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ABSTRACT 
 
The COVID-19 pandemic has raised concerns about indoor ventilation conditions worldwide. 
Monitoring CO2 concentrations in rooms has been widely used, but its relationship with outdoor 
air ventilation rates and ventilation performance is uncertain. Several uncertainties must be 
quantified, including the location and rate of CO2 sources, sensor locations, and the dynamics 
of the surroundings, as well as limitations of existing simulation models, such as well-mixing 
assumptions. This paper presents field measurements, stochastic modeling, calibrations, and 
aerodynamics analysis within rooms and contaminant dispersal. Several CO2 tracer gas tests 
were conducted in classrooms. Two test setups were used, one for uniformity testing and the 
other for evaluating ventilation performance. A proposed uniformity index (Ui) is integrated 
into the tracer decay method to address its limitation due to the well-mixing assumption, thereby 
improving the air change rate estimation by 22%. As a general rule, the outlet sampling location 
may represent the average of all locations in mixed-ventilated spaces. Given the small 
difference in peak CO2 concentrations (2.6%) and decay periods (15%), 60% of the ventilation 
capacity should be used instead of the full capacity. As opposed to the instructor's location, the 
room midpoint yields a 7 percent higher peak CO2 concentration, which is recommended as a 
dosing source to estimate air change rates using the tracer decay method. Additionally, novel 
simulation models have been developed for estimating ventilation air change rates in indoor 
environments since deterministic approaches cannot incorporate system uncertainties. It has 
been found that stochastic models, which combine the physical principles of a system with data 
collected from field measurements, are effective for resolving uncertainties, but they have not 
been extensively explored in terms of estimating air change rates. Therefore, we also examined 
the integration of stochastic differential equations (SDEs) and a Bayesian calibration model to 
evaluate indoor air quality and ventilation conditions in rooms. 
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1 INTRODUCTION 

Poor indoor air quality (IAQ) often results from insufficient fresh air supply to building 
occupants. The outbreak of the COVID-19 pandemic has raised public concerns about 
maintaining a healthy indoor environment and limiting the spread of virus-laden respiratory 
aerosols. Occupied classrooms in schools, where in-person interactions are frequent, have 
become one of the vulnerable spaces during this pandemic. Adequate outdoor air ventilation 
could effectively dilute aerosol concentrations and limit the quantity of inhaled infectious 
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pathogens (Yan, Wang et al. 2023). Thus, ensuring proper ventilation performance in schools 
has become much more essential than ever before.       
Over the years, improving air quality through enhanced ventilation performance has been the 
subject of various studies (Karava, Athienitis et al. 2012, Qi, Wang et al. 2014, Yuan, Athienitis 
et al. 2016, Yuan, Vallianos et al. 2018, Hou, Lin et al. 2020, Qi, Cheng et al. 2020). 
Characterizing ventilation rates (VR) in buildings has been an effective way for people to 
understand how much fresh air is delivered to the occupants. It should be noted that VR 
discussed in this study are in terms of the quantity of outdoor air supplied to the occupied areas, 
which is usually expressed as air volume per unit time (e.g., L/s) or air volume per unit time 
per person (e.g., L/s/person). For a lecture classroom, the ventilation design standard of the 
American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) 
recommends a VR value of not less than 4.3 L/s/person (ASHRAE 2019). Until now, few 
studies have paid attention to understanding the ventilation conditions of Canadian primary or 
secondary schools. There are several direct and indirect approaches to measuring air change 
rates (λ), which include airflow measurements, controlled release as well as in-situ monitoring 
(McNeill, Corsi et al. 2022). The direct flow measurement, which directly measures the air 
intake at the air-handling unit (AHU), has been widely adopted for determining the air change 
rate (Damiano 2010). However, this approach only works for mechanically ventilated 
buildings, while until recently, a large proportion of Canadian schools were naturally ventilated 
(Karava, Stathopoulos et al. 2006, Cheng, Qi et al. 2018).  
The controlled release approach, which has been widely known as the tracer-gas technique, 
usually releases a designated amount of tracer gas (a single release, constant release, or 
controlled release) and then observes its decay with time. Due to its simplicity and less dosing 
volume of tracer, various studies used the concentration decay method to evaluate ventilation 
performance and estimate indoor air change rate. However, this method often assumes the well-
mixing condition between tracer and air. In reality, the non-uniform mixing is unavoidable that 
caused by either short-circuiting of the inlet to the outlet or stagnant regions. Therefore, the 
decay method tends to underpredict λ (Van Ryswyk, Wallace et al. 2015). To fill this research 
gap, it is important to interpret the results of tracer gas tests in the context of a reliable mixing 
model. 
Selecting tracer gas is important in this method e.g., CO2 is one of the commonly used tracer 
gases as it appears to be safe and environmentally friendly, and its concentration could be easily 
measured with inexpensive sensors. In this approach, CO2 is also an ideal choice since humans 
would also become the generation source, and the concentration may indicate room occupancy. 
In order to estimate λ using measured CO2 concentrations in Canadian schools, traditionally, 
the tracer-gas mass balance equations would be used for deterministic predictions. However, 
during the measurement process, uncertainties would exist due to measurement noises, 
influence from the outdoor environments, etc., which would be ignored in the deterministic 
estimations. In the meanwhile, sometimes, the adoption of input parameters may be 
unreasonable, which would result in a large prediction bias. The stochastic grey-box model 
(Macarulla, Casals et al. 2018), which combines the physical principles of a system and the 
information generated from field measurements data, is shown to be promising in dealing with 
the uncertainties, whereas they have not been investigated in depth to be applied to the 
estimation of air change rates based on CO2 measurements in rooms. Meanwhile, the key 
parameters, including room occupancy and occupant CO2 generation rates, are often 
unavailable and lead to significant uncertainties, whereas these parameters may be estimated 
from Bayesian calibrations based on CO2 measurements (Hou, Wang et al. 2023). These 
approaches help deal with uncertainties and disturbances that happen during the ventilation 
interpretation progress.  



