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ABSTRACT 
 
Abstract. Due to its high demands regarding indoor environmental conditions, healthcare facilities are associated with high 
energy consumption. To move forward towards more demand driven and energy reduced conditioning, information on 
occupancy and temperature boundary conditions are crucial. Thermography-based systems enable data acquisition regarding 
both aspects in high local resolution. In this publication, we propose a thermography system that may be used for monitoring 
of rooms in healthcare facilities. It is set up using a 160 x 120 px thermography sensor and Raspberry Pi computer for data 
acquisition and processing. The sensors are mounted on walls to capture the inside of the room including patients, staff, and 
visitors. We evaluate the mean radiant temperature based on the individual inner surfaces of the room. The algorithm aggregates 
wall, floor and ceiling surface temperatures within the field of view of the sensor. For occupancy estimation inside the room, 
we apply a convolutional neural network (CNN). It is based on a pre-trained network and retrained using a partial dataset 
collected during the field study. To improve robustness of the algorithm several data pre-processing steps are conducted, that 
include image filters and redundancy testing. The system is evaluated based on data collected in a field study conducted inside 
MHH Hospital in Hannover, Germany. Several patients’ rooms and a staff room are monitored over a period of 6 weeks, with 
the goal of evaluating indoor environmental data. The measurement period is inside the heating period in winter and different 
room layouts are considered. For reference, an indoor environmental quality measurement device is used to simultaneously 
measure air temperature, globe temperature and other IEQ parameters. Measured data of the reference system agree well with 
the thermography system. Deviations between both are less than 1 K in radiant temperature for most scenarios and measurement 
setups. Estimated occupancy is compared to a ground truth derived from manual processing of the captured thermography data. 
Finally, results of the field study are discussed together with the systems advantages and limitations with regard to privacy 
considerations. 
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1 INTRODUCTION 

 
Continuous stress on the healthcare sector due to increasing life expectancy and threats from 
diseases has shifted public focus towards the conditions in healthcare facilities. Convalescence 
time and thus capacities in hospitals and other healthcare facilities are significantly influenced 

Peer Reviewed Paper



by indoor environmental conditions (Shajahan et al., 2019). The high regulatory requirements 
for indoor conditions in these building types regarding ventilation rates and set temperatures, 
however, result in increased energy demand compared to other public buildings. 
 
The methods and results presented within this publication are part of a pilot study to investigate 
measures for the improvement of well-being of patients and staff in hospitals as well as to 
convalescence and productivity. Furthermore, investigations into energy saving potentials are 
subject of the pilot study. It has been conducted between mid of November and mid of 
December 2020 in a ward of Medizinische Hochschule Hannover (MHH) and included both 
patients and staff’s rooms. 
 
Both the detection of occupancy and measurement of mean-radiant temperature (MRT) are 
crucial factors for efficient control of building energy systems. We propose a thermography-
based system that enables the assessment of both aspects within one system.  
 
1.1 Occupancy detection 

 
During regular building operation indoor environmental conditions in healthcare facilities are 
typically not monitored under consideration of real-time occupancy. However, demand-
controlled ventilation (DCV) enabled by occupancy detection can contribute to a significant 
decrease in heating, ventilation and air-conditioning (HVAC) related energy consumption in 
hospitals (Čongradac et al., 2014; Rätz et al., 2020).  
 
For occupancy detection in indoor rooms several technologies have been proposed and 
investigated (Liu et al., 2019; Ahmad et al., 2021) In many applications, Pyroelectric Infrared 
Sensors (PIR) are used to detect presence of people, but they are not capable to retrieve 
information on the number of occupants. Derivation of occupancy from CO2 measurements 
allows inexpensive and non-invasive detection, however with drawbacks in terms of accuracy, 
which can be improved with additional sensors in fusion with the CO2 sensor (Dedesko et al., 
2015; Rätz et al., 2022). Camera-based systems using machine learning algorithms are another 
option with high accuracy, but are sensitive with regards to the occupants’ privacy.  
 
Long-wave infrared (IR) sensors for occupancy detection are applied in different resolution and 
positions within indoor environments (Tyndall et al., 2016; Zhao et al., 2018). Analogous to 
camera-based systems, machine-learning algorithms are applied for classification based on the 
thermographic image. In most indoor conditions the high temperature difference between 
background and skin/clothing surface yields a good contrast for detection. The sensors can 
operate independent of illumination of the room and have become economically more viable. 
In terms of privacy, IR sensors are less critical as their lower resolution reveals less distinct 
features and less contrast than conventional cameras. Technical solutions for privacy 
implications have already been discussed (Pittaluga et al., 2016; Ahmad et al., 2021; Dubail et 
al., 2022). 
 
