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ABSTRACT 
 

In recent years, earth-to-air heat exchanger (EAHE) systems, which is a method of pre-cooling and pre-
heating outdoor air with earth-to-air heat, have been attracting attention as one of the technologies to achieve 
ZEB. However, at the operational phase, in order to achieve both energy saving and suppression of dew 
condensation control, EAHE control methods such as the timing or amount of outdoor air introduction have not 
been established. Recently, research on operational control by reinforcement learning (RL) has become popular 
and has attracted attention in the field of air conditioning control. RL is effective even in cases where future 
states are difficult to predict, such as EAHE. In previous studies, the unsteady CFD analysis method proposed by 
the authors made it possible to evaluate the annual energy savings and dew condensation in EAHE in detail. In 
addition, it was clarified that the RL, which uses the same CFD method as a simulator, can establish a control 
law that achieves both energy-saving effects and prevent indoor air pollution by suppressing dew condensation. 
On the other hand, RL requires a huge number of trials to construct the control law.  

Therefore, the purpose of this study is to improve the learning speed and control performance. First, we adopt 
transfer learning (TL), which reuses a model pre-trained in RL for training in a new environment. Next, we 
verify the effectiveness of using this transfer reinforcement learning (TRL) as a control method for EAHE. The 
result showed that TRL achieved better control performance and faster learning speed than RL. In addition, it 
was suggested that EAHE with insufficient actual measurement data may be efficiently controlled from the first 
year of operation by directly using the control law established in advance. It was confirmed that RL performs 
well in terms of energy efficiency and air quality maintenance. 
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1 INTRODUCTION 

 
One of the fundamental technologies for developing zero-energy buildings is earth-to-air heat 

exchanger (EAHE) systems. An EAHE is a passive component of a heating, ventilation, and air 
conditioning (HVAC) system that utilizes the large heat capacity of the soil to pre-cool the 
outdoor air (OA) in the summer and pre-heat it in the winter. Further, it can reduce the heat 
loads of OA for air handling units or fresh air handling units (FAHU) by introducing pre-heated 
or pre-cooled OA through this system. The operational control of such a system is limited to 
control based on schedules, sequential disturbances, and internal system conditions. 1) We have 
been using reinforcement learning (RL) to develop a control law for an EAHE system 
(underground pit system) to achieve energy-saving effects and prevent indoor air pollution by 
suppressing dew condensation. 2) However, RL has the problem of requiring a huge number of 
trials for learning convergence. For this reason, previous studies have reduced the 
computational load on the environment side of the RL (e.g., by reducing the number of meshes 
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in computational fluid dynamics [CFD] analysis), thereby enabling a large number of training 
cycles. Another solution to this problem that has been attracting attention in recent years is 
transfer learning (TL), which enables faster learning and improved learning performance by 
reusing previously learned models for training in a new environment. 3) However, few studies 
have applied TL to RL, and important details have yet to be clarified, such as the area (range) 
in which TL is effective. 

The objective of this study was to construct an efficient operational control law for soil heat 
exchange systems using RL that utilizes TLs to speed up and improve the learning performance 
of RL. We do this for an EAHE, and after adapting TL to RL, we conduct a case study on the 
transition target to verify the effectiveness of transition reinforcement learning (TRL) as an 
operational control method. 
 

 
Figure 1 Diagram of RL process with EAHE as example 

 
2   REINFORCEMENT LEARNING 

2.1 Reinforcement Learning Overview 

 
As shown in Figure 1, the RL is composed of the environment and the agents that control its 

operational decisions, with a reciprocal relationship between them. In RL, at a certain state st 

on the environment side, the agent manipulates the environment based on the action at, the 
output by the agent, and the next state st+1, resulting from the transition and the immediate 
reward rt+1 obtained at the transition destination (an example is an evaluation value, such as 
how much energy was saved), is passed from the environment to the agent. By repeating this 
through trial and error for the state st, RL learns to output an action at that maximizes the sum 
of the immediate rewards for a certain period of time. 
 

