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ABSTRACT 

Smart ventilation which provides air renewal thanks to its variable airflows adjusted on the 
needs can improve both indoor air quality (IAQ) and energy performance of buildings. 
However, such performance gains should be quantified with performance-based approaches. In 
this paper, we propose to extend the performance-based approach with a robust methodology 
to rank the ventilation systems performance. Such a methodology could be used in a decision-
making tool at the design stage of buildings. Indeed, when simulations are carried out, we 
generally obtain a relative range of the theoretical performances, which should be achieved for 
each tested ventilation strategy. Nevertheless, it does not allow to rank the ventilation systems 
performances and to choose the most relevant one from an overall performance point-of-view. 
In this work the overall performance aspect was focused on IAQ and energy performance 
through five IAQ - and one energy - performance indicator.  
 
We propose in this paper a simplified approach in 3 keys steps (Figure 1) adapted from existing 
robust assessment methods, to achieve a robust ranking of the systems based on the aggregation 
of performance indicators results using Simple Additive Method (SAW). In the present work, 
five ventilation systems have been tested with several sets of input parameters (500 
simulations). In addition, three reference scenarios for input values (low, reference, high) were 
used for robustness assessment. We compared the ranking calculated with 500 simulations with 
the ranking calculated with three reference scenarios. The objective was to assess whether the 
three reference scenarios are sufficient to obtain a relevant ranking of ventilation systems or if 
more simulations are needed to achieve this goal. 
 
Our results showed that the aggregation of the performance indicators with the SAW method is 
relatively accurate compared to the performance observed individually by each indicator. Then, 
the calculation of the design score with the minimax regret robustness method offers a clear 
advantage to highlight the difference between the ventilation systems, to rank them by including 
the uncertainty of several simulations. In addition, we show that the use of the three reference 
scenarios could be sufficient to obtain a relevant ranking of the ventilation systems, in 
comparison with 500 simulations. However, if the number of simulations is limited, we propose 
to perform in priority the reference scenario, for an “optimistic performance ranking”, or the 
reference high scenario for a “conservative performance ranking”. Nevertheless, if there are no 
constraint, we encourage the decision maker to simulate at least the three reference scenarios 



and ideally 500 scenarios or more. The latter reinforces the validity of the calculated design 
score and ranking by including the uncertainty on input parameters. 
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Figure 1 : Methodology for robustness calculation and ranking for decision making 



1 INTRODUCTION  

The assessment of ventilation performance often focuses on indoor air quality (IAQ). 
Nevertheless, with low energy buildings, the energy-saving potential from ventilation is 
becoming increasingly important. In addition, smart ventilation has been identified as a very 
promising way to improve both the indoor air quality and the energy performance of buildings, 
through the variation in time and/or place of ventilation airflows according to needs. Research 
efforts, such as those under in the framework of the IEA-EBC Annex 86, should make it 
possible to develop such smart ventilation strategies. It requires performance-based approaches 
in order to robustly assess the potential of gains, especially compared to more traditional 
constant-airflows ventilation strategies. These promising improvements need to be quantified 
in an overall performance way including IAQ, energy or even other relevant aspects. This paper 
only focusses on the IAQ and energy aspects of the overall performance of ventilation.   
 
At the design stage, in a performance-based approach, the ventilation performance could be 
calculated by simulation. This assessment process consists in testing the performance of one 
(or several) ventilation systems according to one or (several) input scenarios; including 
pollutants emissions rates variations, occupant behaviours, building boundaries conditions.  
Due to the large possible variations in the input scenarios, we obtain a relative range of the 
theoretical performances. According to previous application case studies; testing IAQ or energy 
performance of constant and humidity controlled airflows ventilation (Poirier et al., 2022a, 
2022b) ; the difference of the performances among the ventilation systems varies depending on 
the selected indicators. For example, differences between the ventilation systems were clearly 
identifiable for some indicators based on CO2, on high relative humidity and on energy 
consumption. On the contrary, the performances were almost the same or very close for other 
indicators like the PM2.5 and formaldehyde exposures. Nevertheless, it does not allow to rank 
the ventilation systems performances and to choose the most relevant one from a global 
performance point-of-view. 
 
