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ABSTRACT 

This paper discusses the use of a building thermal analysis methodology in which the 
stochastic nature of the external climates and randomness of physical parameters are 
considered. Methods of thermal calculation which give the density function of the room air 
temperature and heating and/or cooling loads are proposed. Weather data is modeled by linear 
time series models with white noises as inputs, which take into account the auto-correlations 
and cross-correlations of the raw climatic data. The basic equations are the simultaneous 
ordinary difference (or differential) equations, that is, the state space equations. A set of 
moment equations are derived from these state space equations and solved to provide with the 
mean and standard deviation in room air temperature and heating load. 

Particularly, the impact of random infiltration rate and thermophysical properties (here, 
thermal conductivity of the wall and heat capacity of the room) on room temperature and 
heating load are emphasized in this paper. Furthermore, methods of analysis that give the 
influence of the random variation in internal heat generation and the optimal starting time of 
an HVAC system in intermittent heating, are outlined. Simple example calculations are shown 
for illustrations. 

For the analysis and design of a thermal system, this method provides a rational and 
convenient way of handling uncertainties caused by the degree of imprecision of construction 
works (workmanship) and the variation of the way in which the room is used. 
 
1. INTRODUCTION 

Environmental problems have become some of the most serious and urgent problems in 
our era. Energy consumption by industries and buildings is partly responsible for this 
problem. Thus, buildings and HVAC systems must be designed reasonably well enough so 
that energy can be used effectively. 

Exact prediction of the heating and cooling load, proper sizing and the optimal control 
of the HVAC systems are essential and crucial to minimize energy consumption. Integrated 
Part Load Values (IPLV, ASHRAE Standard 90.1 1989) are one of the typical examples in 
this direction. 

To correct size an air-conditioning system, information on maximum heating/cooling 
load is needed. Furthermore, in order to save on operating costs or reduce energy 
consumption, the system must be operated at or near the optimum state, thus keeping the 
efficiency of the air-conditioning system high. Therefore, to optimize building and air-
conditioning system design, it is important to have knowledge of not only the maximum 
heating load but also its distribution. 



The thermal performance of a building is a function of solar radiation, outdoor 
temperature and humidity, among other input parameters. Since external climatic conditions 
fluctuate randomly, it is necessary to take the randomness of the external variables into 
account when determining the maximum load and the load distribution. In other words, 
external climate must be regarded as a stochastic time series (Terai et al. 1978; Nakazawa et 
al. 1983; Madsen 1985; Haghighat et al. 1987; Hokoi and Matsumoto 1988; Jiang and Hong 
1993). 

From this point of view, a stochastic method of thermal analysis was proposed (Hokoi 
and Matsumoto 1988; Hokoi, et al. 1990 a, b) which gives the maximum and the distribution 
of heating/cooling loads under intermittent heating. Analysis considering non-linear 
properties of HVAC systems, and the influence of the non-Gaussianity of the external 
climates have also been investigated in other studies (Hokoi and Matsumoto 1993; Hokoi and 
Matsumoto 1995). In these analyses, physical parameters such as air infiltration rate and 
thermal properties were dealt with as constant. 

This paper discusses the use of a building thermal analysis methodology in which the 
randomness of physical parameters is considered. The randomness of the physical parameters 
should be examined, partly because every house constructed even under the same conditions 
may have different parametric values depending on the degree of imprecision in 
workmanship, and partly because physical properties, such as thermal conductivity and 
thermal capacity, change over time depending on the way in which the room is used. Under 
these circumstances, these properties should be regarded as random and thus investigated 
from a standpoint of assembly average. This result makes possible thermal design that takes 
into account the influences borne by the degree of imprecision in construction work and the 
variation in the way in which the room is used (Nielsen 1995). 
 
2. INFLUENCE OF RANDOM THERMAL PROPERTIES 

In this section, the stochastic characteristics of room air temperature and heating load 
are investigated when the thermal conductivity of the walls and the thermal capacity of the 
room are random variables. 
 
2-1 Method of Analysis 

There are several methods that can deal with the random nature of parameters such as 
the thermal properties of the walls. In one of them, random parameters are regarded as new 
state variables (Soong 1973; Terai et al. 1978). As can be seen later in this paper (for 
example, Equation (28) in section 3-3), however, the terms with the higher moments appear in 
a complicated manner in moment equations. Thus, special consideration or approximation is 
required to resolve this problem. 