To address the research gaps presented above, in this study, we aim to deal with uncertainties 
coupled with CO2 field measurements, mass-balance equation modeling, parameter estimations, 
as well as the well-mixing of tracers and airflows in reality. Although the numerical analysis 
was focused on single-zone cases, the extensions to multi-zone simulations were also discussed.   
  
2 METHODOLOGIES 

2.1. Field measurements in mechanically ventilated classroom  

In August 2022, several CO2 tracer tests were carried out in a classroom on the 5 th floor of a 
16-story institutional high-rise building (Longueuil Campus, Université de Sherbrooke, 
Montreal, Canada). The classroom has a volume of 266.3 m3 (8.9×8.8×3.5 m) measured using 
a laser meter. The entire building is served by a centralized air conditioning system controlled 
by a building automation system (BAS). A mixed-ventilation system is used consisting of 4 
supply air ceiling diffusers (0.6×0.6 m), 6 linear slot diffusers (1.2×0.1 m), and 3 return air 
ceiling grilles (0.6×0.3 m). Two test setups were built. Setup (I) is designed to quantify the 
spatial uniformity of CO2 concentrations by monitoring 16 locations at the breathing level (1.5 
m from the floor) using the mid-point as a CO2 source. On the other hand, setup (II) is arranged 
to evaluate the effect of three levels of air change rates, two source locations (mid-point and 
instructor desk's location), and two-door modes (opened and closed) on ventilation 
performance. Eight sampling locations are monitored at heights of 1.1 and 1.7 m from the floor. 
For both setups, the inlet (S) and the outlet (R) were also monitored.  
Details regarding the tracer tests conducted using CO2 are presented in Table 1, which is a 
suitable tracer as recommended by ASTM E741 (ASTM 2017). Test 01 is specified for 
quantifying the spatial uniformity of CO2 concentrations, while tests 02-06 are carried out for 
assessing ventilation performance. Tests 02, 03, and 04 are compared to examine the effect of 
the air change rates. Tests 04 is compared with Tests 05 and 06 to investigate the effect of door 
mode and source location on ventilation performance. The BAS system was used to control the 
ventilation conditions, wherein the air change rate was measured (λeff) using a balometer device. 
Meanwhile, the CO2 injection was controlled using a mass controller, keeping the peak 
concentration less than 1000 ppm. 
 

Table 1 History of conducted CO2 tracer tests. 

 
2.2. Field measurements in naturally ventilated classroom 

Indoor field measurements of CO2 levels were performed in one of Montreal's primary schools 
from 2020 to 2021. The selected classroom has a floor area of 9.4 m × 6.6 m, which is naturally 
ventilated. The MX1102 (SN: 20820982) CO2 sensor was installed at 1.7 meters height on the 
west internal wall right above the thermostat (1.5 m height). Table 2 illustrates the measurement 
information.  
 