It clearly raises the question of:  

How to aggregate performance indicators and balance IAQ and energy performance 

assessment to provide a robust ranking of the ventilation systems? 

 
In this paper, we propose to explore a methodology to rank the systems performance including 
the uncertainty from simulations; in order to complement our method for overall performance 
assessment (MOPA) for ventilation (Poirier et al., 2021b). 
 
2 METHODOLOGY 

 
As a methodology, we propose a simplified approach based on 3 keys steps to achieve a robust 
ranking of the systems based on performance assessment results, to help in decision making 
(Figure 1-Graphical abstract). These steps are based on some relevant studies on existing robust 
assessment methods adapted to the building sector (Kotireddy et al., 2018; Velasquez and 
Hester, 2013; Hoes et al., 2009; Sharma and Bhattacharya, n.d.) that seem relevant for 
application in the context of MOPA development.  
 
2.1 Design option performance calculation 

The first step consists in performance assessment by simulations of the different design options 
(Dopt) to be tested. In building design, several parameters could be tested, such as thermal 
envelope materials, compactness ratio, external shadings, building orientation, heating systems, 
photovoltaic panels surface, etc. (Hoes et al., 2009; Kotireddy et al., 2017; Mechri et al., 2010).  
 



In the present work, the design options are the ventilation systems and the performance 
calculation were performed with multi-zone CONTAM software which have been scientifically 
validated (Walton and Emmerich, 1994; Emmerich, 2001). With its models, CONTAM allows 
to describe for example ventilation airflows with complex strategies, indoor air pollutants, 
occupants exposure, building airtightness and more. For this step, we based our application on 
the performance calculated with 2500 simulations performed in (Poirier, 2023), with a 
sensitivity analysis (SA) experiment using the EASI RBD-FAST method (Goffart et al., 2015; 
Goffart and Woloszyn, 2021). From these simulations the performance results were calculated 
with the following performance indicators defined in (Poirier et al., 2021b; Poirier, 2023): 

In
CO2, Maximum cumulative CO2 exposure over 1000 ppm. 

In
HCHO, Maximum cumulative HCHO exposure among all the occupants 

In
PM25, Maximum cumulative PM2.5 exposure among all the occupants 

In
RH70, Maximum percentage of time with RH > 70% among all the rooms  

In
RH30_70 Maximum percentage of occupant time spent with RH outside the range 

[30-70%]  
In

Ewh Heat losses from total exhaust airflows calculated with equation 1  
 𝐼𝐸𝑤ℎ = Hth =

𝐶𝑝𝑚

3600
. (1 − 𝜀ℎ𝑒𝑎𝑡𝑒𝑥

) ∫ 𝑞𝑚(𝑡). [𝑇𝑖𝑛(t) − 𝑇𝑒𝑥(𝑡)] . 𝑑𝑡 (1) 
 
with IEwh the energy indicator resulting directly from HTh , the heat losses from exhausted air 
[kWh], qm the total exhaust mass airflows in [kg.s-1], Cpm the heat capacity of air (we used 1 
𝑘𝐽.kg-1. °𝐶-1), 𝜀ℎ𝑒𝑎𝑡𝑒𝑥

 the heat exchanger efficiency assumed to be ideal and constant. A 
constant theoretical efficiency of 0.8 can, for example, be used for MVHR and 0 with no heat 
recovery. Tin is the zone temperature where the air is exhausted, and Tex the external 
temperature [°C].  
 