In this study, the following method based on a linear system was adopted for its 
easiness and simplicity. Let f(x, a) be the joint density function of the state vector x and 
parameter vector a, wherein the parameter vector a and the external climates are assumed 
random. The state vector x represents, for example, a room air temperature and wall 
temperatures, while the parameter vector a represents the thermal conductivity of the walls 
and heat capacity of the room. Thus, the probability density function of x, f(x) can be 
calculated as follows, when the external climates changes randomly and the parameter a is 
also random. 

The following relationship, 
f(x, a) = f (x | a)  f (a)      (1) 

is valid between f (x, a) and f(x | a), where f (x | a) is the conditional density function of x 
given a. 



Thus, 
f (x) = I f(x, a)da = I f(x * a)f(a)da     (2) 

In Equation (2), the probability density function of parameter a, f(a), is given. Furthermore, 
since f(x * a) is the density function of x under the condition that a is given or constant, it can 
be easily obtained by the linear calculation described in the next section 2-2. Since this 
probability distribution is Gaussian, f(x) can be computed without difficulty by making use of 
Equation (2). 
 
2-2 Stochastic Method of Thermal Analysis 

Since the procedures are described in detail by Hokoi et al. (1990a), the results are 
described briefly for the present purpose in what follows. 

We shall examine the means and variances of the cooling load and room air temperature 
caused by randomly varying solar radiation and outdoor temperature. Since the thermal 
system treated here is linear and the stochastic distributions of the random components of the 
solar radiation and the outdoor temperature are normal (Hokoi et al. 1990b), the distribution 
of the cooling load and room air temperature are normal distributions as well (Kwakernaak 
and Sivan 1972). Thus, it is sufficient to have their means and variances. 
 
Solar Radiation and Outdoor TemperatureRadiation and Outdoor Temperatureand 
Outdoor Temperature 

We proposed a statistical method to generate synthetic weather data, outdoor 
temperature and solar radiation, taking into account the correlation (Hokoi et al. 1990b). The 
solar radiation, J(j), and the outdoor temperature, To(j), are given by the following equations. 

J(j) = σj(j)JN(j) + Jp(j)        (3) 
To(j) = ToN(j) + Top(j)        (4) 

wherein; 
Jp(j),  Top(j) = deterministic components of solar radiation and outdoor temperature, 
respectively (period 24 h) 
JN(j),  ToN(j) = random components of solar radiation and outdoor temperature, 

respectively 
σj(j) = diurnal standard deviation of solar radiation (deterministic function with period 

24 h) j is the discrete time and the time increment ∆t is 1 h. Equations (3) and >4) mean that 
the solar radiation and the outdoor temperature are composed of the deterministic components 
Jp(j), Top(j), and the random components JN(j) and To  N(j). 

The random components JN(j) and To  N(j) could be generally expressed by the ARMA 
and ARMAX models (ARMA model with exogenous term) (Box and Jenkins 1976; Hittle 
and Pederson 1981; Hokoi et al. 1990b; Yoshida and Terai 1992). For summer in Tokyo 
(1962), these equations are: 

JN(j) = Zj = a1Zj-1 + a2Zj-2 + ej + b1ej-1 + b2ej-2 + b3ej-3  (5) 
 

ToN(j) = Yj = c1Yj-1 + c2Yj-2 + d0σJ(j)Zj + d1σJ(j-1)Zj-1 + d2σJ(j-2)Zj-2 + eNj  
+ g1eNj-1 + g2eNj-2        (6) 

 
wherein, ej and eNj are mutually independent, discrete white noises with 0 mean and standard 
deviations σe and σeN, respectively. The derivation of Equations (5) and (6) and the values of 
the coefficients are given in Hokoi et al. (1990 b). 

The ARMA (3,3) model of solar radiation and the ARMAX (2,3,2) model of outdoor 
temperature were confirmed to be satisfactory for characterizing actual weather data. Thus, 
these models, instead of actual weather data, can be used as inputs for energy analysis. 



State Equations (Discretization) 
The equations for heat flow in the wall, room air temperature and heat input used in this 

paper are described in Appendix 1 as Equations (A-3) to (A-7). These equations are 
discretized with respect to coordinates and time by explicit finite difference method (refer to 
Equation (16)). The discretized equation is as follows (Hokoi et al. 1990a). 

