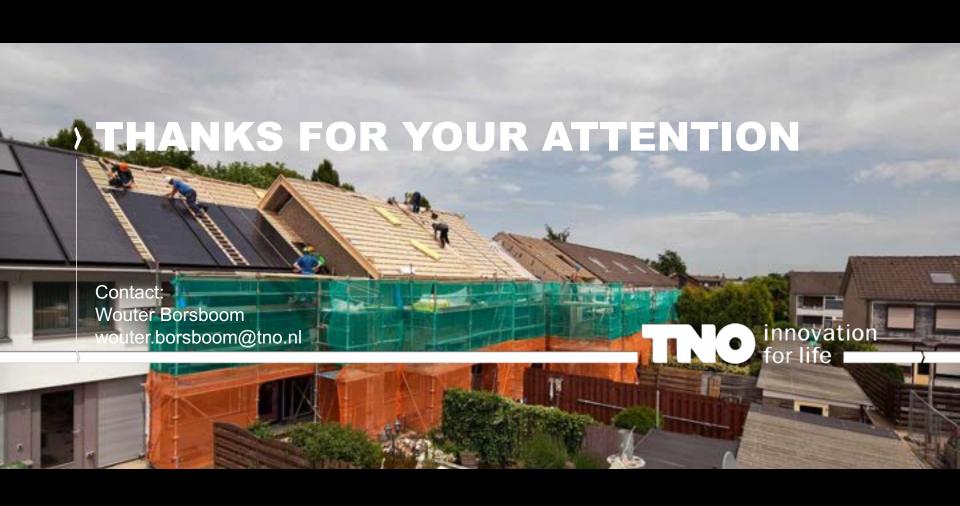



FIELD MEASUREMENTS



MEASURING AT HIGH WIND SPEED

 $q_{v,10}$ new = 34.2 l/s (N50=1,1) Blowerdoor fan off 40 Pa $q_{v,10}$ blower = 31.6 l/s at another day


RESULTS FIELD STUDIES

- Flow was more difficult to measured in the field studies due to summing up of flow of different outlets. A fault in the flow has a strong impact in overall accuracy
- Room for improvement to calculate pressure difference
- Average difference between blower door and new test methode up about 10%, max 20%

DISCUSSION

- Advantages
 - Quick, about 20 minutes
 - Compact can be placed in a bag pack
 - Simple
 - Inaccuracy < 20%
- Disadvantages
 - Flow coefficient needs multiple measurements with different flows
 - Less visual impression smoke test in cases with lower pressure
 - When ventilation flow is not measured by the ventilation unit, multiple measurements of flows through valves leading to lower accuracy

