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ABSTRACT 
 
Nowadays, due to climate change, heatwaves become stronger in terms of frequency and 
intensity. This phenomenon can have serious impact on the indoor environments, indoor 
thermal comfort and on public health. These situations of high indoor thermal conditions can 
expose the occupants to health risks such as hyperthermia, dehydration, and heat strokes. Then, 
the estimation of these risks is crucial. The currently used indices to estimate health risks such 
as WBGT, HSI and PHS are generally dedicated to outdoor environments and for subjects 
exerting heavy activities. In addition, these indices do not consider the thermophysiological 
responses of the human body. In 2020, a human thermoregulation model, called NHTM, was 
developed to mimic the thermal behavior of the human body in indoor non-uniform and 
transient conditions. The outputs of the NHTM are the central temperature and the water loss 
that can be used to assess the health risks. This model considers the interindividual differences 
between different populations by adjusting its parameters using genetic algorithm and choosing 
the values that correspond to the studied population. The present study aims to 1) optimize the 
NHTM model using genetic algorithm on Stolwijk and Hardy study and 2) simplify the 
thermophysiological calculation by developing metamodels that reduce the calculation time and 
the complexity of a non-uniform calculation using the NHTM model.  
 

KEYWORDS 
 
Climate change, thermal comfort, health risk, thermophysiology, individualization.  
  
1 INTRODUCTION 

 
The industrial revolution, the burning of fossil fuels, and the excessive use of resources that 
began since the 18th century are the main causes of the greenhouse gas emissions and the rise 
of global temperatures (Masson-Delmotte et al., s. d.; Valone, 2021).  
 
The climate change is the highest global health and wellbeing threat of the 21st century. As the 
planet warms and extreme weather events become more frequent, the effects on human health 
multiply. The impacts are manifold, ranging from infectious diseases to respiratory disorders 
and mental health issues (Costello et al., 2009). Understanding these complex links between 
climate and health is crucial for better anticipating and managing the adverse consequences. 
 



Rising average temperatures have direct implications for human health. Increasingly frequent 
and intense heatwaves raise the risk of cardiovascular diseases, dehydration, heat exhaustion, 
and other heat-related conditions (Patz et al., 2007). Furthermore, climate changes can affect 
air quality by increasing levels of air pollution, exacerbating respiratory problems such as 
asthma and lung diseases (Frumkin et al., 2008). 
 
The assessment of the effects of rise of temperature on the wellbeing and the health of occupants 
is very hard due to the complexity of the human body in terms of physiological and sensory 
responses, and the differences of these responses between individuals. The currently 
standardized methods (EN 16798-1:2019, 2019) to assess the thermal comfort in indoor 
environments are based on the PMV (Fanger, 1970) for air-conditioned environments and the 
adaptative comfort for non-conditioned environments (de Dear et al., s. d.). Many other 
indicators are used to assess the heat stress on the human body such as UTCI (Bröde et al., 
2012), and WBGT (Budd, 2008) indexes. All these indicators are based on a “mean person” 
and cannot consider the interindividual differences between many types of populations.  
 
In 2020, El Kadri et al. (El Kadri, 2020) developed a thermal human model, the NHTM, which 
mimics the thermophysiological responses of the human body in non-uniform transient 
environments. This model is based on that of Wissler developed for the NASA (Wissler, 2018). 
The NHTM is a complementary to existing standards and indices for 2 reasons: 1) it is not 
limited by uniform steady environments, 2) it can simulate many types of populations according 
to interindividual differences. The aim of this article is to describe the NHTM, to explain how 
to optimize it for a target population and how to simplify it via metamodels. 
 
2 MATERIALS AND METHODS 

 
The NHTM (Neuro Human Thermal Model) is a new thermophysiological model based on the 
thermoreceptor’s signals. It consists of two systems: the passive system which accounts for 
phenomena of human heat transfer within the body and at its surface and the active system 
model which simulates the physiological responses of the human body such as the shivering, 
the skin blood flow and the sweating based on thermoreceptor’s signals (El Kadri, 2020). The 
heat transfer and the physiological responses are governed by parameters that we can change to 
simulate a target population. That can be done thanks to optimization which can be performed 
via a genetic algorithm. To do it, a database of measurements of physical and physiological 
variables is needed. The population should be exposed to a scenario of environmental 
conditions and the physical variables such as air temperature, air velocity, relative humidity, 
and radiant temperature (inputs of the NHTM) and the physiological variables such as skin and 
core temperatures (output of the NHTM) should be measured. An optimization using this 
algorithm is described in a previous work (El Kadri et al., 2020). 
The simulation using the NHTM is costly in terms of time and resources. Hence the use of the 
metamodel. 

Meta-models are regression or statistical functions of the calculation code, which are 
constructed based on 'n' simulations following a numerical experiment design. The main 
objective of these functions is to approximate the responses of the original code at a fraction of 
its computational cost. Essentially, these meta-models provide a method to predict new 
responses within the range of uncertain parameters with reasonable accuracy. 