 

Test No. Test 01 Test 02 Test 03 Test 04 Test 05 Test 06 

Test period [min] 108 70 85 75 75 75 

Measured air change 
rate   λeff [/h] 5.35 ± 0.21 8.92 ± 0.31 5.35 ± 0.21 7.25 ± 0.26 7.25 ± 0.26 7.25 ± 0.26 

Source location  Mid-point  Mid-point Mid-point Mid-point Mid-point Instructor desk 

Door mode Closed  Closed Closed Closed Opened Closed 

Number of sensors  18 10 10 10 10 10 



Table 2 Measurements information in the classroom 

 

2.3. Single-zone ventilation performance evaluation 

To estimate the air change rate λo, the well-known decay method (Eq. 1) is commonly used. 
However, this method assumes a well-mixed space, which limits its accuracy. To address this 
research gap, a uniformity index (Ui) has been proposed (Eq. 2). By integrating Ui into the 
decay method, the modified decay method (Eq. 3) has been developed to improve the estimation 
of air change rates. This modified decay method considers the unavoidable non-uniform 
mixing, which might be caused by stagnant regions or short-circuiting from the inlet to the 
outlet. The mathematical solution of Eq. 3 was developed according to (Barber 1982, ASTM 
2017). 
𝜆𝑜 =

1
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   (3) 

         
where λo is estimated air change rates for uniform mixing [/h]; t and to are the final and initial 
elapsed time [h]; C and Co are the final and initial tracer concentrations [mg/m3]; Cbg is the 
background tracer concentration [mg/m3]; Ui is uniformity index; Cmin and Cavg are minimum 
and average tracer concentrations [mg/m3]; λm is estimated air change rates for non-uniform 
mixing [/h]; λeff is measured air change rates [/h]. 
 
Plastic tubings (8 mm ID) were utilized to install the CO2 injection and sampling systems. The 
injection flow rate was controlled with a mass controller to keep the peak CO2 concentration 
under 1000 ppm. Meanwhile, an automated system monitored the CO2 concentrations at desired 
locations online. A vacuum pump operating at 114 L/min continually drew fresh air samples 
one at a time, which were then supplied to the gas analyzer when the 18-position valve selected 
them for analysis. A mass spectrometer (UGA-100, Stanford Research Systems) with a 
quadrupole probe was used. It was also calibrated in one of Concordia's laboratories and in situ. 
A combination of standard gas concentrations was used for this calibration method (Blessing, 
Ellefson et al. 2007). According to ASTM E741, the regression curve should be within the 95% 
confidence level. 
 
2.4. Single-zone air change rate predictions and calibrations  

The white-box CO2 model, which was the traditional deterministic CO2 mass-balance model at 
the constant temperature, was shown as follows:  
𝑉

𝑑𝐶𝑟

𝑑𝑡
= −(𝐶𝑟 − 𝐶𝑜) ∙ 𝑄 + 𝐸         (4) 

where V is the room volume [m3]; Cr is the CO2 concentration in the room [ppm]; Co is the CO2 
concentration of outdoor air ventilation flows [ppm]; Q is the air supply into the room [m3/h] ; 
E is the CO2 generation rate in the room [L/s].  
 

Location Age (years) Dimensions (m) Ventilation mode 
Measurement 

Periods 

Maximum 

Occupancy 

Montreal 5-8 9.4 × 6.6 × 3.5 Natural ventilation 2020/06/22 - 
2021/06/21 16 



The grey-box CO2 model, which was established with the stochastic differential equation 
(SDE), could be expressed as follows:  
𝑑𝐶𝑟 =

−(𝐶𝑟−𝐶𝑜)∙𝑄+𝐸

𝑉
∙  𝑑𝑡 + 𝜎 ∙ 𝑑𝑤         (5) 

where 𝜎 is the incremental variance in the Wiener process; dw is a Wiener process.  
 
In this study, the Bayesian calibration approach was adopted for the inference of air change 
rates in the established CO2 white-box/grey-box model. In Bayesian calibration, the probability 
of the estimated parameters was inferred based on the prior distributions estimated for them. 
The likelihood of the estimated parameters given the measured data Y (CO2 indoor 
concentration) is demonstrated as follows in Bayes's law:    
P (Q|Y) =𝑃(𝑌|𝑄 )∙𝑃(𝑄)

𝑃(𝑌)
                         (6) 

where 𝑃(𝑌|𝑄) is the likelihood probability that measurement data Y (which is measured CO2 
concentration Cr in this study) occurs given the prior information of Q, P (Q) is the prior joint 
probability of Q, and P (Y) is the probability of the measurements results, which is a normalized 
constant. The prior distributions estimated for models were based on a previous study (Hou, 
Wang et al. 2023).  
  
