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ABSTRACT 

 
In this work, we propose a method to couple the behaviour models developed with Python in a previous paper with 
the dynamic thermal simulation software EnergyPlus, an advanced code used in research and design. The proposed 
coupling method is applied to the thermal model of an office building situated in the humid tropical climate of 
Reunion Island after calibrating and validating it with measured temperature and relative humidity data.   
Then, this resulting coupled model is compared with a typical design office energy model where behaviours are 
based on typical, deterministic scenarios. The comparison focuses on the power level of the ceiling fans employed, 
the level of opening use and the calculation time. The results obtained by coupling with the new behavioural 
models are better than in the conventional deterministic scenarios, providing a more faithful reproduction of user 
actions in the design phase. 
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1 INTRODUCTION 

 
Buildings in humid tropical climates are witnessing a significant upsurge in their energy 
demands, primarily attributed to the use of cooling systems known for their substantial energy 
consumption. In low-energy buildings in such climates, occupants can employ both passive 
solutions, such as natural ventilation through windows, and low energy-consuming alternatives 
(in this study, we focus solely on using ceiling fans) to achieve thermal comfort, particularly 
during the hottest months. However, compared to other climatic zones, there needs to be more 
specific knowledge regarding occupant comfort and behaviour in this context. This leads to 
difficulties in the design phase for engineers who need to estimate the future operation of a 
building. 
 
In a previous research paper (Payet, 2022), two deterministic methods based on machine 
learning supervised classification techniques (decision tree and random forest) and a 
probabilistic graphical model (bayesian network) were investigated to model occupant 
behaviour regarding windows and ceiling fans. In both cases, the random forest method 
obtained the highest performances. These techniques, explained in detail in (Payet, 2022), use 
historical measured data as explanatory variables for the variable to model (for example, in our 



case, the power level of ceiling fans). The whole methodology elaborated is described in detail 
in this previous paper. 
 
In this work, we present a novel approach to integrate the developed behaviour models with 
dynamic thermal simulation software, coupling Python and EnergyPlus, an advanced code used 
in research and design. The proposed coupling method is applied to the thermal model of a case 
study after calibrating and validating it with measured temperature and relative humidity data.   
 
The first part of this paper provides an overview of existing methods for coupling behaviour 
models with dynamic thermal simulation software. Subsequently, the proposed coupling 
methodology is detailed, from the case study's presentation to the coupling method's integration, 
before discussing the results obtained in the last part. 
 
2 STATE OF THE ART  

 
Existing tools offer solutions of varying complexity to incorporate user behaviour into 
simulations (Sun, 2017; Darakdjian, 2017)  
 
Direct modelling involves inputting user data into software modules but cannot create detailed 
occupancy profiles and conditioned behaviours. 
 
Code customisation enables users to add personalised scripts to the source code, facilitating the 
incorporation of user behaviour into simulations (Sun, 2017). For EnergyPlus, the EnergyPlus 
Runtime Language of the Energy Management System is used (BigLadder, 2020). Another 
approach involves customising the core code of the software itself, offering significant 
flexibility but requiring proficiency in the underlying programming language. 
 
Co-simulation offers a collaborative approach, combining the strengths of different simulation 
tools through information exchange at each time step. This method allows users to harness 
multiple tools’ capabilities without extensive programming knowledge. Co-simulation can be 
achieved using functions like "External Interface" in EnergyPlus or by using communication 
intermediaries such as the Building Controls Virtual Test Bed (BCVTB) (Nihar, 2019; Kwak, 
2016; Jia, 2020; Langevin, 2014) 
 
A recent intermediary solution available since version 9.3 of EnergyPlus is the PythonPlugin 
interaction method. This new approach is positioned between code customisation and co-
simulation. It allows engineers to write code within the EMS using Python, a widely used 
language known for its extensive functionalities and various libraries. This integration offers a 
significant advantage over the EnergyPlus Runtime Language, which has more limited 
capabilities. 
 
To our knowledge, this last method chosen for this work has not yet been implemented in the 
existing literature to simulate occupant behaviour. Table 1 compares the different methods for 
integrating occupant behaviour into the dynamic thermal simulation. 
 

 

 

 

 



 

Method Ease of implementation Flexibility 

Direct modelling ++++ + 
Code customisation ++ ++ 
Customisation of Core code  + +++ 
Co-simulation ++ ++++ 
Python plugin +++ ++++ 

 
 
3 METHODOLOGY  

 
3.1 Case study and associated building model  

 
The case study “Ilet du Centre” is a 310 m² design office, part of a residential building, exposed 
to the humid tropical climate of Reunion Island, a French island in the Indian Ocean. The office 
has two floors divided into several open-plan areas, with several offices organised side by side. 
There is a meeting room, a server room and two individual offices. 
 
The 28 users can regulate temperature by generating crossed air flows, thanks to many manually 
adjustable and full-height louvre-type openings. They can also activate ceiling fans to reduce 
the temperature felt on the hottest days when air temperatures are high, and there is not enough 
natural airflow. There is no mechanical air conditioning system except for the server and 
meeting rooms.  
 
