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ABSTRACT 

This study examines the impact of heatwaves on indoor operative temperatures of dwellings in Pamplona (north 
of Spain) and presents a comparative analysis of a typical summer and two extreme summers with heatwaves in 
2003 and 2022. The assessment was conducted in two neighbourhoods with different urban morphologies and 
built periods related to different energy regulations in Spain. EnergyPlus was used to simulate each residential 
typology for 5 months in 8 different orientations and with the constructive characteristics that correspond to its 
built period. The Urban Weather Generator tool was used to consider the microclimate of each neighbourhood. 
The results showed that dwellings in the older neighbourhood, located on top floors, with one orientation and with 
large windows had the highest temperatures. These results are strengthened in extreme hot summers with 
heatwaves compared to those derived from the typical climate series. The evaluation of indoor temperatures of 
dwellings in two different climatic situations highlighted the importance of assessing temperatures through 
summers with heatwaves to analyse dwellings' behaviour to high temperatures, even in temperate climates. The 
urban approach and temperature analysis in relation to building parameters allowed the identification of dwellings 
with higher indoor temperatures and the key building parameters (built period, floor level, orientation, window 
area and number of orientations) for the future objective of designing passive measures to adapt dwellings to 
warming conditions.   
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1 INTRODUCTION 

The last Intergovernmental Panel on Climate Change (IPCC) report concludes that global 
surface temperature has reached 1.1 °C above 1850-1900 in 2011-2020 (Intergovernmental 
Panel on Climate Change, 2023). These increasingly higher temperatures are leading to more 
frequent periods of hot and warm weather, and an increase in the frequency and severity of 
heatwaves (Taylor et al., 2023).  
Through the last 20 years, there were some events, that illustrate this phenomenon and 
tendency:  a heatwave during August 2003 when 50,000 excess deaths were registered across 
Europe (Brücker, 2005); in June 2021, western North America experienced a record-breaking 
heatwave that caused over 1,000 deaths in Canada and around 500 deaths in the USA 
(Thompson et al., 2022); recently, summer 2022 was extremely warm summer characterized 
by a cascade of heatwaves that caused 110,000 excess deaths across Europe (Copernicus 
Climate Change Service (C3S), 2022; Vicedo-cabrera & Fischer, 2023) and around 4,500 in 
Spain (Tobías, Royé, & Iñiguez, 2023).  
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The projections for southern Europe warn of more extreme warm temperatures, similar to those 
currently found in regions of North Africa, and suffer more tropical nights (H.-O. Pörtner, D.C. 
Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. 
Löschke, V. Möller, A. Okem, 2022). Besides, the probability of suffering mega-heatwaves 
will increase by a factor of 5-10 in the next 40 years in Europe (Barriopedro, Fischer, 
Luterbacher, Trigo, & García-Herrera, 2011).  
The population living in urban areas accounts for 75% of the total in the European Union (Zinzi 
& Carnielo, 2017). In this context, it is relevant to focus on cities where Urban Heat Island 
(UHI) can exacerbate the effect of these extreme temperatures, heatwaves (D. Li & Bou-Zeid, 
2013) and indoor thermal discomfort in summer (X. Li et al., 2019; Litardo et al., 2020; 
Meggers et al., 2016; Nakano, Bueno, Norford, & Reinhart, 2015; Zinzi & Carnielo, 2017).  
Therefore, the interest in analysing the negative effects of high temperatures on people’s health, 
well-being (World Health Organization, 1990, 2011) and mortality (Pathan, Mavrogianni, 
Summerfield, Oreszczyn, & Davies, 2017) and studying how to prevent them have increased 
noticeably in recent years, especially within the cities.   
This paper is focused on quantifying and comparing indoor operative temperatures (IOT) of 
dwellings - during a typical summer (climate series 1980-2010) and two extreme ones with 
heatwaves (2003 and 2022) - in relation to their built period and building parameters. The 
assessment was conducted in two neighbourhoods of Pamplona (a city in the north Spain) 
considering the effect of microclimate.  
Specific research aims are the following: 

- To quantify the influence of microclimate on indoor operative temperatures in 
dwellings. 