2.2 Reinforcement Learning Problem Setup 

 
The definitions of states s, action a, and immediate reward r are given in Table 1 as the 

problem set for RL. In addition to weather conditions, such as the outdoor air temperature and 
absolute humidity, five types of states s were used as information in the system: the 
condensation area ratio and surface temperatures at two representative points in the system 
(near the inlet and outlet ports). Action a was set to five discrete values of "MDo / MDe OA 
damper opening," that is to say the "outdoor air intake through the system," as shown in Figure 
2. In the subject system, the outdoor air conditioner was assumed to have a constant air volume 
of 8,100 m3/h (CAV) during air intake hours. Since the control objective was to ensure energy-
saving performance and to suppress condensation inside the system, the immediate reward r 
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was defined as two kinds of rewards: the amount of heat processed by the external controller r1 
and the condensation area ratio r2. 
 

 
Figure 2 Diagram of EAHE 

 

Table 1: Definition of state, action, and reward 

State s Outdoor air temperature/Outdoor air absolute humidity /  
Condensation area ratio / Surface temperature (2 points) 

Action a {0 m3/h, 2,025 m3/h, 4,050 m3/h, 6,075 m3/h, 8,100 m3/h}注１） 
Reward r 𝑟 =  𝑟1  ×  𝑤1 + 𝑟2  ×  𝑤2 ( r1 = 0.3, r2 = 0.7 ) 

r1 

  

𝑟1  =  𝑐𝑙𝑖𝑝 (
𝑄𝐹𝐴𝐻𝑈
𝑄𝑠𝑡𝑑

,   − 1.0, 0) 

𝑇𝑂𝐴 =
𝑇𝑒 ∙ 𝑎 + 𝑇𝑜(𝑚𝑎𝑥(𝑎) − 𝑎)

𝑚𝑎𝑥(𝑎)
 

∆𝑇 =

{
 
 

 
 
𝑇𝑂𝐴 − 22
26 − 𝑇𝑂𝐴
𝑇𝑂𝐴 − 20
28 − 𝑇𝑂𝐴

0

       

(𝑖𝑓 𝑤𝑖𝑛𝑡𝑒𝑟 𝑎𝑛𝑑 𝑇𝑂𝐴 < 22)

(𝑖𝑓 𝑠𝑢𝑚𝑚𝑒𝑟 𝑎𝑛𝑑 𝑇𝑂𝐴 > 26)

(𝑖𝑓 𝑠𝑝𝑟𝑖𝑛𝑔 / 𝑓𝑎𝑙𝑙 𝑎𝑛𝑑 𝑇𝑂𝐴 < 20)

(𝑖𝑓 𝑠𝑝𝑟𝑖𝑛𝑔 / 𝑓𝑎𝑙𝑙 𝑎𝑛𝑑 𝑇𝑂𝐴 > 28)

(𝑒𝑙𝑠𝑒)

 

𝑄𝐹𝐴𝐻𝑈 = 𝐶𝑝 × 𝜌 ×
𝑚𝑎𝑥(𝑎)

3,600
× ∆𝑇 

r2 
𝑟2  =  𝑐𝑙𝑖𝑝 (

𝐶𝑎𝑟𝑒𝑎
𝐶𝑠𝑡𝑑

,   − 1.0, 0) 

𝐶𝑎𝑟𝑒𝑎 =
𝑆𝑐
𝑆𝑒
× 100 

Qstd: Standard value for r1 [W], QFAHU: Heat load of FAHU [W], TOA:                 h  F    [℃]  Te: Outlet temp. of 
 h       [℃]  To: Outdoor air       [℃]  ΔT: Difference in the blow-              h  F    [℃]  Cp: specific heat 
capacity (=1.007) [kJ/(kg・K)], ρ: Air density (=1.206) [kg/m3], Carea: Condensation area ratio [%], Se: Total surface 
area in the EAHE [m2], Sc: Condensation area in the EAHE [m2] 

 
3. TRANSFER LEARNING 

3.1 Transfer Learning Overview 

 
TL is a framework in which the knowledge learned by the source task agent is reused by the 

target task agent. After incorporating TL in RL, the RL agent learns and acquires measures in 
the source task. Then in the target task, which is the same or a similar environment, the measures 
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acquired in the source task are reused, enabling faster learning and improved learning 
performance in the target task. 
 

