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ABSTRACT 
 
The progressive digitalization is providing more and more measurement data from building operation, in particular 
from heating, cooling and ventilation (HVAC) systems. This work investigates the potential use of data-driven 
models to simulate indoor environmental conditions, i.e. temperature and CO2 concentration, for fault detection 
applications. Herein, a grey-box model, depicting the thermal behaviour of building zones, is coupled with model 
representing the indoor air quality/ventilation condition in the respective zone allowing the combined use of 
measurement data from building operation. The models are applied to an office room of a case study building and 
the model parameters are identified with measurement data for a four-weeks long training period. The identified 
models are used to predict the timely evolution during a three-day long prediction period. By comparing residual 
metrics between training phase and prediction phase the model’s capabilities to detect simple exemplary faults are 
evaluated. Herein, preliminary results with rather simple fault cases, like temperature or CO2 sensor faults or 
(unintentionally) left-open windows are investigated. Results indicate that indoor temperature anomalies are 
detected well and that anomalies in CO2-concentration are also detectable with this modelling approach but depend 
on the available occupancy estimation (or measurement). Further investigations are underway to test possible 
adaptions to the presented approach to allow for better occupancy estimation and/or account variable ventilation 
rates. 
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1 INTRODUCTION 

The progressive digitalization is providing more and more measurement data from building 
operation, in particular from heating, cooling and ventilation (HVAC) systems (Kim and 
Katipamula 2018). The data is most often used for control and/or monitoring on component 
level. However, the combined use of measurement data from HVAC components, weather 
station and building volume (e.g. zone temperature, CO2 concentration) opens new 
possibilities. This work investigates the potential use of data-driven models to simulate indoor 
environmental conditions, i.e. temperature and CO2 concentration, for fault detection 
applications. Herein, grey-box (RC network) models, depicting the thermal behavior of 
building zones, are coupled with simplified models representing indoor air quality condition 
in the respective zone allowing the combined use of measurement data from building 
operation. The aim is to use such models to detect anomalous conditions stemming from 
faulty or misadjusted HVAC components or (unintentional) misused of building, e.g. window 
left open, misadjusted air inlet valve, etc., by comparing model predictions with current 
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measurement values. This paper presents first results from training such a combined model 
for a real case study office room and comparing predictions for periods with artificial or real 
faults. 
 
2 MODEL DESCRIPTION 

So-called grey box models were used for depicting the dynamic behaviour of the building (or 
the room in this case) (Bacher and Madsen 2011; Bauwens, Ritosa, and Roels 2021; 
Reynders, Erfani, and Saelens 2021). The thermal behaviour of buildings can be described by 
a series of first-order differential equations. These can be represented as simple resistance-
capacity networks. The level of detail of the model can be determined by the number of 
dependent parameters. In the course of the case study, different models were applied. Simpler 
models have the advantage of having fewer model parameters which can be identified more 
reliably. However, oversimplified models might not be able to reproduce the dynamic 
behaviour sufficiently well. Starting from a simple RC model with only one capacity (1C), the 
complexity of the thermal model is increased by introducing a second capacity representing 
the thermal capacity of the external walls (2C). In a third step the 2C thermal model is 
coupled with a model representing the mass balance equation for CO2 in the room, i.e. a 
ventilation model (2C+V). The mass balance model and the thermal model are coupled via 
the air exchange rate. In the following, these three models and their respective differential 
equations are documented in more detail. 
 
2.1 1C Thermal model 

This model is one of the simplest modelling variants. In this case, only the thermal behavior 
of the building is considered. The building envelope is represented by one resistance to the 
outside and has only one capacity to account for thermal mass, see Figure 1. It therefore has 
two free parameters (resistance Rie and capacity Ci). 

 
Figure 1: Resistance-Capacity network representing the 1C thermal model. 

The model shown in Figure 1 can also be written as a differential equation as follows. 
 

𝑑𝜃𝑖

𝑑𝑡
=

𝜃𝑒 − 𝜃𝑖

𝐶𝑖 ∗ 𝑅𝑖𝑒
+

1

𝐶𝑖
∗ Φℎ +

𝑔𝐴

𝐶𝑖
∗ Φ𝑠 +

1

𝐶𝑖
∗ Φ𝐷𝐼𝑉 

 

(1) 

It describes the energy balance of the internal room temperature node θi. The other variables 
are described in section 2.3. This modelling variant has proven to be robust in determining a 
good initialization value for the parameters. 
 