In this paper, five ventilation strategies (or referred as design option Dopt) were implemented in 
CONTAM model and implemented on French low energy house case study (Poirier et al., 
2021b, 2022a) :  

MEV-CAV, for mechanical exhaust-only ventilation with constant air volume  
MVHR-CAV, for mechanical balanced ventilation with heat recovery and constant air 
volume  
MEV-RH, for mechanical exhaust-only ventilation and humidity control,  
MVHR-RB, for mechanical balanced ventilation with heat recovery and CO2 & 
humidity control at the room level  
MEV-RB, for mechanical exhaust-only ventilation and CO2 & humidity control at the 
room as an adaption of the MVHR-rb,, 

For sensibility analysis, each design option 500 simulations were performed with variation on 
the input scenarios such occupant CO2 and H2O emissions, moisture emissions from 
activities, emissions from cooking activities, exhaust airflows and CONTAM PM2.5 and 
moisture models parameters. The sampling of the 500 input scenarios was realised with the 
Latin Hypercube Sampling (LHS) methods (Helton and Davis, 2003) in accordance with the 
EASI RBD-FAST method (Goffart et al., 2015; Goffart and Woloszyn, 2021). This sampling 
was carried out with a Python function implemented in the SALib library.  
 
In addition, three reference scenarios (Reflow, Ref, Refhigh) were also used for robustness 
assessment (Poirier, 2023; Poirier et al., 2021a). The objective was to compare the ranking 
based on the overall performance calculated with the set of 500 input scenarios and the ranking 
calculated with the reference and the two extreme input scenarios. This is to assess whether the 
three reference scenarios are sufficient to obtain a relevant ranking of ventilation systems or if 
more simulations are needed to achieve this goal. 



 
2.2 Multi-criteria-aggregation 

Then, we used the SAW method for the multicriteria aggregation step, that is a simple 
aggregation weighting method which regroups the 5 IAQ indicators and the energy indicators 
under one value that we named IMC for “multicriteria” indicator. 
 
The second step focuses on the method to be used to regroup the performance results from the 
six indicators to one aggregated value for each simulation. In the literature, the aggregation of 
several indicators for decision making could be found under the notion of methods for “multi-

criteria decision-making” (MCDM)(Kotireddy et al., 2018; Namin et al., 2022; Velasquez and 
Hester, 2013). These methods generally propose a formulation to aggregate the multiple criteria 
for the tested design option under one value (here the performance indicator). We propose to 
name this aggregated value IMC for Multi-Criteria Indicator.   
 
According to the literature, there are numerous methods of MCDM, with for example at least 
10 different methods identified in a recent review on MCDM (Namin et al., 2022). As the 
purpose of this work is not to test or compare all the possible methods; we decided to use the 
Simple Additive Weighting (SAW) method. This method is a common MCDM method widely 
used and seems relevant to our problem. Indeed, this method is a classical method consisting 
of adding up the indicators with a weighting coefficient to give more or less importance to 
certain indicators over others. The proposed calculation of IMC with the SAW method (Equation 
1) has been realised and adapted from the method described in (Podvezko, 2011).  
 
 𝐼𝑀𝐶 =  ∑ 𝜔𝑖. 𝐼𝑖𝑖  (2) 
 
Where 𝜔𝑖 is the weighted normalized value (∑ 𝜔𝑖. = 1) of the indicator 𝐼𝑖 in [In

CO2, In
HCHO, 

In
PM25, In

RH70, In
RH30_70, In

Ewh].  
 
The weighted values can be set in several ways depending on the priority given to the indicator 
by the decision maker. To show the impact of weight arrangement priority on the IMC 
calculation we build three weight distributions to calculate an associated IMC (Table 1): 
 

IMC_IAQ, corresponding to decision-making based only on the IAQ indicator, with the 
weight equally distributed over the five IAQ indicators (In

CO2, In
HCHO, In

PM25, In
RH70, 

In
RH30_70 ) and 0 for In

Ewh .  
 

IMC_IAQ-E, corresponding to decision-making for overall performance assessment based on 
IAQ and Energy aspects, with the weight equally distributed on the six indicators. 
However, this distribution gives globally an advantage to the IAQ aspect as energy aspect 
is represented only by one indicator against five indicators for IAQ.  
 