2.5. Multi-zone simulations and calibrations 

CONTAM software (William and Brian 2015) is one of the most powerful multi-zone 
simulation tools for indoor air quality analysis. Thus, CONTAM is employed in this study to 
predict and validate CO2 concentrations at different locations. For this purpose, the 5th floor of 
the Longueuil Campus (Montreal, Canada) was modeled (Figure 1). Accurate and real 
boundary conditions were inputted using the BAS to describe ventilation conditions in addition 
to considering the measured CO2 data. Regarding the building envelope parameters, e.g., the 
infiltration values were obtained from the Quebec code of construction (National Research 
Council of and Régie du bâtiment du 2022) of 0.25 L/s/m2. The model considered other 
different types of infiltration, such as internal wall and door infiltration. CO2 injection was 
defined based on the original injection rate that was carried out during the measurements.  

 
Figure 1 Architectural layout and CONTAM model of the 5th floor, Longueuil Campus, Université de Sherbrooke, 
Montreal, Canada (1. External wall leakage; 2. Floor leakage; 3. Stair leakage; 4. AHU supply and return; 5. 
Internal wall leakage; 6. Elevator shaft leakage; 7. Door leakage; 8. CO2 injection source). Highlighted in red, are 
3D views of the selected classroom showing two setups of tracer tests. 



An automatic calibration method should be proposed due to the challenges involved in 
manually calibrating multiple parameters. To perform this, several steps should be taken. The 
initial step is to conduct a parametric simulation, which includes testing all possible ranges of 
various simulation parameters with different combinations to obtain a reasonable simulation 
result. To generate various combinations, a uniform distribution for all parameters was chosen 
using ContamFactorial 1.0, along with the necessary flagged and value files for creating 
different project files. A Python code was developed to execute the extracted data files and 
convert the simulation results into a spreadsheet format for exporting the results. Table 3 
displays the parameter ranges utilized in this parametric analysis. Sampling was needed first to 
minimize the number of simulations. Sampling is often used to select the combinations that 
could be used to cover the whole range of these combinations. There are different kinds of 
available sampling methods. In this study, the Sobol method is used as it could be used in 
capturing the linear and non-linear correlations between the inputs and outputs when 
performing the sensitivity analysis, as discussed later. By utilizing sampling techniques, the 
total number of simulation cases can be reduced to 1152, which is significantly less than the 
millions of cases. Then, sensitivity analysis is proposed to evaluate the importance of each 
parameter in the results. Sobol variance-based method (Saltelli, Annoni et al. 2010) was used 
to evaluate the correlations between the different input parameters and output results. A sample 
file was first created that has all the possible combinations of the input parameters. Then, the 
Monte-Carlo integration was used to calculate the sensitivity index (SI) based on both the 
sample files and the results.  
 
Table 3. Utilized parameter ranges for parametric analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3 RESULTS AND DISCUSSION 

3.1.Single-zone measurements and simulations, calibrations 

Figure 2a shows measured CO2 concentrations at various locations with peak difference values 
ranging from 213 to 331 ppm. The outlet location has a peak CO2 concentration (272 ppm) 
close to the average of all distributed 16 sensors at the breathing level (278 ± 33 ppm). 
Therefore, the outlet location is a good sampling representative of interest in this mixed-
ventilated zone. Integrating the proposed uniformity index (Ui = 0.77) in the decay equation 
succeeded in decreasing the error caused by the well-mixed assumption at the outlet and the 
average locations from 25% to 3% (Figure 2b).  

Parameter Uniform distribution range Unit 

External wall infiltration 0.25 ± 20% L/s/m2 

Internal wall infiltration 0.25 ± 20% L/s/m2 

Floor infiltration  0.25 ± 20% L/s/m2 

Door infiltration 4 – 27  cm2 

Outdoor CO2 concentration  396 – 416  ppm 

Initial indoor CO2 concentration 400 – 700  ppm 

Indoor CO2 generation rate 0.002 – 0.01  L/s/ person 

Occupancy  0 – 40  Number  



Both peak CO2 concentration and decay period inversely correspond to increasing the air 
change rate (Figure 2c). When the maximum air change rate of 9 /h decreases to the minimum 
value of 5 /h, the peak CO2 concentration and decay period both decrease by 39% and 63%, 
respectively. On the other hand, when comparing the maximum air change rate of 9 /h with the 
frequent operating air change rate of 7 /h, there were only minor differences observed in both 
the peak CO2 concentration (2.6%) and decay period (15%). As a result, it is suggested to 
operate the space at 60% of its full ventilation capacity (7 /h). Opening the door reduces 
exposure to peak CO2 concentration and decay period by 34% and 56%, respectively. The mid-
point location is recommended as the dosing source for estimating the air change rate, rather 
than the instructor's desk location, as it resulted in a 7% higher peak CO2 concentration.  
Figure 3 shows (a) the measured CO2 level in different seasons and (b) an example for 
evaluating the modeling approach on a selected day. During school hours (9:00 – 16:00), 
measurement data from 9:00 to 13:00 and 13:00 – 16:00 were used for predicting the estimated 
parameters and evaluating the prediction performance, respectively. The single-zone simulated 
CO2 concentration with parameters estimated from the white-box and grey-box model is shown 
in Figure 3c. The rolling-window approach was applied for the simulation of indoor CO2 levels 
(Hou, Wang et al. 2023). Results suggest that the grey-box model tends to have a better 
prediction performance than the white-box model. The mean average error (MAE) is 97.4 for 
the white-box model ppm and 48.6 ppm for the grey-box model (Table 4). This indicates that 
the grey-box model gives more reasonable predictions for this selected day. The results 
evaluated from other indices also indicate a similar trend, as shown in Table 4. 