The approach adopted in the current research is illustrated by the figure below (Figure 1). A 
design of experiments, which will be presented in the subsequent paragraph, has been 



established. This experimental design aims to explore the space of the model parameters 
systematically and efficiently, enabling the construction of a reliable and accurate meta-model. 

In essence, the development of these meta-models serves to simplify the thermophysiological 
calculations using the NHTM model, reducing the calculation time and complexity while still 
maintaining a high level of accuracy and reliability in predicting thermophysiological 
responses. This not only enhances the utility of the NHTM model in various practical 
applications but also facilitates its use in studying and understanding the complex 
thermophysiological responses of the human body under different environmental conditions. 

 

Figure 1: Uncertainty sources 

2.1 Model setup and numerical experience plan 

The individualization carried out within the scope of the thermal comfort research allowed the 
identification of parameters associated with a young and health population. The environmental 
variables were chosen to cover the most frequently encountered thermal conditions by the 
occupants but also the extreme conditions. The air and mean radiant temperatures are higher 
than 10 °C since such thermal conditions are rare in indoor environments. The occupant is 
initially considered at rest (sitting). Therefore, the metabolism does not vary. The minimums 
and maximums of the environmental and personal variables are given in Table 2. The total 
number of simulations is 16896. 

Table 1: Environmental and personal variables used in the meta-models’ constructions 

Variable Minimum Maximum Step 

Air temperature [°C] 10 45 5 
Mean radiant temperature [°C] 10 45 5 
Relative humidity [%] 0 100 10 
Air velocity [m/s] 0 1 0.2 
Clothing (Clo) 0.1 1.5 0.5 
Metabolism (W/m²) 58 58 0 

 
2.2 Regression methods 

There are several types of metamodels: 



• Linear regression model or generalized linear model (easy interpretability, (Nelder & 
Wedderburn, 1972)); 

• Support Vector Machine (SVM, easy interpretability for linear, complex for kernels, 
(Cortes & Vapnik, 1995)); 

• Regression trees (easy interpretability, (Breiman et al., 1984));  
• Neural networks (complex interpretability, (Hinton & Salakhutdinov, 2006));  
• Conditional Gaussian processes or kriging (complex interpretability, (Schwarz et al., 

2009));  
• Tree ensembles (complex interpretability, (Dietterich, 2000)). 
• A screening of 27 regression methods was performed. The following table presents the 

different methods tested for the construction of metamodels 
The criteria used to assess the quality of metamodels are the RMSE (Root Mean Square Error), 
the R2, the MSE (Mean Square Error) and the MAE (Mean Absolute Error) 
 
3 RESULTS OF METAMODELS FITTING 

This chapter presents the results of constructing metamodels using the various methods 
previously discussed and the 16900 calculated cases. 

3.1 Synthesis of results 

The construction results of the different metamodels are shown in the Table 2. The models that 
provided the best fit belong to the Gaussian Process Regression (GPR) family, specifically the 
Matern 3/2 kernel family (Table 2). 

Table 2:Results of Different Metamodels 

Regression type Regression model RMSE R2 MSE MAE 

Linear 

Linear 1.0953 0.9 1.1988 0.83 
Interactions 0.5613 0.97 0.301 0.446 
Robust 1.103 0.89 1.2181 0.834 
Stepwise 0.5613 0.97 0.315 0.446 

Tree 
Fine 0.162 1 0.026 0.105 
Medium 0.245 0.99 0.06 0.174 
Coarse 0.45 0.98 0.205 0.326 

SVM 

Linear SVM 1.103 0.89 1.21 0.833 
Quadratic SVM 0.459 0.98 0.21 0.33 
Cubic SVM 0.299 0.99 0.0899 0.243 
Fine gaussian SVM 0.334 0.99 0.112 0.266 
Medium Gaussian SVM 0.181 1 0.327 0.148 
Coarse Gaussian SVM 0.395 0.99 0.157 0.297 

Gaussian 
process 

Rational quadratic 0.0617 1 0.0038 0.038 
Squared exponential 0.086 1 0.0074 0.056 
Matern 5/2 0.059 1 0.00346 0.0344 
Matern 3/2 0.052 1 0.0027 0.027 
Exponential 0.067 1 0.0045 0.0363 

Kernel SVM 1.19 0.88 1.415 0.779 
Least squares regression 1.08 0.9 1.164 0.77 

Tree set Boosted trees 1.47 0.81 2.16 1.37 
Bagged trees 0.27 0.99 0.071 0.194 

Neural network 

Narrow neural network 0.684 0.96 0.467 0.534 
Medium neural network 0.66 0.96 0.44 0.517 
Wide neural network 0.61 0.97 0.368 0.46 
Bilayered neural network 0.546 0.97 0.299 0.402 
Trilayered neural network 0.294 0.99 0.086 0.21 

 



3.2 Results for matern 3/2 Gaussian Process 

The Figure 2 shows the data points from the different simulations in blue. The orange points 
represent the estimations made by the GPR metamodel. These estimations are quite satisfactory 
from the point of mean squared error (±0.056 °C). 