IMC_IAQ-E* corresponding to a decision making for overall performance assessment based 
on IAQ and Energy aspects, but with variable and unequally distributed weight on the six 
indicators in comparison with IMC_IAQ-E. This distribution was built to have an equal 
proportion between IAQ and energy. Consequently, the weight of In

Ewh is set equal to 0.5. 
In addition,  the IAQ aspects were differentiated to give more weight to the indicators  
In

PM25 and In
HCHO. Their weight is doubled in comparison to  the remaining IAQ 

indicators. This distribution for IAQ indicator could correspond to the assumption that 
moisture and CO2 have less impact on the health in comparison with PM2.5 and 
formaldehyde.  



2.3 Robustness calculation and ranking  

 
Lastly, the robustness calculation step consists in integrating into one design score (Ds) all the 
individual performance indicators IMC across the tested scenarios. Then this robust design score 
can be used for performance comparison of each design option (Dopt). 
 
According to the comparative study for robustness method assessment of Kotireddy (Kotireddy 
et al., 2019); several methods exist for robustness calculations. In this study three robustness 
assessment methods were implemented -max–min method, best-case and worst-case method, 
and minimax regret method - and compared with the widely used Taguchi method.  
 
The Max-Min method evaluates the performance spread (PS) between the maximum 
performance (ADopt) and the minimum performance (BDopt) of each design strategy across all 
the scenarios. The most robust design is the design with the smallest PS. 
 
 𝑃𝑆 = 𝐴𝐷𝑜𝑝𝑡

− 𝐵𝐷𝑜𝑝𝑡
 (3) 

 
The best-case and worst-case method evaluates the performance deviation (PD) between the 
maximum performance (ADopt) and the minimum performance of all design strategies (Dmin). 
The most robust design is the design with the smallest PD.  
 
 𝑃𝐷 = 𝐴𝐷𝑜𝑝𝑡 − 𝐷𝑚𝑖𝑛 (4) 
 
The minimax regret method evaluates the performance regret (PR), with the difference between 
the performance indicators value and the minimum performance of each scenario across all 
designs (Cs). The performance regret is calculated for each design strategy Dopt across all the 
scenarios s. Then the MPR is the maximum performance regret of each design, and the most 
robust design is the design with the smallest MPR 

 
 𝑃𝑅 = 𝐼𝑀𝐶,𝐷𝑜𝑝𝑡,𝑠 − 𝐶𝑠 ; 𝑤𝑖𝑡ℎ 𝐶𝑠 = Min

𝑠
(𝐼𝑀𝐶(𝑎𝑙𝑙_𝐷𝑜𝑝𝑡),𝑠) (5) 

 𝑀𝑃𝑅 = Max
𝐷𝑜𝑝𝑡

(𝑃𝑅) (6) 

The Taguchi method evaluates the robustness of the design strategies based on the mean and 
standard deviation of the performance indicators over all the scenarios. The most robust design 
is the design with the smallest mean and standard deviation (mean ⋂ std) (Hoes et al., 2009) 
 
The max–min, best-case and worst-case, and minimax regret robustness methods for design 
score provide a better integration of the uncertainty across all the scenarios in comparison with 
the Taguchi method. That could facilitate the decision-making process by reducing the gap 
between simulated performance at the design stage and the real performance (Kotireddy et al., 
2019).  
 

Distribution 
For IMC calculation 

Weight 𝝎𝒊 

In
CO2 In

RH70 In
RH30_70 In

PM25 In
HCHO In

Ewh 

IMC_IAQ 0.2 0.2 0.2 0.2 0.2 0 

IMC_IAQ-E 0.16 0.16 0.16 0.16 0.16 0.16 

IMC_IAQ-E* 0.071 0.071 0.071 0.143 0.143 0.5 

Table 1 : Weight distribution for IMC calculation 



All four methods presented above were tested for the calculation of the robust design score. 
Finally, we selected the minimax regret method for design score calculation and the final 
ranking. Indeed, the use of these three other methods had little impact on the final ranking and 
the minimax regret method has been identified as a less conservative approach to design 
decision making when risk can be accepted as a trade-off (Kotireddy et al., 2019). This is 
relevant for MOPA as compared to the other three methods which are more conservative.  
 
