

IEA EBC Annex 80 - Resilient Cooling

Philipp Stern

On behalf of Operating Agent Peter Holzer Institute of Building Research & Innovation Vienna, Austria

Federal Ministry
Republic of Austria
Climate Action, Environment
Energy, Mobility,
Innovation and Technology

10/05/2022

1

IEA EBC Annex 80

Series of webinars in cooperation with AIVC & venticool

- 1. Indicators to assess resilience of cooling in buildings [May 10, 15:00-16:15 CEST]
- 2. Future weather data and heatwaves [May 31, 16:00-17:15 CEST]
- 3. Examples of resilient cooling solutions [September 13, 15:00-16:15 CEST]
- 4. Case studies and policy recommendations [September 20, 15:00-16:15 CEST]

Today's Programm

Programme (Brussels time)

15:00	Introduction to Annex 80, AIVC & venticool Peter Holzer, OA EBC Annex 80, Institute of Building Research & Innovation, AT	15:40	Example of indicators and application to vulnerable buildings Abdelaziz Laouadi, NRC, CA
15:05	Definitions of resilient cooling of buildings & overview of indicators to assess resilience Peter Holzer, OA EBC Annex 80, Institute of Building Research & Innovation, AT	15:55	Questions and answers
15:25	Thermal resilient buildings: How to be quantified? A novel benchmarking framework and labelling metric Mohamed Hamdy, Associate Professor, NTNU, NO	16:15	End of the webinar

3

3

IEA EBC Annex 80

Part 1: Introduction to Annex 80 and State of the Project

Part 2: Definitions of resilient cooling of buildings & overview of indicators to assess resilience

IEA EBC Annex 80

Participants

36 institutions from 16 countries (Americas, Europe, Asia, Australia)

Guests (not part of EBC yet)

Mexico, **José Roberto Garcia Chavez**, Metropolitan Autonomous University Mexico City

India, Rajan Rawal, CEPT University, CARBSE

- 1. Preparation Phase (1 year)
- 2. Working Phase (3 years)
 June 2019 June 2022
- 3. Reporting Phase (1 year)
 June 2022 June 2023

5

5

Annex 80 Roadmap D7 Project Summary Report Q2 2023 D6 Policy Recommendations Design Guidelines D4 Field Study Report D2 Midterm Report SOTAR State-of-the-Art-Review D3 Technology Profiles Deadline 06/2020 2nd Expert Meeting 4th Expert Meeting 6th Expert Meeting 8th Expert Meeting 1st Expert Meeting 3rd Expert Meeting 5th Expert Meeting 7th Expert Meeting 24 Web Meetings 2019 2020 2021 2022 2023 WORKING PHASE REPORTING PHASE

Annex 80 Objectives

"Support a transition to an environment where **affordable low energy** and **low carbon** cooling systems are the mainstream and preferred solutions for cooling and overheating issues in buildings."

- A Assess benefits, potentials and performance indicators.

 Provide guidance on design, performance calculation and system integration.
- B Research towards implementation of emerging technologies. Extend boundaries of existing solutions.
- C Evaluate the real performance of resilient cooling solutions.
- D Develop recommendations for policy actions.

7

7

Annex Subtasks

The Annex is structured in four subtasks:

- A Fundamentals
- **B** Solutions
- C Field Studies
- **D** Policy Actions

Subtask A – Fundamentals

Objectives:

- Definition of Resilient Cooling in terms of buildings
- Definition of Key Performance Indicators
- Composition of Resilient Cooling Design and Operation Guidelines (deliverable)

9

9

Definition of Resilient Cooling

"Affordable low energy and low carbon cooling solutions, strengthening the ability of individuals and communities to withstand and prevent the thermal - and other - impacts of changes in global and local climates."