 
 
1.2 Mean radiant temperature  

 
According to ASHRAE standard 55 mean radiant temperature is – besides air temperature, air 
humidity and air speed – a required parameter to predict thermal comfort in thermal 
environments (ASHRAE, 2020). It is a key parameter for the quantification of radiative heat 
transfer between a person and its surrounding surfaces and is usually measured by means of a 
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globe temperature sensor, air temperature sensor and air velocity sensor. Further measurement 
methods include the two-sphere radiometer and the constant air temperature sensor 
(International Standardization Organization, 2002). As the radiative heat transfer is influenced 
by many factors including wavelength of radiation, view factors between objects and their 
surface temperature, its precise measurement is challenging, and it is associated with a high 
measurement uncertainty.  
 
IR sensors allow continuous, non-intrusive measurement of surface temperatures. Using these 
measured surface temperatures and the view factors between the evaluation position and the 
surroundings, mean radiant temperature can be calculated analytically. 
 
2 METHODS 

 
2.1 Experimental setup and data acquisition 

 
The experimental study is conducted as a field study within 5 different rooms of MHH: 4 patient 
rooms and 1 physicians’ room. The rooms are equipped with mechanical ventilation systems 
and radiators for heating. Windows can be opened to allow for hybrid ventilation. In each of 
those rooms both IR sensor systems and an indoor environmental quality (IEQ) sensor system 
are installed. 

Table 1: List of rooms with usage type and window orientation 

Room Type of room Window 

Orientation 

Number of beds 

R1 Physicians room North  - 
R2 Patient room North 2 
R3 Patient room South 2 
R4 Patient room South 3 
R5 Patient room South 2 

 
The IR sensor system consists of a FLIR Lepton 3.5 160x120 px microbolometer sensor, the 
corresponding evaluation board for radiometric determination of object temperatures and a 
Raspberry Pi 3B+ microcomputer for data processing and transmission to storage. The sensor 
is specified with a typical accuracy of ±5 K within regular operating conditions in buildings. In 
each room 2 of these sensors have been installed in opposing upper corners of the rooms, facing 
towards the occupied zone of the room, to cover as much wall, ceiling, and floor surface area 
as possible with the field of view (FOV) of the sensors. The low FOV angle of 57/71° 
(horizontal/diagonal) compared to many other sensors limits the covered surface to mainly wall 
and floor sections.  
 
The IEQ sensor system is used as a reference for the mean radiant temperature. The BAPPU-
evo sensor device features among others air temperature (± 0.5 K), air humidity (± 4 % rH) and 
a globe temperature sensor (± 0.5 K). Due to restrictions regarding interference with care 
operations, the sensor system had to be placed on shelves slightly above the occupied zone at 2 
m height. 
 
In Figure 1 the positions of one of the IR sensor systems in a patient’s room and one of the IEQ 
measurements systems are indicated. 
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Figure 1: Positions of IR sensor system (left) and IEQ measurement system (right) inside a patient’s room 

 
2.2 Data pre-processing  

 
The IR sensor system records frames with a frequency of 10 seconds. The frames are 
temporarily stored locally. In pre-processing the frame is analysed regarding its redundancy 
and validity. For redundancy testing the frame is compared to the previous frame based on the 
structural similarity index. In case the structural similarity is higher than 97% the frame is 
discarded. Occasionally, the sensor provides corrupted images which are detected based on a 
histogram comparison between frames. The frames are normalized and saved on a server in 
batches of 30 frames for further processing.  
 
2.3 Occupancy 

2.3.1 Data pipeline 

 
The normalized frames are annotated manually by creation of labels for each occupant inside a 
room as shown in Figure 2. We have used one class of labels which includes occupants in 
different postures. These are standing, sitting, and lying. The images and annotations are saved 
and converted to the tfrecords format for further processing with machine learning platform 
TensorFlow (TensorFlow Developers, 2022). 
 

  
Figure 2: Label annotations for occupants in patients’ room  

2.3.2 Network training 

 
The TensorFlow platform provides pre-trained network architectures, which can be used for 
further individualized training of networks. The models suited for detection purposes are pre-
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trained on the COCO 2017 dataset, which features images in the visual domain (Lin et al., 
2014). We have selected the Faster R-CNN Inception ResNet V2 640x640 architecture 
(Szegedy et al., 2016). It is a very deep convolutional neural network with a good trade-off 
between accuracy and computational speed/ memory requirements. As the present frames are 
in the long-wave IR domain, the training process is cross-domain. 
 