Tj+1 = [a]jTj + [b]jfj        (7) 
Wherein : 

Tj = [Tw1
jY, Twi

jY, TwN
j, TR

j, Qj]T

fj = [To
j, Jj, Ts

j]T

[a]j, [b]j = matrices with (N+2) x (N+2), (N+2) x 3 elements, respectively. 
Q = heat input by air-conditioning system 
TR = room air temperature 
TS = target temperature 
Twi = wall temperature of node point i 
N = number of node points 
Making use of the vector notation, 
Xj = [Zj, Zj-1, Zj-2, ej-1, ej-2, ej-3, Yj, Yj-1, eNj-1, eNj-2, Tw1

jY, Twi
jY, TwN

j, TR
j, Qj]T

= [xi
j]T (i = 1, Y, N+12)       (8) 

wherein the superscript T denotes transposition, Equations (3) through (7) are rewritten as 
follows. 

Xj+1 = [A]jXj + [B]jFj + [C]jej

Wherein: 
Fj = [Top

j, Jp
j, TS

j]T

ej = [ej, eNj]T

[A]j, [B]j, [C]j = matrix with M x M, M x 3, M x 2 elements, respectively (M=N+12). 
The vectors Xj, Fj,  and ej represent the state vector, the deterministic (average) components 
of the outdoor temperature and solar radiation, and the random components of them, 
respectively. 
 
Derivation of Moment Equationsof Moment EquationsMoment Equations 
Means 

By averaging Equation (9), we get: 
E[Xj+1] = [A]jE[Xj] + [B]jFj     (10) 

where, E[C] represents the expectation operation. 
Variance B Covariance functionsB Covariance functionsB Covariance functions 

According to Kwakernaak and Sivan (1972), the variance function of Xj is: 
Rj+1 = [A]jRj[A]jT + [C] jVj[C]jT     (11) 

where, Rj and Vj are variance matrices of Xj and the white noise vector ej, respectively. It is 
sufficient to solve Equations (10) and (11) under the appropriate initial condition. These 
equations can be solved by simple mathematical operations. By making use of the result, the 
conditional density function f(x*a) can be obtained. 
 
2-3 Example Calculation 

In order to illustrate the applicability of this method, a simple room construction is used 
as an example. It is not intended to be typical of real buildings but rather to provide examples 
showing the effectiveness of the calculation procedure. 
(1) Data used in calculation 

The characteristics of the building calculated are as follows. 
Room dimensions = 2.5 x 8.0 x 5.0 [m;], V = 100 [m;], n = 1/3600 [1/s], Q0=0[W], Sw = 



140 [m5], wall thickness lw = 0.12[m], aw = 0.69 x 10-7 [m5/s], 
Sg = 5 [m5], glass thickness lg = 0.003[m], λg = 0.744 [W/mCK], Kg = 6.47 [W/m5CK], 
As = 0.6[-], τg = 0.85 [-], αo = 23.3 [W/m5CK], αi = 9.3 [W/m5CK]. 

This room has a south-facing glazed window. The occupancy period is from 09:00 to 18:00 
and the air-conditioning is started at 08:00. The target temperature is set at 26EC. Figures 1 
and 2 show the mean and standard deviation of the external temperature and solar radiation. 

The density function of the thermal conductivity λw is assumed to have a mean and a 
standard deviation of 1.63 W/mK and 0.35 W/mK, while that of the heat capacity cγ 
6290J/m;K and 1260 J/m;K, respectively. The mean value of the thermal conductivity, 1.63 
W/mK, is frequently used as the standard value for concrete in thermal design. The minimum 
value of the heat capacity, 1260 J/m;K, is that of the air, while the mean value of 6290 J/m;K 
is adopted to represent the heat capacity equivalent to the wooden furniture, with a volume of 
1 m;, in the room. 
Results and discussion 

Figures 3 and 4 show typical examples of the mean and standard deviation in cooling 
load and room air temperature in the case of λw = .63 W/mK and cγ = 1260 J/m;K (without 
furniture). The room air temperature in the occupancy period is kept nearly constant at a set 
point temperature of 26EC. The standard deviation in heat input is about 30% of the mean 
value, and it can be said that the variance has a great influence on determining the capacity of 
the air-conditioning system. With this information (the values of the mean and standard 
deviation), one can design an air-conditioning system with different levels of confidence. 