 
Figure 2 (a) Measured CO2 concentrations at 16 different sampling locations in addition to the inlet and outlet. (b) 
Comparing the error percentage of estimated air change rates at the outlet and the average of all 16 locations at the 
breathing level. (c) Peak CO2 concentrations and decay periods at various air change rates. 

Table 4 Evaluations for the modeling performance 

Model 
MAE 

(ppm) 

MAPE 

(ppm) 

MSE 

(ppm) 

RMSE 

(ppm) 
R2 

White-Box 97.4 4.8 12791.2 113.1 0.99 

Grey-Box 48.6 2.6 3361.9 58.0 0.99 



Figure 3 Measured CO2 concentration in the classroom for different seasons (a) and for one selected day (b) 
Simulated CO2 concentration with parameters estimated from the white-box/grey-box model (c). 

 

3.2.Multi-zone simulations and calibrations 

The baseline model was first validated against the measurement data. Figure 4 shows the 
difference in CO2 concentration relative to the initial concentration for one sample room within 
the building. The results are shown for the whole measurement time, including a pre-injection 
period in the beginning, an injection period, and then decay. These results suggest that there 
has been a considerable deviation between the measurements and the simulation due to the 
uncertainties of the input parameters. Initially, manual calibration was explored to determine if 
it was feasible to adjust the input parameters based on the results. It was found that a calibration 
technique is necessary when dealing with such issues, particularly when there are a large 
number of input parameters that would make it difficult to modify each parameter individually 
or manually. 
 

  
Figure 4 CO2 concentration difference versus time (left) and sensitivity index of the input parameters (right). 
 
After performing the parametric simulations and extracting the results, the sensitivity analysis 
was performed to evaluate the importance ranking of every input parameter on the output 
results. Figure 4 (right) shows the sensitivity Index (SI) for all the input parameters. The results 
suggest that the initial CO2 concentration within the room, the occupancy, and the CO2 
generation rate are the main parameters that shall be calibrated for each zone. The other 
parameters will be assigned with their mean value as their influence is almost negligible. It 
should be noted that the proposed methodology is expected to work for the other buildings but 
the results may be different. 
 
4 CONCLUSIONS 

This study quantifies inevitable uncertainties coupled with monitoring and modeling CO2 
concentrations to assess ventilation performance, i.e., quantify air change rates and mitigate 
aerosol viral transport in buildings. A proposed uniformity index (Ui) is integrated into the 
decay method to reduce its limitation on uniform mixing only. Later, the effect of air change 
rate, source location, and door mode on ventilation performance is experimentally evaluated. 



In addition, stochastic modeling and calibrations were carried out to investigate other 
significant factors (CO2 injection rate and the dynamics with the surroundings). The grey-box 
CO2 model was integrated with the Bayesian calibration method to support the evaluations of 
indoor air quality and air change rates in Canadian classrooms. By taking uncertainties from 
different sources into consideration, this approach would effectively estimate the air change 
rate from in-situ CO2 monitoring. Additionally, this study presents a novel approach for 
calibrating multi-zone CO2 simulations, which helps to identify the key parameters to be 
calibrated. 
The following conclusions were researched through this study: The proposed uniformity index 
succeeded in decreasing the error caused by the well-mixed assumption from 25% to 3%. The 
grey-box model could give reasonable predictions for CO2 monitoring. Three main parameters 
that need to be calibrated are the initial CO2 concentration, occupancy, and CO2 generation rate, 
as they have a significant impact on the accuracy of the air change rate estimation.  
Future studies should be directed to developing an algorithm that can assign values to the 
parameters requiring calibration by utilizing measurements to minimize the error between the 
measurements and the simulation. Additionally, investigating the possibility of applying the 
same methodology to other contaminants and different ventilation systems would be beneficial. 
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