- To compare how indoor operative temperatures of dwellings are strengthened in 
extreme warm summers in relation to a typical climate series. 

- To analyse the influence of different building parameters (built period, floor level, 
orientation, area of windows and number of orientations) on indoor operative 
temperatures.  

2 METHODS  

2.1 Urban context 

Pamplona is a city placed in the north of Spain. It has an area of 23.55 km² with a population 
of 203,081 inhabitants and a population density of 8,472 inhabitants/km2  (Instituto Nacional 
de Estadística, 2021) . The city is made up of 14 neighbourhoods.  
Two neighbourhoods were selected to develop the study: Iturrama (N1) and Mendillorri (N2). 
They are samples of different urbanism: N1 (with 9,242 dwellings and built between 1960-
1980) has a high density of buildings (0.31 site coverage ratio) and they are higher (average 
building height: 25.45 m); in contrast, N2 (with 5,634 dwellings and built between 1990-2006) 
is less dense (0.17 site coverage ratio) and the buildings are lower (average building height: 
10.32 m). Besides, N2 has higher percentage of green spaces (Urban ground covered in grass: 
25% in N1 and 47% in N2) as it can be seen in Figure 1.  

2.2 Building typologies and energy parameters definition 

The building typologies classification is based on the results of the project PrestaRener 
(SAVIArquitectura, 2016), carried out by the research group SAVIArquitectura and previous 
projects analysis (Aparicio-Gonzalez, Domingo-Irigoyen, & Sánchez-Ostiz, 2020; Monge-
Barrio & Sánchez-Ostiz Gutierrez, 2018). Eleven residential typologies were detected in both 
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neighbourhoods through a visual work using Google Earth and SITNA software (Gobierno de 
Navarra, n.d.-b). Figure 1 shows the residential typologies in neighbourhoods’ plans:  
typologies 11, 12, 13, 14 and 15 refer to dwellings in multi-family buildings grouped in linear 
blocks; typologies 21 and 22 correspond to dwellings in multi-family buildings grouped in H-
blocks; typologies 31, 32 and 34 correspond to dwellings in tower; typologies 51 are single-
family dwellings. 
 
 
 
 
 
  
 

Figure 1. Green space and residential typologies graphed in N1 (left) and N2 (right) plans. 

N1 and N2 were built in different built periods related to energy requirements in Spain, so their 
buildings have different building characteristics as they had to comply with their energy 
regulation requirements for each built period:  

• N1 was built before 1979 (no energy regulation) when there weren’t any energy regulations 
for buildings.  

• N2 was built between 1980-2006 (CT-79 period) with the first standard energy regulation 
in Spain NBE CT-79 (Ministerio de Obras Públicas y Urbanismo, 1979) which appears 
after the 1970s energy crisis as in other countries.   

Infiltration rates were not regulated in Spain until 2019 (with the Spanish Building Code 
regulation) so the used values are based on previous studies (Feijó-Muñoz et al., 2019). There 
weren’t any IAQ regulations in any of the periods and all dwellings are naturally ventilated.  
Based on these envelopes’ energy requirements for each built period, two types of envelopes 
were defined for the simulation. The parameters that defined each one are presented in Table 1. 