 
3.2 Transition Reinforcement Learning with Deep Learning 

 
An effective method for policy reuse is the TL method using deep learning (DL). DL is a 

machine-learning method that uses a multi-layered neural network (NN), which is a 
mathematical model that mimics the network structure of neurons in the brain. NNs consist of 
an input layer, an intermediate layer, and an output layer, and the relationship between inputs 
and outputs in each layer is given by Equation (1). 
 

𝒚 = 𝑓(𝒙𝑾+ 𝒃) (1) 
 
Here, 𝒚 is the output vector, 𝒙 is the input vector, 𝒃 is the bias vector, 𝑾 is the weight matrix, 
and f is the activation function. In an NN, the output of the L-1 layer is the input of the L layer. 
That is, each layer computes Equation (1) independently, so the NN can extract and combine 
layers. In TL using DL, this feature is utilized to reuse the NN model learned in the source task 
for training the NN in the target task. Also, by changing the number of layers to be extracted 
and the positions to be combined, it is possible to respond flexibly according to the target task. 

The steps involved in the TRL implemented in this paper, shown in Figure 3, are as follows. 
First, the optimal measures (pre-trained Q-Network) in the source model (e.g., a simple CFD 
model of an underground pit) are learned using Deep Q-Network (DQN). Second, all or partial 
layers are extracted from the pre-trained Q-Network. Next, the layers extracted from the pre-
trained Q-Network are combined with newly added layers to train the target model (e.g., a CFD 
model of a real underground pit). Then, the weights of all or some of the layers extracted from 
the pre-trained Q-Network are fixed (optional). Finally, training (re-training) is performed for 
all the layers that were combined or only the layers that were added. Thus, by reusing the Q-
Network acquired in the source model and changing the transition rate (number of layers 
extracted from the pre-trained Q-Network) and layers to be fixed, we expect to improve initial 
performance, convergence (reduction in the amount of training data), and learning performance, 
as shown in Figure 3. 

 

 
Figure 3 Diagram of Transfer Reinforcement Learning (Image of using DQN as reinforcement learning) 

 
4. Analysis Condition  

4.1 Target Building and CFD 

 
EAHE system (underground pit system) is installed in a medium-sized office in Fukuoka 

Prefecture, Japan (Table 2). Outdoor air introduced into the underground pit through the inlet 
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protruding outdoors exchanges heat with the soil (concrete) for approximately 70 m to the outlet 
of the underground pit. The introduced outdoor air is pre-cooled and pre-heated and supplied 
to the outdoor air conditioner, contributing to energy savings in the outdoor air conditioner. 
Table 3 shows the CFD analysis conditions and Figures 4 and 5 show the analytical models. 
The outdoor air introduction period was from 9:00 to 18:00 daily. During the analysis, the 
amount of outdoor air introduced through the system was switched every hour according to the 
operational values output by reinforcement learning. CFD was employed as a simulator in the 
reinforcement learning environment, and the computational load reduction method of unsteady 
CFD, which assumes a fixed flow field, was used as the solution method.4) 

 
Table 2: Brief Description of the Building 

Location Fukuoka 
Use Accommodations and Research Facilities 
Structure RC 
Number of Stairs 1F-4F 
Year Completed July 2008 
Extended Bed Area 5,498m2 
Underground Pit (W x H)      ×   5 – 1.7m  
Underground Pit (Length) 76.8m 

 
Table 3: CFD conditions 

Condition Method/Parameter 
Calculation period 1/1~12/31 (Approached period:1 year) 

Time interval 3,600s 
Domain  40.4m(X)×13.4m(Y)×6.9m(Z) 