2.2 2C Thermal model 

To increase the level of detail of the model, another differential equation can be added. In this 
model, as shown in Figure 2, the external resistance is divided. Thus, the thermal capacity of 
the building can be considered better. As a result, this model has two more free parameters 
that need to be identified using measurement data. 
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Figure 2: Resistance-Capacity network representing the 2C thermal model. 

This model can be described by an additional differential equation representing the energy 
balance of the external wall node θw. 
 

𝑑𝜃𝑖

𝑑𝑡
=

𝜃𝑤 − 𝜃𝑖
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(2) 

𝑑𝜃𝑤

𝑑𝑡
=

𝜃𝑖 − 𝜃𝑤

𝐶𝑤 ∗ 𝑅𝑤𝑖
+

𝜃𝑒 − 𝜃𝑤

𝐶𝑤 ∗ 𝑅𝑤𝑒
 

 
(3) 

See the following section for a variable description. 
 
2.3 2C+V Thermal and ventilation model 

The two models above can describe the thermal behaviour of a building or a room. However, 
the heat flow through massive walls is, compared to heat flow through e.g. ventilation, 
considerably slower. To be able better reproduce dynamic events, like the influence of a 
controlled or uncontrolled air exchange with the ambient, the thermal model from section 2.2 
can be supplemented with a ventilation model. This model describes the mass balance of CO2 
in the room and is shown Figure 3. 

 
Figure 3: Resistance-Capacity network representing the 2C+V model. Left: Representation of thermal behaviour, 
i.e. heat flow through building/room envelope. Right: Representation of CO2 concentration in the building/room. 

The models in Figure 3 are coupled via the volume flow. In the thermal model, the volume 
flow is considered as part of an additional resistance. The idea behind this resistor is to 
consider the heat flows of the opaque envelope and the ventilation separately. Infiltration 
losses are estimated (stationary) and included in the effective heat recovery efficiency of the 
ventilation. The n50-value of the room is estimated (1 h-1) based on the building n50-value. 
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𝑑𝜃𝑖

𝑑𝑡
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�̇�𝐴𝐿

𝑉
 

 
(6) 

The differential equations are composed of known input data, unknown parameters, and state 
variables. The variables for equations 1 through 6, are described here. 
State variables: 

• θi … interior temperature [°C] 
• θw … wall temperature [°C] 
• zi … CO2 concentration in the interior [ppm] 

Known input data: 
• θe … external temperature [°C] 
• ze … external CO2 concentration [ppm] 
• ηHRE … effective heat recovery efficiency [-] 
• Φh … heat load [kW] 
• Φs … solar radiation [kW] 
• ΦDIV … combination of diverse heat flow’s (internal gains from people; internal gains 

from electrical devices; the heat flow between the neighbour rooms) [kW] 
• �̇�𝐶𝑂2… CO2 volume flow caused by people present [m³/h] 
• V … room volume [m³] 

Unknown(free) parameters: 
• Ci … interior capacity [kWh/K] 
• Cw … wall capacity [kWh/K] 
• Rwi … external wall resistance on inner side [K/kW] 
• Rwe … external wall resistance on exterior side [K/kW] 
• gA … solar aperture [m²] 
• �̇�𝐴𝐿 … volume flow between the inside and the outside [m³/h] 

 
Furthermore, for the training of the model and thus the determination of the unknown 
parameters, measurement equations are needed. For the 2C+V model the two trivial 
equations, where the observed state variables are set equal to the measured data are needed as 
documented in formula (7) and (8). 

𝜃𝑖 = 𝜃𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
 (7) 

𝑧𝑖 = 𝑧𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
 (8) 

3 METHODS - MODEL TRAINING 

 
3.1 Case study description 

The described models were trained using measurement data from on office building in eastern Austria. The 
building belongs to the research institute Forschung Burgenland and is equipped with a great number of sensors, 

including room sensors for temperature, relative humidity, CO2-concentration, supply and extract air flows, 
supply air temperature as well as an outdoor weather station. The office room number “02” was used for the 

following analysis. It is usually occupied by one person (occasionally by two) on three to five working days per 
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week. The nominal ventilation rate in this room is 55 m³/h. Room “02” is located in the upper floor and its glass 
façade faces south-south-east, see Figure 4. The relevant parameters are summarized in  

 
Table 1. 
 