Finally for the results analysis we calculated the design score by applying Equation 5 with the 
IMC from the 500 SA scenarios on one hand and with the IMC from the 3 Reference scenarios on 
the other hand. The last case is the reference scenario when the design score is directly the IMC. 
Then this design scores were normalized In [%] by ∑ (𝐷𝑠) 𝐷𝑜𝑝𝑡

the sum of all the design scores. 
That facilitating the ranking and comparison between the weight distribution and the number 
of scenarios.  
 
3 METHOD ANALYSIS AND RANKING RESULTS  

 
The first step of the proposed robustness method consists in design option performance 
calculation and here we exploited the results from the 500 simulations per design option used 
for SA application case study (Poirier, 2023). The following sections next result analyses are 
focused on the second step (multi-criteria aggregation) and the third step (robustness design 
score calculation) for robust ranking.  
3.1 Multi-criteria aggregation 

 
In the Figure 2, we represent by boxplot the aggregate IMC calculated with the three weight 
distributions (IAQ, IAQ-E, IAQ-E*) on the 500 simulated scenarios for each design option. 
The three reference scenarios are represented by small grey diamonds. The boxplots represent 
first quartile (q1) at the bottom of the box, the median in the middle and the third quartile (q3) 
at the top of the box; with the whiskers extend from the box by 1.5x the inter-quartile range 
(IQR) and the remaining outliers are represented by grey crosses.  

This representation gives a general overview of the IMC  results depending on the proposed 
weight distribution. For the first weight distribution, including only the IAQ indicators, the 
aggregated performance (IMC_IAQ) results in values mainly between 1 and 2 for MEV-cav and 
MEV-rh. For the MEV-rb and the MVHR-cav the results are centred around the acceptable 
threshold of 1. ; only the MVHR-rb gives the values mostly lower than 1, meaning an acceptable 
performance. The outliers for MEV-cav and MEV-rh illustrate that specific inputs scenarios for 
these systems could generate high performance assessment difference more than 4 times the 

Figure 2 : Multi-criteria performance results of the five design option tested by weight distribution  



acceptable thresholds in some cases. Fortunately, the results of the reference scenarios are not 
outliers, which would mean that these three reference scenarios are not at all representative. 
 
For this first case, with constant weight distribution over IAQ only, there is no clear gap 
between the systems in comparison with the two others weight distribution results (IMC_IAQ-E , 
IMC_IAQ-E*). Such results may question the exclusive use of these IAQ indicators to rank the 
ventilation systems. 
 
The introduction of the energy indicator in IMC_IAQ-E underlines the difference between MEV 
and MVHR systems. Indeed, the values of IMC_IAQ-E are distributed around the acceptable 
threshold of 1 for MVHR. On the opposite, the values  for IMC_IAQ-E are much higher than the 
acceptable threshold, being distributed around the value of 2 for all three MEV systems. In 
detail, a higher energy performance of MEV-rh (meaning lower IEwh) raised its global 
performance (lower IMC-IAQ-E median value) in comparison with the two other systems without 
heat recovery (MEV). This compensates a slightly lower IAQ performance for MEV-rh.  
Whereas the higher IEwh of the MEV-rb increased its IMC-IAQ-E value in comparison with the two 
other MEV. As a result, the three MEV systems have now comparable median values of IMC_IAQ-

E. Regarding the two MVHR systems, there is no significant change and the MVHR-rb still 
performs slightly better than  MVHR-cav, thanks to its better IAQ performance. Thus, the 
distribution of IAQ-E weights highlights the energy benefit of heat recovery from MVHR 
systems. 
 