Mesh Source model:6,422 (26(x)×19 (y)×13(z)) 
Target model:92,610 (70(x)×49 (y)×27(z)) 

Turbulence model, 
Scheme 

Standard k-ε model, 1st-order upwind scheme for advection term, SIMPLE algorithm 

Inflow boundary 
Uin：at , To：Outdoor air temperature5) [℃]  
xo：Outdoor air absolute humidity5) [k    k ’]  
kin = 3/2(Uin×   5 2 ，εin = Cμ3/4･kin

3/2/lin 
Initial temperature Results of the 3D pre-analysis of this system controlled by schedule 

Wall boundary Velocity and Temperature: General logarithmic function 
Humidity: L    ’           h     x      =  67  

Upper side 
Boundary of the pit 

                   : 22      26   °   
Heat transfer coefficient: 23.0 W/(m2ꞏK) 

Ground surface 
boundary 

                   :                     [℃]  
Convective heat transfer coefficient: 17.9 W/m2K 

Uin: Inlet velocity [m/s], lin: Length scale(=1.0m), kin: Turbulence kinetic energy [m2/s2], 
εin: Dissipation rate of kin [m2/s3], Cμ: Model constant (=0.09) [-] 
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Figure 4 CFD model of EAHE system (Straight) 

 
Figure 5 CFD model of EAHE system (Left: L, Mid: Corridor, Right: Meandering) 

 
 
4.2 RL 

 
The RL conditions are given in Table 4. In this study, DQN was used to implement TRL with 

DL. In an environment where actions are discrete, the Q function can be expressed without 
deepening the middle layer of the NN. Therefore, the middle layer for both the source and target 
                  4         64 × 64   To speed up the learning process, the learning rate was set 
to 0.001 in the target model to efficiently learn the measures acquired in the source model. The 
ε-greedy method was used as the action s            h        ε  =   5                      h  
search in the target model while using the measures acquired in the source model from the 
initial stage of learning. 
 

Table 4 Conditions of reinforcement learning 
Algorithm / Episode Deep Q-Network (DQN)6) / 200 

Discount factory  0.99 

Exploration rate ε ource: Linear schedule, ε0 = 1.0, εN = 0.02 
Target: Linear schedule, ε0 = 0.5, εN = 0.02  

Learning rate η Source: 0.0005, Target: 0.001 
Replay memory buffer 49,984 
Q-Network / Batch size 5×64×64×2    5    2 

N: Number of episode (≦200) [-] 
 
4.3 TL 

 
The similarity of the source and target is important when implementing TL. In this study, the 

effectiveness of TRL was verified by being conducting on various targets with measures learned 
with the same source model. The analysis cases are given in Table 5. The source model for each 
case was a straight-type CFD model. In Case 1 (transition of action), TRL from two types of 
airflow to five types of airflow was implemented. In the Case 2 series (shape transition), TRLs 
were performed from a rectilinear to an L-shape, a corridor, meandering, and for real buildings. 
In the Case 3 series (weather transition), TRL was conducted from Kitakyushu (warmer 
climate) to Fukuoka (warmer climate) and Akita (colder climate). Regarding the transition rate, 
the first two layers extracted from the Q-Network of the source model were combined with the 
new output layer because the number of nodes in the output layer was different from that in 
Case 1, which is a transition of action. Additionally, Cases 2 and 3 were assumed to be all layers. 
In all cases, the weights of the first half of the layers were fixed, and only the second half of the 
layers were trained. In Cases 2-4, the target model was an EAHE (straight) installed in a real 
building, and an analysis was conducted to directly apply the control laws constructed in the 

4       

 oil

 nlet

 oil  oil

4 
   

 
  

  
   

  

       

  
   

  

5      

 utlet

 nlet  utlet

 n
le
t

 
u
tl
e
t

Peer Reviewed Paper



source model to the operational control of the building to study the versatility of RL. For 
comparison, the analysis also included random control of RL and the outdoor air intake. 

