Performance evaluation of a displacement ventilation system for improving indoor air quality: a numerical study.

To evaluate the performance of a ventilation system, the local mean age of air has usually been used to estimate how efficiently fresh air is diffused to a desired location. However, this index alone is often not sufficient to assess the local air quality that is also associated with the property of the contaminant source in a ventilated space. Several new indices have been proposed recently, which enable the use of numerical simulation and appear to be appropriate scales for assessing mixing ventilation systems.

The effectiveness of displacement ventilation.

The effectiveness of ventilation related to the two primary tasks of ventilation, (I) the supply of fresh air, and (ii) removal of contaminants, is investigated. To allow a quantitative description of ventilation performance, several effectiveness numbers are discussed, and their dependence on air flow characteristics is explained. The effectiveness of displacement ventilation regarding renewal of the internal air population is analysed both experimentally and by means of Computation Fluid Dynamics simulations.

Evaluation of domestic ventilation system performance by COMIS model for Japanese conditions.

The purpose of this paper is to evaluate the performance of four kinds of ventilation systems from the point of view of air exchange, indoor air pollution, and space heating load under Japanese conditions by numerical simulation. TVOC and CO2 are selected to characterise the indoor air quality impact to residents. The results show that the equivalent leakage area has great influence on air movement.

Particle deposition from turbulent duct flow.

Particle deposition from turbulent duct flow is modelled and related to particle penetration of a ventilation system for a commercial office building. Three published turbulent deposition models capable of accommodating surface roughness are compared to experimental data and used to determine the penetration of 0.1 - 10 (m spherical particles through a sample duct run. Depending on the model employed, penetration fractions varied from 0.40-0.94 for 0.1 (m particles and 0.28-0.73 for 10 (m particles.

Influence of natural convection on the thermal properties of insulating porous medium with air cavity.

The influence of natural convection on the thermal properties of insulating porous medium with air cavity is studied. Here, the combined effect of air movement in the air cavity and the air movement inside the insulation is evaluated with the help of numerical analysis. The influence of total natural convection on the thermal properties of mineral wool, loose-fill insulation, insulation made of small and large polystyrene ball with air cavity are studied. The results are presented in terms of dimensionless numbers and the temperature distribution across the insulation.

Evaluation of temperature distributions and airflow patterns with three air diffusing systems in heating period.

This study is to investigate the characteristics of indoor air temperature distributions and airflow patterns with three air diffusing systems in heating period and to find the methods which can predict those indoor environmental conditions effectively. A series of measurements and corresponding numerical analysis were done. Selected three air diffusing systems for this study are as follows; 1) ceiling supply-ceiling exhaust, 2) ceiling supply-floor exhaust, 3) floor supply-ceiling exhaust.

Modelling methods of building process.

Investigation the modelling of the mathematical model of expediency of project decisions of building materials including the human safety the asbestos. The asbestos is most widely used in the production of roof cover-slate. At this moment the building materials in which composition the asbestos is used, become the actual ecological and economical problem of the country.

Measuring and modelling moisture and temperature beneath a suspended timber floor.

Temperature and relative humidity have been measured in a BRE test house to investigate the vapour content in the void beneath the timber floor. The void can be ventilated naturally or by means of a fan supplying or extracting air. The results show that air flow into and out of the void is stack dominated. The fan needs to supply or extract large volumes of air in order to disrupt this. Measurements and modelling have shown that the vapour content in the void is generally dependent on the level in external air, and that the contribution from the ground is usually small by comparison.

Numerical study on air-conditioned indoor airflow by dynamic large eddy simulation.

The aim of this research is to apply dynamic Large Eddy Simulation (LES) to predicting the complex turbulent flow field in an air-conditioned room. LES is a method to calculate turbulent flows where only the small-scale (subgrid-scale) motions are modelled and the large-scale (grid-scale) motions are computed directly. Recently, a dynamic subgrid-scale model has been developed that can evaluate a model coefficient dynamically. This paper presents a numerical simulation of LES with a dynamic mixed subgrid-scale model of a flow field in an air-conditioned room model.

Velocity and temperature prediction in an office room with furniture.

The paper presents results from the numerical modelling of the flow field in an existing ventilated office room. The numerical procedure is based on the 3D Reynolds equations closed by the k-e turbulence model and an equation for temperature solved by the finite volume method. The boundary conditions are set in accordance to detailed measurements of the velocity distribution in the air supply diffuser. The established complex flow conditions in the room, which are due to the presence of furniture and buoyancy forces, are presented.

Pages