In the last case IAQ-E*, with variable weight distribution, the differences between all systems 
are even more pronounced. Now, the MEV performance results are worse (IMC_IAQ-E* range 
between 2.5 and 4). On the opposite, both MVHR systems exhibit performance indicator close 
to 1, with a narrow distribution range. In addition, the differences between the three MEV 
systems highlights that MEV-rh had lower energy losses than MEV-cav and MEV-rb. In this 
case, if energy saving is encouraged, the use of MEV-rh could be relevant in comparison with 
MEV-cav. In contrast if IAQ is prioritized on energy, the use of MEV-rb could be more relevant 
( as shows by IAQ-E distribution).  
 
The comparison of these three weight distributions shows that the weight distribution is a clear 
leverage to increase the differences between systems on the final aggregated performance 
results. However, the uncertainty distribution from the 500 simulations performed and 
presented with boxplots doesn’t makes systematically the ranking of the systems obvious. 
Moreover, in practice the use of weight distributions that voluntary increase the difference 
between systems to facilitate the ranking could lead to a wrong extrapolation of the simulated 
performance results. For example, this may question the ranking based on the IAQ-E* where 
the differences are mainly related to the initial pronounced differences on the IEwh. 
 
That confirms the need of the robust design score calculation of the next step, considering 
uncertainty, to finalize the ranking process for decision-making. 
 
3.2 Robust design score calculation and ranking 

 
Figure 3 regroups, for the three tested weight distributions, the normalised design score [%] 
calculated with different scenarios. According to the methodology described above, the design 
score with 500 simulations and the three reference scenarios were calculated with the minimax 
regret method. The design scores for Reflow , Ref, Refhigh, plotted in the figure, are directly the 
IMC of each individual scenario. Then, for ranking, the best design option (n°1) is the one with 
the lowest design score and the last (n°5) is the highest design score.  



 
At first, the ranking order calculated from the design score is the same with 500 simulations 
and the 3 ref simulations. This confirms previous observations made on outliers of Figure 2 
with the reference scenarios (grey diamonds) located inside the q1-q3 box. It means that the 
use of these 3 references scenarios for design score calculation and ranking provides the same 
information as the one obtained with 500 simulations design score calculation and ranking.  
 
In detail, the ranking with design score calculated from each individual scenario (right plots), 
changes sometimes depending upon the weight distribution and the scenario used. For example, 
the ranking is inversed between MEV-cav and MEV-rh with the Ref scenario depending upon 
weight distribution. Another example is the Reflow scenario, where ranking inversion is 
observed between the MVHR-cav and MVHR-rb as compared to all the other cases. In general, 
with Refhigh scenario the differences between design scores are more identifiable than for the 
Reflow scenario.  
 
Based on these results and the analysis made on Figure 2 we propose to : 

 
Exclude the Reflow scenarios from design scores for ranking. The risk is the loss of the 
uncertainty aspects, as this Reflow ranking does not match with the ranking results 
obtained with the 500 simulations.  

 

Figure 3 : Robust design score and ranking, MinMax regret method.  
Different weight distributions are presented: equal IAQ (top), equal IAQ and Energy, IAQ-E (middle), and enhanced 

energy and health IAQ-E* (bottom).  
Different scenarios are presented: 500 per system using uncertainty distribution on input parameters (left), three per 

system: high/ref/low (middle), and one per system, separating high/ref/low (right). 



Keep the Ref scenario design score for an “optimistic performance ranking”, indeed 
the IMC  performance results of this reference scenario are mainly close to the q1 value 
and the ranking.  

 
Keep the Refhigh scenario design score for a “conservative performance ranking”, 
indeed the IMC performance results of this high reference scenario are mainly close to 
the q3 or the median value.  

 
Associated together, the IMC from Ref and Refhigh mainly cover the q1-q3 interquartile space 
(or at least the q1-mean). This allows to keep part of the uncertainty information and to calculate 
the design score with a ranking in accordance with the ranking of the 500 simulations.  
 