Figures 5 and 7 show the probability density functions of the room air temperature and 
cooling load at 12:00, corresponding to various values of thermal conductivity and capacity, 
respectively.  

When the value of the thermal conductivity is varied from 0.6 W/mK to 2.4 W/mK and 
the heat capacity is fixed at 1260 J/m;K (Figure 5, upper one), the mean cooling increases 
from 4.60 kW to 7.73 kW, while the standard deviation varies from 1.45 kW to 2.51 kW. This 
increase in average cooling load is causes by the increase in heat flow through the external 
walls, since room air temperature is kept almost constant at 26EC. Needless to say, the 
scattering of the load indicated by the standard deviation becomes larger with thermal 
conductivity. 

Figure 6 is the density function of the cooling load, considering the probability density 
of the thermal conductivity, that is, the result obtained by integrating the results shown in 
Figure 5 based on Equation (2). The cooling load varies in a wide range from 1 kW to 12 kW 
with a mean value of about 6.40 kW. 

The mean value of the room temperature is about 26.3EC (Figure 5, lower one), slightly 
higher than the set point value. This is caused by integral control, where the room temperature 
becomes higher than the set point value for a while after the start of the air-conditioning as 
shown in Figure 3. The standard deviation in room air temperature is very small. 

Figure 7 shows the result when the heat capacity is varied from 1260 J/m;K to 12600 
J/m;K. There is very little variation in average cooling load, ranging from 6.59 kW to 6.66 
kW. The standard deviation remains almost constant at 2.14 kW, thus the influence of heat 
capacity on load is negligible. This is because the effect of thermal capacity or thermal 
storage almost disappears at time 12:00 since the air-conditioning starts at 8:00. In fact, the 
mean value of the cooling load at 9:00 in the morning ranges from 1.45 kW to 1.59 kW, about 
a 10% change, which indicates the rather large influence of the heat capacity. The density 
function of the cooling load, taking into account the probability density of the heat capacity, 
is omitted because it is almost the same as Figure 7. 

Thus far, a poorly insulated simple room construction has been used as an example in 



order to illustrate the applicability of the proposed method and to show clearly the influence 
of the random variation of thermal conductivity. Several example calculations, wherein more 
realistic room models with insulation are dealt with, are reported elsewhere (Hokoi et al. 1990 
a). Figure 8 shows the results from that paper, where the room is insulated by a 30mm-thick 
fiberglass inside or outside of the exterior walls. It can be seen that both of the means and 
standard deviations of the cooling load are very small when compared to those in the case 
without the insulation. Outer insulation operates well to decrease the standard deviation in the 
room temperature during the unoccupied period. The influence of the randomness of the 
thermal conductivity on the cooling load may be negligible in the case with the insulation, 
although the ratio of the random component to the deterministic component is not small.
 
3. INFLUENCE OF RANDOM INFILTRATION RATE 

In this section, the method of analysis giving the stochastic nature of the heating load 
and room temperature are shown when the infiltration rate changes randomly (Haghighat et 
al. 1987). Here, formulation for a continuous system is given. 
 
3-1 Fundamental Equations 
(1) Outdoor Temperature 

Input outdoor temperature, To(t), is assumed to change as follows (Hokoi and 
Matsumoto 1988). 

To(t) = a0 + 3 ( ai cosωit + bi sinωit) + σ(t)Z(t) = TP(t) + σ(t)Z(t)  (12) 
Z(t)+d1Z(t)+d2Z(t) = g1(t)        (13) 

Wherein the upper @ means time derivative and : 
σ(t) = deterministic cyclic function with a period of 24h, t=time [s], 
ωi = angular velocity [1/s], a0, ai, bi = constants. 

The intensity of the white noise g1 is D1. Equations (12) and (13) mean that the outdoor 
temperature is composed of the deterministic component TP(t) and the random component 
(Z(t)) which is excited by the white noise g1(t). These equations can be regarded as 
continuous versions of Equations (3) to (6). 
(2) Wall and room temperature and heat input 

For simplicity reasons, the room consisted of only a single layer wall, and a window is 
dealt with without any loss of generality. Details are given in Appendix 1. 
(3) Infiltration rate n 

Although infiltration rate is determined by the external wind velocity, temperature 
difference between the room and the outdoor air, etc.; it is modelled as follows. 

n(t) = n0(t)[1 + σn(t)n'(t)]        (14) 
Wherein n0(t) is the average infiltration rate, and σn(t) is the normalized standard deviation. 
Both functions are deterministic. The n'(t) denotes a random component of the infiltration 
rate. 
Equation (14) is used in this study on the assumption that the infiltration is mainly determined 
by wind velocity, and that the wind velocity is usually not correlated with other climatic 
conditions. 