For transfer learning, we use a dataset of 800 frames, compiled randomly from 9 of the IR 
sensor systems. Data from one IR sensor system have been excluded due to faulty data. The 
network is trained in 100 000 steps with a batch size of 1. The development of the total loss 
metric for network training is shown in Figure 3. It includes classification loss, localization and 
objectness loss.  

 
Figure 3: Total loss of network training process for each step 

 

2.3.3 Training evaluation 

 
For the evaluation of the networks training performance, COCO detection metrics are used. The 
confidence scores predicted by the classifier represent the probability that a bounding box 
contains a person. Precision indicates the reliability of the network’s positive prediction, 
whereas recall describes the ability to determine the relevancy of predictions. The average 
precision is the average of precision values for all different levels of recall. The Intersection 
over Union (IoU) value represents the ratio of intersection area and union area of a predicted 
boundary box and a ground truth bounding box. The mean average precision (mAP) is 
calculated over different levels of IoU. The evaluation is based on an evaluation dataset of 200 
frames from different sensor systems. 
 
2.4 Mean radiant temperature  

2.4.1 Algorithm for calculation 

 
To determine MRT analytically both the surface temperatures 𝑡𝑖 and view factors between the 
evaluation position and the surfaces 𝐹𝑝−𝑖  have to be known. According to ISO 7226 the 
following equation applies for the calculation of MRT indoor environments assuming high 
emissivity surfaces: 
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𝑴𝑹𝑻𝟒 = ∑ 𝒕𝒊
𝟒 ⋅ 𝑭𝒑−𝒊

𝑵

𝒊= 𝟏

 

 
(1) 

For small temperature differences, which are typical for surfaces in indoor environments it can 
be simplified to a linear equation: 

 

𝑴𝑹𝑻 = ∑ 𝒕𝒊 ⋅ 𝑭𝒑−𝒊

𝑵

𝒊= 𝟏

 

 

 
(2) 

 
The indoor surfaces temperature can be determined with the data captured by the IR sensor 
system. The surfaces are separated into segments based on their material properties, especially 
their emissivity. The assignment is done manually for the static position of the sensor after 
installation. For simplification of view factors, we substitute the view factors by arithmetic 
weighting according to the surface area 𝐴𝑖 of each segment as shown in equation 3. This 
approach does not account for individual positions inside the room. 

 
𝑭𝒑−𝒊 =  

𝑨𝒊

∑ 𝑨𝒊
𝑵
𝒊=𝟏

 

 

 
(3) 

Each surface is captured with one of the systems inside the rooms. The low angle of incidence 
between the sensor and ceiling results in a high share of reflected radiation. For this reason, the 
ceiling is not further considered for calculation. The expected error from this simplification is 
low for standing occupants, as projection factors according to ISO 7726 are small for ceiling 
and floor, compared to those for walls. However, for occupants in recumbent body position the 
expected error becomes more significant as the projection factor increases. An exemplary 
surface segmentation for a patient’s room is shown in Figure 4. 

 
Figure 4: Exemplary selection of surfaces for MRT calculation for Room 4  

 

After calculation of MRT, we filter not plausible outlier data by an Hampel-filter-function 
(based on a moving median) of MATLAB R2021a for a duration of five minutes. To reduce the 
noise of the sensor signals and to account for partial obstructions of surfaces by moving people, 
we finally calculated the moving mean value over five minutes for the data.  
As a reference for the MRT, the globe temperature data from the IEQ measurement system are 
used. According to ISO 7226, MRT can be calculated from globe temperature 𝑡𝑔 for forced 
convection based on equation 4, with air velocity 𝑣𝑎 and air temperature 𝑡𝑎. 
 

Peer Reviewed Paper



  𝑴𝑹𝑻 = [(𝒕𝒈 + 𝟐𝟕𝟑)
𝟒

+ 𝟐. 𝟓 ⋅ 𝟏𝟎𝟖 ⋅ 𝒗𝒂
𝟎.𝟔 × (𝒕𝒈 − 𝒕𝒂)]

𝟏/𝟒

− 𝟐𝟕𝟑      (4) 
 
The estimated deviation boundaries between globe temperature and calculated mean radiant 
temperature according to ISO 7226 are less than 0.8 K based on measured differences between 
air temperature and globe temperature of less than 2 K and air velocities of < 0.05 m/s.  
 
3 RESULTS 

 
3.1 Occupancy 

 
In Figure 5 six exemplary frames from 4 different sensor systems with predicted boundary 
boxes are depicted. The green boundary boxes show the predicted position and area. The 
confidence scores at the top of the boundary boxes indicate the classifier confidence of the 
prediction being true.  
 