Secondly, the impact of weight distribution on ranking is clearly identifiable with the design 
score. Indeed, the normalized design score is highly impacted for the MEV-rh from almost 50% 
(Ds_IAQ) to 25% (Ds_IAQ-E*). An opposite evolution can be observed for the MEV-rb from almost 
8% (Ds_IAQ) to 40% (Ds_IAQ-E*). On the other hand,  the results are only slightly impacted by the 
weight distribution for the MEV-cav (scores remaining around 32%), MVHR-cav (from 8% to 
2%) and MVHR-rb (3% and lower). In all cases, MVHR-rb is ranked first and MEV-cav is 
ranked fourth, whereas MVHR-cav moves from third to second place due to the change in the 
ranking of MEV-rb.  
 
This shows the importance of the weight given to the energy indicator and the priority balance 
between IAQ and energy. For instance, with the IAQ indicators only, the MEV-rb provides the 
second-best ventilation performance when it provides the worst one with the IAQ-
E*distribution. Indeed, with the Ds_IAQ-E, the better IAQ performance of the MEV-rb is 
penalized because of its higher energy consumption; this explains the swapping between change 
MEV-rb and MVHR-cav, the latter performing much better in energy consumption (thanks to 
heat recovery) for a slightly worse IAQ performance. On the opposite, the MEV-rh is by far the 
worst with IAQ performance only but it can reach a good third position with the IAQ-E* 
distribution. In this case, the 50% weight given for the energy indicator in the IMC_IAQ-E* 
calculation valorizes the energy benefits of MEV-rh in comparison with the two other MEV 
systems which certainly provide a better IAQ. 
 
4 CONCLUSION 

 
To conclude, we propose a three-step method to rank different ventilation design systems and 
we tested it on five ventilation systems. We confirm that the performance indicators aggregation 
with the SAW method is relatively accurate compared to the performance observed by each 
indicator individually in previous study (Poirier et al., 2022a, 2022b; Poirier, 2023). Then, the 
calculation of the design score with the minimax regret robustness method offers a clear 
advantage to highlight the difference between the ventilation systems, in order to rank them by 
including the uncertainty of several simulations.  
 
In addition, we show that the use of the three reference scenarios could be sufficient to obtain 
a relevant ranking of the ventilation systems, in comparison with the ranking obtained with 500 
simulations. However, if the number of simulations is limited, we propose to perform in priority 
the reference scenario (Ref), if the decision making needs an “optimistic performance ranking”, 
or the reference scenario with the highest emission rates (Refhigh) for a “conservative 
performance ranking”. Nevertheless, if there are no constraint, we encourage the decision 
maker to simulate at least the three reference scenarios and ideally 500 scenarios or more. The 



latter reinforces the validity of the calculated design score and ranking by including the 
uncertainty on input parameters. 
 
For the MOPA, we do not retain the IAQ weight distribution as it doesn’t include energy aspects 
for OPA. We propose to use at this stage the IAQ-E distribution in a conservative approach 
with balanced distribution across the six selected performance indicators. However, the IAQ-
E* present a strong interest for a decision maker that would need a strictly equal proportion 
between IAQ and energy aspects. In future work it could be relevant to perform a more detailed 
sensitivity analysis on the weight distribution and then elaborate an adapted weighting selection 
method specifically for the six indicators (or more if added). Other MCMD could also be tested 
for indicators performance aggregation. 
 
In our case, the MVHR systems presented the best overall performance with an IAQ benefit of 
the smart ventilation strategy (MHVR-rb). Then, depending on the decision maker priorities, 
the third most performant system could be the MEV-rb if IAQ is favored, or the MEV-rh or if 
the energy savings are more essential. In both cases the variable smart ventilation strategies 
present a benefit over the constant MEV-cav.  
 
Lastly, at this stage, this ranking of the ventilation strategies shouldn’t be considered as general 
performance ranking valid in all buildings. Indeed, the method has been applied only on one 
case study to demonstrate the relevance of the proposed methodology as a robust performance 
assessment decision-making tool for ventilation systems in buildings at the design stage.  
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