Table 1: Used parameters and values for energy simulations 

Built period / 

Energy 

regulation 

Ufaçade / 

Uroof 

(W/m2K) 

Uglass / 

Uframe 

(W/m2K) 

Infiltrations 

 

(50Pa) 

Solar shading system Ventilation 

N1 

No energy 

regulation  

1.39a /  
2.9 

5.7 / 
8.5 

7 
Blinds with low 
reflectivity slatsb 

Calculated natural 
ventilation: 

Windows free aperture 
= 15% 

1AM- 8AM: 4ren/h 
9AM- 12PM: 0ren/h 

Cracks: medium 

N2 

CT-79  

0.73a / 
0.65 

3.5 / 
8.5 

7 
Blinds with medium 

reflectivity slatsb 

a This value considers the influence of thermal bridges, which worsen the façade transmittance (U) it by 30%. 
b They are considered to be in use (completely down) when solar radiation >150 w/m2 

2.3 Climate and Microclimate 

Pamplona has a Cfb climate (according to Koppen-Geiger classification), temperate without 
dry season, "oceanic" type.   Three weather files were used for energy simulations: climate 
series (IWEC2-based in climate series 1980-2010 of ASHRAE (ASHRAE, 2011)) and two 
extreme warm summers (2003 and 2022 - elaborated with available data from Government of 
Navarra weather stations (Gobierno de Navarra, n.d.-a)). The year 2003 registered two 
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heatwaves (20 days in total) the and year 2022 had three heatwaves (41 days in total) (AEMET, 
2022). Figure 2 shows a summary of outdoor temperatures for the three summers.  

 
Figure 2. Box-plots showing outdoor temperatures summary for the climate series and the extreme years (2003 

and 2022), during the simulation period (May to September).   

As the study involves an urban scale, assessing the indoor operative temperature considering 
the different microclimates through each neighbourhood, was considered fundamental. For this 
propose, Urban Weather Generator (UWG) software was used (Bueno, Norford, Hidalgo, & 
Pigeon, 2013).  
There are five key parameters to develop the microclimatic files through the UWG (Bueno, 
Norford, Pigeon, & Britter, 2011; Nakano et al., 2015):   

• Urban parameters: Urban area building plan density (site coverage ratio); Urban area 
vertical to horizontal ratio (facade to site ratio); Anthropogenic heat generation (other 
than from buildings-traffic).  

• Construction parameters: Albedo (roofs and soils); Emissivity (roofs and soils)  
This research did not only consider these key parameters, but also some others more detailed 
ones: average building height, urban ground covered in grass and trees, and vegetation albedo. 
The parameters were calculated for the area of each neighbourhood to which a buffer of 50 m 
perimeter was added (to consider the affection of their surroundings). 

2.4 Energy simulation and data analysis 

The eleven residential typologies were modelled with their corresponding envelopes’ 
parameters linked to their built period (Table 1). Each model was simulated for 8 different 
orientations. The considered simulation period was the one established by CIBSE TM-59 
(CIBSE, 2013): 1 May - 30 September. The simulations were carried out for the two extreme 
summer climate files (2003 and 2022) and for the climate series weather file (IWEC2). 
For each typology and orientation, results for two dwellings were obtained: one located on an 
intermediate floor (IF) and the other located on a top floor (TF) under the roof. Each dwelling 
was considered as a thermal zone because the scale of the research makes it unfeasible to 
analyse dwellings considering different thermal zones within them (Escandón, Suárez, Alonso, 
& Mauro, 2022) (f.e: living rooms and bedrooms). To accept this simplification, this work is 
based on previous studies which indicated that, when rooms do not have an active air 
conditioning system and the doors of all rooms are usually open (with the consequent 
circulation of air throughout the house) it is possible to consider the dwellings as one single 
thermal zone (Escandón, Suárez, & Sendra, 2019). 
For each dwelling, the monthly mean operative temperatures, monthly mean maximum 
operative temperatures and monthly mean minimum operative temperatures were obtained for 
the simulation period.  
Energy simulations were carried out by parameterization of building energy models developed 
in Design Builder and managed by a Python script (57,601 simulation combinations). 
Geographic Information System (GIS) was used to adjust the results to the real sample resulting 
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in a database of 1484 dwellings (N1 and N2) with the results of indoor operative temperature 
by climate weather file. 
3 RESULTS 

First of all, mean indoor operative temperatures (IOT) -considering or not microclimate for 
each neighbourhood-were compared through a TTest: differences between the three climate 
scenarios were found statistically significant (p < 0.05) in both neighbourhoods. It is important 
to note that the warmer the summer was, the greater this difference was (see Table 2).  