In the top left frame both predictions are true positives. Also in the top right, bottom left and 
bottom center frame the predictions are correct. However, in the top right frame the IoU is lower 
than for the other predictions as only a part intersects with the ground truth (marked in red). In 
the top center frame the person lying in the bed is not detected (false negative) and in the bottom 
right frame a person is predicted, where nobody is present (false positive) indicating overfitting 
of the model. 
 
The mean average precision (mAP) of the network for the evaluation data set is 0.4679 
compared to the 0.377 of the pre-trained network on the COCO dataset. For an IoU of 0.5 the 
mAP significantly increases to 0.8028. For an IoU of 0.75 it is 0.4753. This means that the 
position of boundary boxes can be predicted well, but the intersection with annotated boundary 
box is not high for all cases as can be seen in the top right frame.  
 

 
Figure 5: Selected frames of evaluation data set with predicted boundary boxes for persons marked in green  

 
3.2 Mean radiant temperature 

 
In Figure 6 the calculated MRT, air temperature and globe temperature as reference are depicted 
for Room 2 over the course of 18 days. Daily variations occur for the temperature profiles with 
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highest temperatures typically in the afternoon. A general trend with increasing temperatures 
from the beginning of the measurement period till the end can be observed.  
 
Overall, the calculated MRT follows the globe temperature with little deviations. While in the 
beginning the difference between both values is continuously < 0.5 K, the difference increases 
after December 9th but stays within < 1 K. The RMSE between the MRT and the globe 
temperature for the whole measurement period in this room is 0.47 K.  
Occasionally, short time temperature peaks occur for only one of the variables. For example, 
on December 5th the increase in globe temperature is significantly higher than for the MRT. A 
contrary effect can be observed on December 8th. Similar characteristics and effects can be 
observed for other rooms as well.  

 
Figure 6: Calculated mean radiant temperature and measured globe temperature for Room 2  

4 DISCUSSION 
 

In terms of occupancy detection, the trained network yields good results for an estimation of 
occupancy in the rooms. In all different body postures, persons are detected by the network, 
although some predicted boundary boxes have a low IoU with the annotated boundary box. 
False negatives occur most frequently when the contrast between the person and the background 
is too low. High room temperatures lead to low differences between human skin or clothing 
temperature and the room temperature and thus lower contrasts, as we used normalized frames 
based on fixed temperature limits. Dynamic temperature limits may be a solution here, however 
implications for network training need to be considered as well.  
 
As the pre-trained network was trained on visual domain images, features for classification are 
different in the frames used for further training and evaluation. Overfitting issues especially for 
specific sensor installation point may be caused by the low number of different installation 
points and fixed sitting and standing positions of patients and staff. Further classes (e.g. 
differentiation between postures) as well as more training data with different installation 
positions could reduce these issues.  
 
Regarding privacy, the chosen installation position, sensor resolution and distance between 
sensor and person prevent direct identification of people as facial features are not recognisable. 
However, with further contextual information identification might be possible and technical 
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solutions must be implemented to reduce the associated concerns.  Local data processing on the 
device and transfer of non-sensitive data to central building control systems can be part of the 
solution. 
 
For the presented experimental setup, the applied calculation method for MRT shows only 
minor deviations compared to the reference globe temperature measurement and can therefore 
be considered valid. The homogenous boundary conditions comply with the assumptions made 
for the application of the method concerning view factors and temperature differences. As 
pointed out in the results section, some influencing and noise factors may have more significant 
impacts on the calculation methods which leads to limitations with regards to accuracy. These 
include ambient conditions such as air temperature and velocity but also body positions of 
occupants and distances between surfaces and evaluation positions. Further comfort relevant 
parameters such as radiation asymmetry and vertical temperature gradient may also be predicted 
based on the recorded data and could further enhance the capabilities of the system (Seiwert et 
al., 2018). 
 
5 CONCLUSION 

 
An IR sensor-based measurement system for occupancy detection and determination of mean 
radiant temperature has been presented in this work. The developed methodologies rely on 
image-based evaluation of data and comparison with measurements and manually annotated 
occupancy information. 
For both aspects the results of the pilot study show promising results. The trained network can 
detect occupants inside the rooms with good precision and enables not only binary detection of 
occupancy but also a count of occupants. With further development and networks, which are 
exclusively trained on IR domain data, precision and recall may be further improved and model 
overfitting reduced. Privacy preserving algorithms can be implemented directly on the sensor 
system to reduce associated concerns. 
 
With the calculation of mean radiant temperature, thermal boundary conditions inside rooms 
can be evaluated more accurately. The deviations measured in the observed rooms are within 
an acceptable range given the generally high uncertainty associated with its determination. 
Requirements regarding the boundary conditions have been fulfilled in this study, however they 
limit transferability to similar environments and require further validation. 
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