The random component n'(t) is assumed to be given by the following equation. 
n1(t) = a'n'(t) + g2(t)          (15) 

Wherein g2(t) is a Gaussian white noise independent of g1(t) with intensity D2. 
3-2 State Space Expression 
(1) Discretization of walls 

By discretization the heat equations (A-3) to (A-5) with respect to position, the 
following equations are obtained. 



Tw1 = 2s[Tw2 - Tw1 - Twi + P0 (T0 - Tw1)] 
Twi = s(Twi+1 - 2Twi + Twi-1) (i=2, ..., N-1)      (16) 
TwN = 2s[TwN-1 - TwN - Pi(TwN - TR)] 

Wherein, 
s = a/(Λx)2, P0 = α0Λ x/λw, Pi = αiΛx/λw

In what follows, the results when the wall is discretized into three masses are shown for 
illustration.  By setting, 

X = [x1, x2, x3, x4, x5, x6, x7, x8]T = [Z, Z, Tw1, Tw2, Tw3, TR, Q, n']T  (17) 
Equations (12), (13), (A-6), (A-7) and (14) -(16) are expressed as follows. 

x1 x2             00
 g1

x2 -d1x2 - d2x1            10
 g2

x3 2s{x4 - x3 + P0[TP(t) + σ(t)x1 - x3]}        00 
x4 = s(x5 - 2x4 + x3)          + 00 
x5 2s[x4 - x5 - Pi (x5 - x6]          00 
x6 )x-x+Tn+V)/(c]x+)x-x+(TKS+)x-x(s[ 61P80761Pgg65iw σσγσα xn  00 
x7 A1G1(t)(Ts - x6) - A2G2(t)x7         00 
x8 a'x8             01  
              (18) 

 
 
Wherein, 

Vnc+KS=KS 0gggg γ            (19) 
Thus, the Equation (18) is expressed as the following Ito's Equation (Soong 1973). 

dX(t) = f[X(t), t]dt + G @ dB(t)         (20) 
Wherein f[X(t), t] is the first term, and G and dB(t) are the matrix and the vector in the second 
term of Equation (18), respectively. This equation corresponds to Equation (9)  in discrete-
time formulation. 
 
 
3-3 Derivation of Moment Equations 
(1) Average (Mean) E[xi(t)] 

By averaging Equation (20) (Equation [18], the equations for the average can be 
obtained. 
Some of them, for example, are as follows. 

])xxE[-]xxE[+XT(n+V)/(c]X+)X-X+T(KS+)X-X(S[=X 86818Pn0761Pgg65iw6 σσγσα
 
 

X7=A1G1(t)(Ts - X6) - A2G2(t)X7         (21) 
Wherein, 

Xi = E[xi]            (22) 
(2) Variance and covariance functions E[xkx1] 

For variable X(t), which satisfies Equation (20), an arbitrary function h[X(t), t] satisfies 
the following relation (Soong 1973). 

E[h] = 3 E[fj M h/Mxj] + 3 E(GDGT)ij M2h/M xi M xj] + E[M h/M t]   (23) 
Wherein fj is the j-th component of f, and D is the variance matrix of dB(t). By setting h=xkxi, 
the following relations are obtained (Hokoi and Matsumoto 1988). 



 
⎧δ h/δxj = δkj x1 + δlj xk          (24) 
⎨δ2 h/δxi M xj = δkj δli + δlj δki         (25) 
⎩δ h/δt = 0            (26) 

Wherein δij is the Kronecker's delta, that is, δij = 1 when i = j, and 0 otherwise. By inserting 
these relations into Equation (23), we obtain the following equation. 

E[xkxl] = 3E[fj (δkj x1 + δlj xk)] + 3 [(GDGT)
ij(δkj δli + δlj δki)]   (27) 

The examples of this equation are as follows : 
E[x2

2] = - 2d1E[x2
2] - 2d2E[x1x2] + D1

E[x6
2] = 2@{Sw αi (E[x5x6]-E[x6

2])+ KS gg (TPE[x6]+σ E[x1x6]-E[x6
2])+E[x6x7]}/(cγV) 

     + 2n0 σn (TPE[x6x8] + σ E[x1x6x8] - E[x6
2x8])     (28) 

By solving Equations (21) and (28) under appropriate initial conditions, the mean and the 
variances can be obtained. As for several terms in Equation (28) with higher moments than 
the second order, the approximate method shown in the reference (Hokoi and Matsumoto 
1993) can be used. 
 