Table 2. Differences between mean indoor operative temperatures (ºC) considering microclimate or not 
considering it. 

Group Climate series 2003 2022 

N1. base* 23.08 (SD. 1.61) 26.01 (SD. 2.82) 26.64 (SD. 2.00) 
N1. microclimate* 23.22 (SD. 1.45) 26.95 (SD. 3.23) 27.94 (SD. 2.00) 
N1. Diff. 0.13 (0.15-0.11) p<0,001 0.93 (0.97-0.89) p<0,001 1.30 (1.32-1.27) p<0,001 

N2. base** 23.07 (SD. 1.59) 25.90 (SD. 2.73) 26.47 (SD. 1.96) 
N2. microclimate** 23.40 (SD. 1.26) 26.96 (SD. 3.17) 27.74 (SD. 1.96) 
N2. Diff. 0.32 (0.35-0.30) p<0,001 1.06 (1.11-1.01) p<0,001 1.30 (1.33-1.26) p<0,001 

Based on these results, the following analyses were carried out considering the effect of 
microclimate in the three climate scenarios. 
The mean indoor operative temperature resulted from the simulation with the climate series 
(1980-2010, IWEC2) and those obtained for extreme ones (2003 and 2022) showed an average 
difference of 4.1ºC between means (1980-2010 mean: 23.6ºC; 2003 mean: 27.3ºC; 2022 mean: 
28.1ºC). This difference was even greater when only considering the three warmest months 
(June-August), reaching an average difference of 5.3ºC between means (1980-2010 mean: 
24.5ºC; 2003 mean: 29.8ºC; 2022 mean: 29.9ºC).  
If the limit of 26ºC-established by the CIBSE TM-59 for bedrooms (CIBSE TM59, 2017)- was 
considered, the n indoor operative temperature in summers with heatwaves exceeded this 
threshold (especially when only considering the three warmest months), while the mean indoor 
operative temperature derived from the simulation with the climate series was below it (see 
Figure 3).  

 
Figure 3. Box-plots showing the differences between indoor operative temperatures for the climate series and the 

extreme years (2003 and 2022), during all the simulation period (left) and during the warmest months (right). 
Monthly mean temperatures per group data.   

A multilevel mixed-effects linear regression was developed to relate the dependent variable 
(IOT, ºC) and the five independent variables analysed (built period, floor level, orientation, 
window area and number of orientations). This analysis was carried out for mean, maximum 
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and minimum temperatures. The most relevant results were found in the mean maximum 
temperatures (Table 3). 

Table 3. Adjusted* monthly mean maximum indoor operative temperatures (ºC) according to different building 
parameters. 

 Climate series 2003 2022  

Parameters** 
Beta 

Coef. 

[95% Conf. 

Interval] 

Beta 

Coef. 

[95% Conf. 

Interval] 

Beta 

Coef. 

[95% Conf. 

Interval] 
p value 

Built period  

No regulation (N1) 
 
0 (Ref.) 

  
0 (Ref.) 

  
0 (Ref.) 