Groups of Technologies

- a. Reduce heat loads to people and indoor environments
- b. Remove sensible heat from indoor environments
- c. Enhance personal comfort apart from space cooling
- d. Remove latent heat from indoor environments

12

12

Technology Review - Subtask B

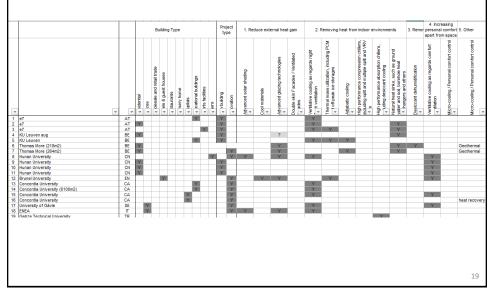
- A. Reduce heat load to indoor environments and people indoor
 - 1. Advanced solar shading/advanced glazing technologies
 - 2. Advanced cool materials
 - 3. Green roofs, roof pond, green facades, ventilated roofs and ventilated facades
 - 4. Thermal mass utilization including, PCM and off-peak ice storage
- B. Remove sensible heat from indoor environments
 - 1. Ventilative cooling
 - 2. Adiabatic/evaporative cooling
 - 3. Compression refrigeration
 - 4. Absorption refrigeration, including desiccant cooling
 - Natural heat sinks, such as ground water, borehole heat exchangers, ground labyrinths, earth tubes, sky radiative cooling,
 - 6. High temperature cooling system: Radiant cooling, chill beam
- C. Enhance personal comfort apart from space cooling
 - 1. Comfort ventilation (elevated air movement)
 - 2. Micro-cooling and personal comfort control
- D. Remove latent heat from indoor environments
 - 1. High performance dehumidification including desiccant humidification

Subtask B - Solutions

Objectives:

- Assessment of technologies in future weather scenarios
- Extension of range of resilient cooling systems
- Derivation of rules for successful implementation
- Composition of Technology Profile Sheets (deliverable)

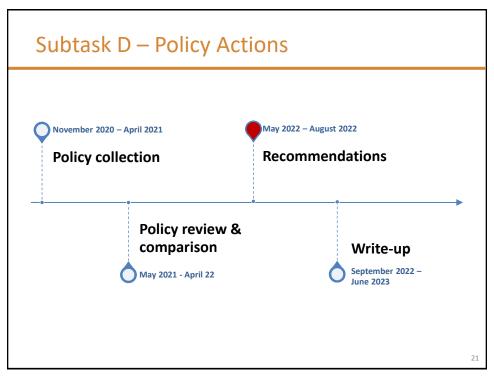
14


14

Subtask C – Field Studies

Objectives:

- Analysis and evaluation of implemented Resilient Cooling Technologies
- Identification of barriers and performance gap examination
- Composition of Field Studies Report (deliverable)



19

Subtask D – Policy Actions

Objectives:

- Support implementation and mainstreaming of Resilient Cooling Technologies
- Develop recommendations for regulatory policies (labelling programmes, building regulations, standards and compliance requirements)
- Report on recommendations for legislation and standards (deliverable)

D1	State-of-the-Art-Report	 Research community and associates Real Estate developers Urban planning experts Policy makers 	OA, STA, STB, STC, STD
D2	Midterm Report	 Research community and associates IEA and EBC Programme 	OA, STA, STB, STC, STD
D3	Technology Profiles	 Building component developers and manufacturers Architects and design agencies Engineering offices and consultants 	STB
D4	Field Studies	 Building component developers and manufacturers Architects and design agencies Engineering offices and consultants Real Estate developers 	STC
D5	Design and Operation Guidelines	 Architects and design agencies Engineering offices and consultants Real Estate developers 	STA, STB, STC
D6	Recommendations for policy actions, legislation and standards	 Policy makers Legal interest groups Experts involved in building energy performance standards and regulation 	STD
D7	Project Summary Report	 Research community and associates IEA and EBC Programme Real Estate developers Policy makers 	OA, STA, STB, STC, STD

Annex 80 Publications

- "Developing an understanding of resilient cooling: a socio-technical approach City and Environment Interactions" (Wendy Miller et al; published in Elsevier City and Environment 2021) https://doi.org/10.1016/j.cacint.2021.100065
- "Resilient cooling of buildings to protect against heat waves and power outages: key concepts and definition" (Shady Attia et al; published in Energy and Buildings 2021) https://doi.org/10.1016/j.enbuild.2021.110869
- "Resilient cooling strategies a critical review and qualitative assessment" (Chen Zhang et al; published in Energy and Buildings 2021) https://doi.org/10.1016/j.enbuild.2021.111312
- Report of Thermal Conditions Task Group "Framework to evaluate the resilience of different cooling technologies" (Shady Attia et al; published) http://dx.doi.org/10.13140/RG.2.2.33998.59208