  
Figure 4: Left: Picture of the south-south-east façade of the case study building “Energetikum”. Right: Upstairs 

floorplan with investigated room “02”. Source: Forschung Burgenland. 

 
Table 1: Building and room parameters and assumptions 

Parameters & assumptions Value Unit 

Area external wall: Room “02” 18.8 [m²] 
U-value external wall: Room “02” 1.10 [W/(m²K)] 
Floor area: Room “02” 26.04 [m²] 
Height: Room “02” 3.17 [m] 
Average U-value: Entire building 0.39 [W/(m²K)] 
Avg. thermal cap. estimate: Entire building 204 [Wh/(m²K)] 
Occupancy assumption (7:00-16:00) 5 [d/week] 
Occupant sensible heat rate 76 [W] 
Occupant CO2 emission 18 [L/h] 

 

Table 2: Initial values and limiting bounds for free model parameters 

Parameter Source for initial value Initial-

value 

Units MIN MAX 

R Resistance Energy Performance Cert. 48.4 [K/kW] 1 500 
Ci(+Cw) Capacity Estimate [PHPP] 5.3 [kWh/K] 0.01 500 
L Position of the 

wall-capacity 
Estimate 0.50 [-] 0.1 0.9 

gA solar aperture Estimate 5.00 [m²] 0.1 50 
�̇�𝐴𝐿  airflow Measurement data mean [m³/h] 50 300 
HLC Heat-Loss-

Coefficient 
=1/(R) 20.7 [W/K] 

  

 
3.2 Parameter identification 

In order to obtain a suitable model that can be used for simulation, the unknown/free 
parameters described in section 2 had to be identified. For this purpose, the System 
Identification Toolbox from the software MATLAB was used. Therein the grey-box 
estimation algorithm was used to identify the free parameters that minimise the cost function, 
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i.e. the sum of squares of the difference between simulated and measured values from the 
training period. Initial values and limiting bounds were defined for the unknown parameters 
according to  Results from the model parameter estimation are documented in Table 3. 
. These should lie within a physically reasonable range. For the 2C models the resistance R is 
split using the factor L, representing the position of the effective wall capacity Cw. Results 
from the model parameter estimation are documented in Table 3. 
Table 3: Estimated model parameters for 1C, 2C and 2C+V model. Initial value and design value (if known) are 

also listed for comparison. 

Parameter Initial-

value 

1C 

estimation 

2C 

estimation 

2C+V 

estimation 

Design 

value 
Units 

HLC Heat-Loss-
Coefficient 20.7 14.5 16.6 9.6 20.7 [W/K] 

Ci(+Cw) Capacity 5.3 4.8 8.7 19.2 n.a. [kWh/K] 
L Position of the 

wall-capacity 0.50 n.a. 0.67 0.39 n.a. [-] 

gA solar aperture 5.00 1.45 1.9 2.6 unknown [m²] 
�̇�𝐴𝐿  airflow 4 n.a. n.a. 134 55 [m³/h] 

 
3.3 Exemplary tests for fault detection (FD) 

In order to test the usability of the proposed combined model (2C+V) for FD the trained 
models were used to predict the temperature and CO2 concentration for a three-day long 
period immediately after a four-weeks long training period. Note that the presented prediction 
is a simulation for the entire three-day prediction period and not a 1-step ahead prediction as 
often used in this context. As concluded in previous studies, evaluating the multi-step 
prediction (in this case even for three days), might provide a better model assessment 
(Reynders et al. 2021). The simulation was initialized with measured data at the beginning of 
the prediction period. 
This paper presents the first results for testing with rather “simple” fault cases, see Table 4. 
They were produced artificially, by altering the measurement data, simulating e.g. a faulty 
sensor, or, they occurred in reality, as for the open window “fault”. Note that these simple 
faults may also be detected with simpler FD-schemes, e.g. rule-based FD techniques. 
However, the proposed method with physically based grey-box models has the potential to 
provide further capabilities like fault diagnosis, e.g. by continuously retraining the models and 
interpreting the identified parameters. Further, more complex and more realistic faults will be 
tested in this ongoing work. 