Using specific power sub-meters, ceiling fans and electrical outlets were recorded between 
2020 and 2022. In addition, air temperature and relative humidity, as well as the opening of 
windows using magnetic contacts, were monitored. The outdoor temperature, humidity, wind 
and solar radiation were recorded using a weather station. 
 
From these actual measured data, we could calibrate a thermal model of the case study and then 
validate it to overcome modelling errors unrelated to occupant behaviour. 
 

 

 
The calibration was performed manually using an iterative procedure in which various 
parameters are adjusted until the simulation results align with the measured data (Royapoor, 
2015). Validation occurs when this iterative process is finished, and normalised metrics are 
used to determine the level of real-world representation achieved by the model. 
 
Acceptable values for these metrics are provided by the American Society of Heating, 
Refrigerating, and Air-Conditioning Engineers Guideline 14 on Measurement and Energy 

Figure 1: BEM model, view of the North façade (left) and South 
façade (right) displayed without shading 

Table 1: Comparison of existing user behaviour integration 
methods in dynamic thermal simulation 



Demand (ASHRAE), the Federal Energy Management Program (Of EnergyEfficiency & 
Renewables Energy), and the International Performance Measurement and Verification 
Protocol recommended in France by ADEME and the Ministry of Sustainable Development. 
Hourly and monthly thresholds must be verified.  
 
However, these normalised threshold values were developed to validate building models based 
on measured energy data and do not enable objective comparisons when they relate to 
temperatures in °C or K. The existing literature offers limited guidance on validating building 
models using hourly temperature and humidity measurements (Baba, 2022), as in our case 
study, where indoor conditions were measured over a year using recording sensors. 
To address this gap, we supplemented the existing normalised metrics, expressed as 
percentages, with the calculation of Mean Bias Error (MBE) and Mean Absolute Deviation 
(MAD), expressed in degrees Celsius (as described by Baba (2022)). 
 
Following the method of O'Donavan et al. (O'Donavan, 2019) and to adjust the building 
parameters and avoid uncertainties related to user presence and their behaviours on controls, 
the model was calibrated during an unoccupied week (S1). Various adjustments on solar 
shading and thermal inertia were made during this week. 
 
Internal load data (including the power demand of electrical outlets, ceiling fans, and window 
opening schedules) measured over 2020 were then integrated into the latest calibrated version. 
From this point, hourly validation metrics were then calculated based on indoor temperature 
and humidity data over different occupied weeks: a summer week (S2), a winter week (S3) and 
a mid-season week (S4). Metrics were also calculated for each month of the year 2020. 
 
The hourly validation values obtained from indoor temperature data are:  
0.05 % ≤ NMBEh ≤ 5.3 % 
- 3.6% ≤ CV(RMSE)h ≤ 6.6 
- 1.8 ◦C ≤ MADh ≤ 2.8 ◦C 
- 0.01 ◦C ≤ MBEh ≤ 1.2 ◦C 
 
As the values obtained were below the normalised thresholds, the model was considered 
validated based on indoor temperature data. 
 
Once the building model was validated, the entries related to the use of ceiling fans and 
windows were modified in two ways: a case integrating the behaviour models developed using 
the PythonPlugin method and a case typically found in design office-type simulation (noted 
BE), where assumptions are made from expert knowledge. 
  

3.2 Implementing random forest behavioural models in EnergyPlus with the Python 

Plugin method (case noted as “RF”) 

 
This first case concerns the coupling of the Random Forest-based behavioural model with our 
BEM model. 
The primary objective of the implemented method (noted as “RF” for Random Forest (Payet, 
2022)) is to dynamically adjust the opening of windows and the use of ceiling fans in a thermal 
zone at each time step of an EnergyPlus simulation. This adjustment is based on data from the 
previous time step (Tn), ensuring the simulation accurately reflects real-time conditions. The 
process involves transmitting simulation outputs, such as indoor temperature and relative 
humidity, to the Python-coded behaviour models (one for windows and one for ceiling fans). 



These models then estimate new control levels, subsequently updated in EnergyPlus to simulate 
the next time step (Tn+1). 
 
For implementing the method on the EnergyPlus side, the Python module must be specified in 
the description file of the building model. On the Python side, a specific library allows us to 
create the link between the two software. 
 
One notable advantage of this method is its user-friendly interface. Designers can seamlessly 
integrate the method into EnergyPlus, launching the simulation tool without additional 
technical complexities. This approach simplifies the workflow for designers, allowing them to 
incorporate occupant behaviour dynamics into their simulations effectively. 
 
 
 

3.3 Comparison with a typical design office model (noted as “BE”) 

 
The second case we conducted is based on a more conventional way of designer model 
behaviours in BEM models. This second case is a reference point to compare with the newly 
implemented method results of 3.2. 
We conducted a simulation representing a typical design office scenario (noted as “BE”), where 
assumptions were formulated based on expert knowledge and no longer from the behavioural 

models developed in 3.2. 
We have tried to make assumptions that reflect the standard practices employed by field 
professionals. 
Concerning the ceiling fans, we assumed they were operated at full power during daytime hours 
in the summer period from January to the end of March, as well as during November and 
December. We estimated a reduced use of the ceiling fans during the transitional seasons (30% 
of use) and no use at all during the winter period from May to September. A power ratio of 5 
W/m² was applied to calculate their impact. 
 