 

Figure 2: Simulated and Predicted Average Skin Temperature Values 

The values predicted by the GPR metamodel thus show a good agreement with the simulated 
values (Figure 3). The main advantage of this metamodel, as previously mentioned, is its speed 
in estimating the variable of interest, i.e., the average skin temperature. The identified GPR 
model allows for an estimation of 8000 observations/s. An adaptation of the identified model 
is planned in Python to make the metamodel portable in a free environment. 

 



Figure 3:  Function between the Simulated and Predicted Average Skin Temperature Values 

The Figure 4 shows the residuals of the identified GPR model based on the simulations. 99% 
of the observed differences between the simulations and the estimations by the GPR model fall 
within the interval ±0.156°C. Moreover, as expected, the distribution of the residuals follows a 
normal distribution, N(0,0.052). 

 

Figure 4: Residuals between the Estimates and the Simulations 

4 DISCUSSION 

The performance of metamodels greatly depends on the specifics of the learning task they are 
applied to, and there isn't a single model that is best for all tasks. However, in your case, it 
appears that Gaussian processes with a Matérn 3/2 kernel produced the best results. 
 
There are several reasons why this might be the case: 
 

1. Flexibility: The Matern kernel is very flexible and can adapt to a variety of data types. 
It is less smooth than the Gaussian kernel, which may enable it to better capture more 
complex relationships in the data. 

2. Robustness to overfitting: The Matern kernel is also known for its robustness against 
overfitting, especially compared to other kernels such as the Radial Basis Function 
(RBF). This can make it more stable in situations where the number of sampling points 
is limited relative to the complexity of the model. 

3. Effective extrapolation: Due to their smooth and continuous characteristics, Gaussian 
processes with Matern kernels are generally capable of effective extrapolation, i.e., 
making reliable predictions outside of the space covered by the sampling points. This 
could be a useful feature given the nature of your modeling task. 

 
It is important to note that despite their performance in your specific case, Gaussian processes 
with a Matern kernel are not necessarily the best choice for all regression problems. The choice 
of model depends on many factors, including the nature of the data, the number of samples 
available, the dimensionality of the input space, and so on. A good practice in machine learning 
is to try several models and select the one that performs best according to an appropriate 
performance measure. 

 



 
5 CONCLUSION AND PERSPECTIVES 

 
In conclusion, the NHTM was built to simulate the thermophysiological behaviour of the human 
body in non-uniform transient thermal environments. Moreover, it can simulate many types of 
populations by changing its parameters. Then, the real challenge is to find the parameters that 
correspond to the target population. This can be done using a genetic algorithm. To do so, a 
database containing the measurements of physical and physiological variables of the target 
population exposed to a scenario of transient environmental conditions. 
Metamodels are powerful tools for simplifying complex computational models and simulation 
studies, enabling near-instantaneous prediction of system responses, even in the face of 
uncertain parameters. They provide us with a systematic way to explore high-dimensional input 
spaces and understand the influences of different parameters on the system's behavior. 
The use of metamodeling techniques allows for rapid exploration of the parameter space, 
sensitivity analysis, uncertainty propagation, and model calibration. They provide the means to 
approximate response surfaces, construct emulators, and analyze the behavior of the system 
across a wide range of conditions. 
In our study, we have employed multiple regression methods for the construction of the 
metamodels and found Gaussian Process Regression, specifically with the Matern 3/2 kernel, 
to be most effective for our dataset. This kernel demonstrated superior performance in fitting 
and predicting the response of our system, thereby attesting to its practicality and reliability. 
Despite their inherent complexity, metamodels serve as an indispensable tool for understanding 
and predicting the behavior of complex systems. By refining these models and incorporating 
newer, more advanced techniques, we can develop metamodels that not only improve predictive 
accuracy but also provide a deeper understanding of the system dynamics they represent. 
Metamodels, therefore, are not merely a tool for computation; they are a cornerstone for 
knowledge discovery and a compass guiding us towards more insightful and meaningful 
conclusions in our ongoing journey to comprehend the complex systems around us. 
Future perspectives of this research might be oriented towards exploring non-deterministic 
methods such as Hamilton Monte Carlo (HMC) sampling and Markov Chain Monte Carlo 
(MCMC) for model fitting, speeding up the metamodel, and quantifying uncertainties. HMC is 
a sophisticated variant of the MCMC approach that uses gradient information to inform the 
sampler's proposals, thereby improving sampling efficiency, especially in high-dimensional 
problems. It has the potential to explore the parameter space more efficiently, thereby reducing 
the time for model fitting. MCMC, on the other hand, is a widely used statistical sampling 
technique used to estimate the probability distribution of a population from a sample. By 
applying MCMC sampling to the metamodeling problem, it is possible to quantify uncertainties 
in a more in-depth manner, thereby providing a measure of the uncertainty of the metamodel's 
predictions. 
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