  

CT-79 (N2) +0.20 (+0.18 to +0.21) -0.17 (-0.19 to -0.16) -0.37 (-0.38 to -0.35) <0.001 
Floor level        
Top floor 0 (Ref.)  0 (Ref.)  0 (Ref.)   
Intermediate floor +0.31 (+0.29 to +0.32) -0.20 (-0.22 to -0.18) -0.40 (-0.42 to -0.37) <0.001 
Orientation        
N/ NE / NW 0 (Ref.)  0 (Ref.)  0 (Ref.)   
S / SW / W +0.20 (+0.19 to +0.21) +0.38 (+0.37 to +0.40) +0.44 (+0.42 to +0.46) <0.001 
E / SE +0.13 (+0.11 to +0.14) +0.06 (+0.05 to +0.08) +0.03 (+0.00 to +0.05) <0.001 
Window area        
≤ 4m2 0 (Ref.)  0 (Ref.)  0 (Ref.)   
>4m2 +0.16 (+0.15 to +0.17) +0.39 (+0.37 to +0.40) +0.31 (+0.29 to +0.32) <0.001 
Nº orientations        
1 orientation  0 (Ref.)       
> 1 orientation  -0.40 (-0.41 to -0.37) -0.33 (-0.35 to -0.30) -0.83 (-0.04 to -0.12) <0.001 

*Results are adjusted for all the variables in the table using a multilevel mixed effects linear regression.  
 
Among the five independent variables, all of them had a statistically significant relationship 
with indoor operative temperature in the three climate scenarios (p<0.05). The temperature 
differences between the reference categories and the rest of the categories of each building 
parameter are, in general, strengthened in warm summers compared to those derived from the 
climate series. 
Regarding the relationship between mean maximum indoor operative temperature and the built 
period (according to energy standards), the dwellings built in CT-79 period (1980-2006), 
presented higher average maximum indoor operative temperature than those built in no energy 
regulation period (before 1979) for the standard climatic series. However, in extreme warm 
summers, this difference was reversed and the newer dwellings (no energy regulation period) 
had lower mean maximum temperatures (-0.37ºC less in 2022). 
Considering the relation between mean maximum indoor operative temperature and floor level 
(studying differences between apartments located in the intermediate floor and in top floor), 
intermediate floors presented lower indoor operative temperature than those located on top 
floors in warm summers with heatwaves (-0.40ºC less in 2022).  
Regarding the orientation of main facades, the highest mean maximum indoor operative 
temperature was found in dwellings facing south, west and southwest, especially in the warmest 
summer (+0.44ºC more in 2022 than those with main orientations in north, northeast and 
northwest). 
The size of the window area showed that the bigger it was, the higher mean maximum indoor 
operative temperature was found in dwellings.   
Having more than one orientation in the dwelling (so there is higher potential for cross-
ventilation), reduces the mean maximum indoor operative temperature by 0.83ºC compared to 
dwellings with only one orientation in the warmer summer.  
Figure 4 shows the mean maximum indoor operative temperature in the warmest month of the 
simulation period (August) on the plan of studied neighbourhoods. The temperature ranges have 
been established every 2ºC with the lowest limit in 26ºC (fixed limit established by CIBSE for 
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bedrooms (CIBSE TM59, 2017)). Temperature differences between floors and orientations are 
particularly noticeable in the oldest neighbourhood (N1). 
 
 
CLIMATE SERIES 

 
2003 

 
2022 

 
 

Figure 4. GIS plan with maximum average indoor operative temperature in August for 2022 weather files 
considering microclimate (left: N1; right: N2) 