Regarding the windows, we assumed the occupants would open them throughout the year 
during occupancy hours. 
 
4 RESULTS AND DISCUSSION  

 
The outputs of both the BE and RF simulations were analysed and compared with the actual 
data measured on “Ilet du Centre” in 2020. 
 

Figure 1: Simulation process with integration of the windows opening model  



In Figure 3, depicting the annual evolution of power demand for ceiling fans, it can be observed 
that the RF simulation more accurately replicates the triggering/extinction cycles of the ceiling 
fans compared to the BE simulation, which represents behaviours in the form of regular steps. 
 

 
 
 

Nevertheless, discrepancies emerge as the simulated power levels during January and March 
are often below the maximum values observed in the measurements. 
 
This can be attributed to the original nature of the behaviour models developed, which provide 
discrete classes rather than continuous values. To incorporate these models into the simulation, 
the results were transformed into single values by calculating the expected value using the 
median values of each class (as described in (Payet, 2022)). As a result, even if the highest class 
of ceiling fan use is estimated at a given time, the associated value will never reach the upper 
limit of that class. 

 
Various methods were tested to transform the original classes (such as calculating the expected 
value using the maximum and minimum values of the classes), but they yielded less accurate 
simulation results. 
 
However, during the mid-season and summer periods in November and December, the 
simulated data from RF aligned much more closely with the measured data. 
 
The use of the windows (Figure 4) simulated by RF follows the same trend as for the ceiling 
fans. It aligns more closely with the measured data compared to the results of the BE simulation. 
 

Figure 3: Comparison of the hourly average power level of the ceiling fans obtained 
by the BE method (in orange) and the coupling method (in green) with the actual 

measured data (in blue) for the year 2020 



 

 
The values of the various metrics calculated for each of the simulations are summarised in Table  

  
BE RF 

Calculation time 4 min 43s 2 h 21min 
Indoor temperature MBE (°C) -0,59 0,19 

NMBE (%) -2,4% 1,7% 
CV(RMSE) 

(%) 

5,7% 5,2% 

MAD (°C) 4,89 4,53 
RMSE (°C) 1,43 0,80 

Indoor humidity MBE (%) 3,03 3,42 
NMBE (%) 5,5% 4,9% 
CV(RMSE) 

(%) 

11,5% 8,6% 

MAD (%) 29,39 24,07 
RMSE(%) 7,95 5,95 

Use of windows (opening factor) MBE (%) -0,12 -0,01 
NMBE (%) -59,3% -5,0% 
CV(RMSE) 

(%) 

207,7% 45,8% 

MAD (%) 0,85 0,55 
RMSE(%) 0,43 0,10 

Power level of ceiling fans  MBE (W) -65,86 9,03 
NMBE (%) -142,8% 19,6% 
CV(RMSE) 

(%) 

480,2% 178,3% 

MAD (W) 774,80 661,54 
RMSE (W) 221,55 82,28 

 

Table 2: Comparison of the different simulations 

Figure 4: Comparison of the hourly open factor for the level of windows use obtained 
by the BE method (in orange) and the coupling method (in green) with the actual 

measured data (in blue) for the year 2020 



 
The obtained scores validate the observations made from the behaviour evolution curves, where 
the RF simulation outperforms the BE simulation. In the BE simulation, the average deviation 
(MBE) over the year is 66 W, while the RF simulation demonstrates a significantly lower 
deviation of only 9 W compared to the measured data. 
 
5 CONCLUSION 

 
We have introduced a novel approach to integrate user behaviour models into the EnergyPlus 
dynamic thermal simulation software using the recently developed PythonPlugin method. In 
this way, the use levels of louvres and ceiling fans are updated at each simulation time step of 
the simulation, based on data calculated at the previous time step in the BEM model. 
 
To determine the performance of this method, we tested it on the Ilet du Centre building model, 
which had been calibrated and validated using temperature and humidity data for 2020. This 
step was necessary to eliminate modelling errors unrelated to user behaviour as far as possible. 
Once the building model was successfully validated, user behaviour was incorporated through 
two methods: a simulation based on assumptions derived from expert knowledge and a 
simulation incorporating random forest-based behavioural models. 
 
A comparison between these two cases revealed that the method of coupling the building model 
with behavioural models allowed for more accurate replication of user actions compared to 
conventional practices employed by engineering and design firms. 
 
Finally, it is worth noting that despite the evident advantages of the proposed coupling method 
during the design phase, it does result in relatively long simulation times (over 2 hours in our 
case study), which may pose challenges for some projects. To mitigate this issue, we replaced 
the random forest technique with decision trees in the developed behavioural models, achieving 
satisfactory simulation results while reducing computational time. 
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