 
Table 5 Conditions of reinforcement learning 

CASE Source Target Object 
1 2 5 action 

2-1 Straight L 

Shape 2-2 Straight Corridor 
2-3 Straight Meandering 
2-4 Straight Actual tunnel 
3-1 Kitakyushu Fukuoka Weather 3-2 Kitakyushu Akita 

 

5. RESULTS 

5.1 Progress of RL and TRL 

 
Figure 6 shows the episode reduction rate and the number of episodes required for 

convergence of the RL and TRL studies for each case, and Figure 7 shows the progress of the 
studies from Cases 2-1 to 2-3. Figure 6 shows that Case 3-1 (Kitakyusyu to Fukuoka) resulted 
in the fastest learning speed and a 90-episode reduction. This is presumably because both the 
source and target models were straight EAHE systems, and the climates of Kitakyushu and 
Fukuoka are very similar, having the highest similarity between the source and target among 
all cases. For the Case 2 series (shape transition), more than 50 episodes were reduced in Case 
2-1 (straight to L) from Figure 7. TRL also remained higher than RL with respect to total 
rewards. In Cases 2-2 (straight to corridor) and 2-3 (straight to meandering), the total reward 
remained high from the early stages of learning, which is presumably the result of efficiently 
utilizing the source model's measures from the early stages of learning. Cases 2-2 and 2-3 
achieved an increase in learning speed of 40 episodes and 20 episodes, respectively. As in Case 
2-1, TRLs showed a high sum of rewards, suggesting that they improved learning performance. 
This is presumably because, as in Case 3-1, the L-type had the highest similarity to the straight 
type. In all cases, however, TRL achieved episode reduction. 
 

 
Figure 6 Episode reduction ratio / Episode of convergence 
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CASE2-1 (L type) CASE2-2 (Corridor type) CASE2-3 (Meandering type) 

Figure 7 Total reward each episode (CASE2) 
 
5.2 Comparison with RL and Random 

 
Figures 8 and 9 show the heat rate and condensation area ratio of the external controller when 

controlled by Case 2-1, RL, and random, which are the fastest learning methods in Case 2. The 
condensation area percentages for Case 2-4 are also shown in Figure 10. For Case 2-1, the 
annual heat rates for the external air conditioner process were 128.8 GJ, 128.9 GJ, and 139.4 
GJ for TRL, RL, and random, respectively, indicating that control with TRL and RL had high 
energy-saving performance. As for the condensation suppression effect, it was confirmed that 
TRL mitigated the condensation situation compared with RL and random, especially during the 
summer season. This confirms that TRL improved control performance. Finally, for Case 2-4, 
Figure 10 shows that the direct use of the source model's control law in the EAHE of a real 
building resulted in partial suppression of condensation compared with the random case, but 
the control performance was inferior to the case in which TRL was implemented. The annual 
heat output of the external controller was 211.9 GJ and 216.7 GJ for the random and source 
policies, respectively, with random being slightly higher. This may be due to the fact that the 
reward design prioritized the suppression of condensation. The results suggest that by reviewing 
the RL parameters and reward design, it is possible to obtain sufficient control performance for 
practical use without conducting new training. 
 

 
Figure 8 Monthly accumulated heat load of FAHU (CASE2-1) 
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Figure 9 Condensation area ratio (CASE2-1) 

 

Figure 10: Condensation area ratio (CASE2-4) 
 

6. CONCLUSIONS 

 
By utilizing learned measures in the construction of new control laws (TRL), we were able to 
achieve better control performances of energy-savings and suppressing dew condensation and 
a faster learning speed than conventional RL. Our results also suggest that EAHEs with 
insufficient measured data can be efficiently controlled from the first year of operation by 
directly using the pre-constructed control law. 
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9. APPENDIX 

Table 6 : List of abbreviations 
RL Reinforcement Learning 
TL Transfer Learning 

TRL Transfer Reinforcement Learning 
AHU Air Handling Units 

FAHU Fresh Air Handling Units 
DL Deep Learning 
NN Neural Network 

DQN Deep Q-Network 
CFD Computational Fluid Dynamics 
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