Table 4: Preliminary fault detecation test cases 

Fault 
 

Training start Prediction start 
Fault 

duration 

Temperature sensor faulty Sensor outputs +2 K 
(artificial) 2022-11-03 11:15 2022-12-01 11:15 60 hrs 

CO2 sensor faulty Sensor outputs +200 ppm 
(artificial) 2022-01-27 11:15 2022-02-24 11:15 60 hrs 

Window left open 
Window was left open 

unintentionally 
(real occurrence) 

2022-09-01 7:40 2022-09-29 7:40 
2022-09-30 7:40 

8 hrs 
6 hrs 

 
4 RESULTS 

 
Using the thermal models one can detect only anomalies that alter the thermal behaviour, i.e. 
the temperature sensor fault and the open window in herein presented cases. Looking at 
evolution of the measured and simulated temperature during the training month one can see 
that the simple model with one thermal capacity (1C) follows the general trend fairly well, but 
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cannot follow the daily temperature variation fully, see Figure 5 (left). The 2C model is able 
to reduce the root-mean-square of the error/residuals (RMSE) by reproducing the daily 
variations slightly better, see Figure 5 (right). The temperature simulation of the 2C+V model 
is very similar to the 2C model, see Figure 6 (left). In all three cases the temperature sensor 
offset of +2 K can easily be identified by comparing the RMSE between prediction and 
training period. The RMSE increases by around 200%, i.e. triples, with all three models, see 
Table 5. 

 
Figure 5: Result for 1C model (left) and 2C model (right) for temperature sensor fault case: Measured and 

simulated indoor temperature evolution during training (4 weeks) and prediction (3 days) phase. The end of 
training phase is marked with a vertical line. 

As seen in Figure 6 (right) the simulated CO2-concentration can reproduce the measured CO2-
concentration roughly, but the parameter identification algorithm seems to overestimate the 
ventilation rate (134 m³/h). Therefore, the simulated daily peaks fall short compared to the 
measured ones. Nevertheless, the CO2-concentration is reproduced in a decent manner, 
considering that the occupancy (and the corresponding emission rate) is just based on the 
naïve assumption using a fix working schedule (Mo-Fr, 7:00-16:00) for the presented results. 
One of the difficulties in this case is, that the ventilation rate is controlled via schedule and 
CO2 concentration and is therefore not a fix value. However, a varying ventilation rate cannot 
be depicted in this model variant. This issue was addressed in a model extension, see below. 
With that, a ventilation rate of around 90-100 m³/h was estimated during regular working 
hours. Note that the measurements provided by the building control sensors provided 
unrealistic values of around 10-15 m³/h. 
 

 
Figure 6: Result for 2C+V model for temperature sensor fault case: measured and simulated indoor temperature 
(left) and CO2 concentration (right) evolution during training (4 weeks) and prediction (3 days) phase. The end 

of training phase is marked with a vertical line. 

Figure 7 shows the prediction results for the case where a faulty CO2 sensor is simulated. 
While the RMSE of the prediction period shows no increase, the RMSE of the predicted CO2 
concentration increases by almost 300%, allowing a fault detection if an occupancy estimate 
(or measurement) is available, see Table 5. When only rough occupancy estimates are 
available, then a prolonged prediction period would be advisable to average out the rough 
estimate. See “open window” test case, where inaccurate occupancy estimate hinders the fault 
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detection. Note that this model can be altered to allow for a prediction of CO2 emission rate 
instead of indoor concentration, see below. 
 

 
Figure 7: Result for 2C+V model for CO2 sensor fault case: measured and simulated indoor temperature (left) 
and CO2 concentration (right) evolution during training (1 month) and prediction (3 days) phase. The end of 

training phase is marked with a vertical line. 

The results for the “open window fault case” is shown in Figure 8. As can be seen, the 
temperature drop due to the open window is clearly visible and increases the residuals 
(RMSE) between simulation and measurement substantially, see also Table 5. Looking at 
Figure 8 (right) one can also see that the difference between simulated and measured CO2-
concentration is rather large. However, due to the fact that the occupancy estimate is rough 
and due to the fact that the volume flow control is not depicted in this model, the RMSE is 
also rather high for the training period. Therefore, the RMSE increase of the CO2-simulation 
cannot be used to detect the open window state for this particular case. Possibilities to 
increase CO2 prediction accuracy by allowing better occupancy estimates are currently 
investigated further. 
 

 
Figure 8: Result for 2C+V model for “open window fault” case: measured and simulated indoor temperature 

(left) and CO2 concentration (right) evolution during training (1 month) and prediction (3 days) phase. The end 
of training phase is marked with a vertical line. 