4 DISCUSSION 

Due to the urban scale of the study - neighbourhood level- two simplifications were considered: 
the dwellings were considered as a single thermal zone and the temperature results were 
monthly.  
The analyses of indoor operative temperature in relation to building parameters were aligned 
with previous studies. Other articles found higher overheating in dwellings located on top 
floors: one showed that top floors were warmer than first floors during more than 50% of 
summer hours (Sharifi, Saman, & Alemu, 2019); another based on CIBSE assessment 
demonstrated that top floor apartments failed all the criteria while those located in intermediate 
floors passed (Gamero-Salinas, Monge-Barrio, & Sánchez-Ostiz, 2020); and a third one which 
analyses mean indoor temperatures found that apartments in top floors had a mean temperature 
1.2ºC higher than in other floors (Vellei et al., 2017). Other studies also found that the worst 
orientation in relation to overheating was South and/or West: one found a statistically 
significant difference between indoor overheating hours (IOH) in different orientations with the 
highest percentage in S and W orientations (Nebia & Aoul, 2017); another found 1.5%-2% 
higher IOH in south-facing rooms than in north-facing rooms (Tian, Zhang, Deng, & 
Hrynyszyn, 2020). Regarding number of orientations (related to the potential of ventilation), 
other studies verified the influence of cross-ventilation in meeting CIBSE TM-59 criteria (Botti, 
Leach, Lawson, & Hadjidimitriou, 2022); another research, conducted in the north of Spain, 
concluded that the residential typology with better temperatures was the one that had double-
orientation that allow crossed ventilation(on average, 1ºC less than the rest of the dwellings)  
(Figueroa-Lopez, Arias, Oregi, & Rodríguez, 2021). Window size is also a factor that has 
revealed a significant relation with indoor temperatures: other studies reinforce the idea that the 
larger the window area is, the more it contributes to the indoor overheating problem 

 < 26ºC  26-28ºC   28-30ºC  > 30ºC 
Intermediate floors Top floors Intermediate floors Top floors 

Peer Reviewed Paper



(Vardoulakis & Heaviside, 2012); a monitoring study in the north of Spain, concluded that 
dwellings with a window area larger than 4m2 were almost 3 times more likely to experience 
IOH than those with smaller window area (Arriazu-Ramos, Bes-Rastrollo, Sanchez-Ostiz 
Gutierrez, & Monge-Barrio, 2022). 
Future research should consider these results to propose strategies from the design (at urban 
and building level) to the occupants’ behaviour in order to improve indoor thermal conditions 
throughout the summer periods.  
5 CONCLUSIONS 

This study presents a comparative analysis of dwellings’ indoor operative temperatures (IOT) 
for a typical summer (climate series 1980-2010, IWEC2) and two extreme warm summers with 
heat waves (2003 and 2022). This research quantifies the influence of microclimate and 
building parameters (floor level, orientation, window area and number of orientations) on 
dwellings’ indoor operative temperatures. The analyses are based on simulation results for 
dwellings in two neighbourhoods with different urban morphologies and built periods related 
to different energy regulations in Spain. 
The difference between considering the effect of microclimate on indoor operative temperature 
and not considering it was statistically significant (p<0.05). The indoor operative temperature 
was higher when microclimate was considered: this difference was greater when the summer 
was warmer, reaching a difference between means of 1.3ºC in 2022. 
The results obtained for the extreme warm summers showed higher indoor operative 
temperature (difference of 4.1ºC on average) than those obtained for the climate series. The 
indoor operative temperatures in summers with heatwaves exceeded the limit of 26ºC, while 
the temperatures derived from the simulation with the climate series were below it.  
Regarding the assessment of the influence that building parameters (built period, floor level, 
orientation, window area and number of orientations) have on indoor operative temperature, 
was statistically significant (p<0.05). Dwellings in the older neighbourhood (built before any 
energy regulation), located on top floors, with one orientation and with windows area bigger 
than 4m2 had the highest indoor operative temperature. The most favourable orientations for 
summer were N-NE and NW. These results were strengthened in extreme hot summers with 
heatwaves compared to those derived from the typical climate series. The differences in indoor 
operative temperature in relation to building parameters were more pronounced in the older 
neighbourhood. 
The indoor overheating evaluation of dwellings in different climatic situations showed that, 
even in temperate climates with mild summers, it is important to assess temperatures through a 
summer with heatwaves and considering microclimate in order to analyse dwellings’ real 
behaviour to high temperatures. Besides, the building parameters assessment allows to identify 
the key building parameters for the future objective of designing passive measures to adapt 
dwellings to warming conditions and to help policymakers to prevent the risk of overheating 
within cities, especially during heatwaves.  
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