Table 5: Summary table of prediction results. The fields were coloured as follows. Green: fault present and RMS 
increase >100%; yellow: fault present and RMS increase >33%; red: fault present and RMS increase <33%. 

  
Failure type 

  
T sensor offset 

(February) 

CO2 sensor offset 

(November) 

Window left open 

(September)   
T [K] CO2 [ppm] T [K] CO2 [ppm] T [K] CO2 [ppm] 

1C RMS train. 0.70 n.a. 0.74 n.a. 0.51 n.a. 
RMS pred. w/o 

fault 
0.65 n.a. 0.37 n.a. n.a. n.a. 

RMS pred. 
with fault 

2.16 n.a. 0.37 n.a. 1.10 n.a. 

RMS increase 209% n.a. -50% n.a. 116% n.a. 
2C RMS train. 0.64 n.a. 0.70 n.a. 0.77 n.a. 
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RMS pred. w/o 
fault 

0.52 n.a. 0.42 n.a. n.a. n.a. 

RMS pred. 
with fault 

1.85 n.a. 0.42 n.a. 1.10 n.a. 

RMS increase 189% n.a. -40% n.a. 43% n.a. 
2C-V RMS train. 0.64 82 0.65 65 0.49 99 

RMS pred. w/o 
fault 

0.58 50 0.56 137 n.a. n.a. 

RMS pred. 
with fault 

2.09 50 0.56 250 1.13 103 

RMS increase 227% -39% -14% 285% 131% 4% 

 
5 OUTLOOK 

5.1 Stepwise parameter identification 

Previous work has shown that physical parameter identification can be challenging (Rojas et 
al. 2023). The tighter that certain free parameters, e.g. building thermal mass, can be bounded, 
the easier it is for the algorithm to find physical sensible values, in particular for more 
complex models with higher number of free parameters. In an ongoing work, the following 
stepwise identification procedures are being compared:  

• IC1 (as used in for the results presented in section 4): The starting values of the 
parameters are defined via the energy performance certificate of the case study 
whenever possible and the bounding limits are left fairly loose. 

• IC2: The parameters are first identified as in method IC1, but with training data in the 
winter period. The value of these parameters then serves as the starting value for the 
actual parameter identification. The lower and upper limit are defined +/-95% from 
this determined value in the winter period. 

• IC3: With this method, the parameters are first determined with the simple model from 
section 2.1 (1C). The identified values are used as initial values and for defining 
boundaries (+/- 95%). Then the same procedure as within method IC2 is followed. 

 

5.2 Emission rate prediction 

The 2C+V model can be adapted to output CO2-emission rate instead of the CO2-room 
concentration. This could be used to extract room occupancy for improving FD prediction 
models or other application such as model predictive control. Figure 9 shows preliminary 
results with such an adapted model for the “open window test case”. 

 
Figure 9: Result for adapted 2C+V model outputting CO2 emission rate for “open window fault” case. 

“Measured value” refers to the naïve occupancy assumption. A validation with an actual measured occupancy 
profile has not been performed yet. 

5.3 Accounting variable ventilation rates 

As noted above, the 2C+V model has the limitation, that only a fix/static ventilation rate can 
be modelled and identified. Introducing model states with a modified external temperature 
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and modified external CO2 concentration which use the ventilation flow control signal to alter 
the measured values accordingly, are being tested to account variable ventilation rates. 
 
6 CONCLUSIONS 

This paper documents work-in-progress for combining a thermal grey-box model with a simple 
ventilation mass balance model, i.e. a model that reproduces the CO2 concentration in a room. 
Both models are coupled via the ventilation rate. The models are applied to an office room of a 
case study building. The model parameters are identified with measurement data for a four-
weeks long training period. Their values compare well with design values from the energy 
certificate. The identified models are used to predict the timely evolution during a three-day 
long prediction period. By comparing residuals (measurement minus simulation) between 
training phase and prediction phase, this work investigates the model’s capabilities to detect 
simple exemplary faults, like temperature or CO2 sensor faults or (unintentionally) left-open 
windows. The preliminary results show that larger indoor temperature anomalies can be 
detected well with this approach. Anomalies in CO2-concentration are also detectable but 
depend on the available occupancy estimation (or measurement). It should be noted that the 
herein investigated faults are simplified and additional testing is needed. Further investigations 
are underway to test possible adaptions to the presented approach to allow for better occupancy 
estimation and/or account variable ventilation rates. 
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