3-4 Numerical Example 
(1) Numerical method and computational conditions 

To illustrate this method, a simple example where the random component can be 
expressed as a white noise, that is : 
 n(t) = n0(t)[1 + σn () g2 (t)]         (29) 
was calculated. Other numerics used are as follows. 

d1=1.6, d2=0.05, D1=0.46, n0=1/3600[1/s], σn(t)=1, 
λw=1.63[W/m@K],  cγ=1260[J/m3@K], A1=3000, A2=100, ∆x=0.06[m] 

The target temperature was set at 22EC. Other constants were set at the same values given in 
section 2-3. As the numerical method, the Runge-Kutta-Gill method was adopted. The time 
increment, ∆t, was set as 0.01[h]. 
 
(2) Results and discussion 

Room air temperature and heating load are shown in Figures 9 and 10 for the cases of 
D2=0.0 and 1.0, where D2 is an intensity of g2. The solid and broken lines denote the mean 
and mean " standard deviations, respectively. 

While the standard deviation in room temperature during the occupancy period is very 
small in the case of the deterministic rate (Figure 9, D2 = 0), it changes significantly, to the 
contrary, when the infiltration rate is random. This is because heat supply cannot suppress the 
sudden change caused by the instantantenous change in infiltration rate. 
 
4. RANDOM INTERNAL HEAT GENERATION 

Thus far, the internal heat generation Q0 has been regarded as deterministic. However, 
this quantity fluctuates due to the changes in the number of occupants and the use of lighting 
and office automated equipment. This has to be dealt with as changing deterministically on 
the average while also changing stochastically depending on the time of work and the way in 
which work is done. In order to make this clear, measured data in an actual situation must be 
obtained and examined. Here, it is assumed to be expressed in the same manner as the 
external climate, as follows. 

Q0(t) = Q0m (t) + σQ(t)w(t)          (30) 
Wherein the mean Q0m(t) denotes the number of occupants which changes deterministically 
depending on time of work, and σQ(t) is its standard deviation. Heat generated from 



illumination and electric appliances is assumed to be proportional to the number of the 
occupants. If some of them are not proportional but constant, they can be included into Q0m(t). 

The random component w(t) may be approximately expressed, for example, by the 
following ARMA model. 

w(t) = wj = a1'wj-1 + a2'w1-2 + ... + e"j + e"j-2 + ...     (31) 
By making use of these equations, the same method of analysis as that in section 2 can be 
used. 
 
5. RANDOM AIR-CONDITIONING STARTING AND STOPPING TIMES 

In sections 2 and 3, the room was air-conditioned during a predetermined time, that is, 
from 8:00 tot 18:00. However, longer pre-heating or pre-cooling may be required if the 
outdoor temperature during the previous night was very low or high. In such case, HVAC 
systems should be operated depending on, for example, the external temperature. These 
problems may also be dealt with by assuming the starting and stopping times as random 
variables. That is, it may be sufficient to regard the parameters, which prescribe the starting 
and stopping times in the step functions G1(t) and G2(t) for controlling heat input (Equation 
(A-7)), as random. The methods of analysis described below, however, seem much better and 
simpler. 
 
5-1 Air-conditioning Stopping Time 

It seems reasonable to adopt as a stopping time for the air-conditioning, the time when 
the room is unoccupied or the internal heat generation explained in section 4 becomes 0 or 
very close to 0. This can be realized by multiplying a certain function of Q0 (typically a step 
function), G3(Q0, t), by the heat generation Q(t). 
 
5-2 Air-conditioning Starting Time 

The starting time for the air-conditioning has usually been determined by office hours 
and HVAC system management, in Japan. However, as shown in the reference (Hokoi and 
Matsomoto 1991), the optimal strategy of preheating, taking thermal storage into account, is 
to lower the capacity of the HVAC system and operating cost, at the same time, by making 
use of cheap nighttime electricity. Therefore, this problem should be formulated as how to 
optimize preheating time, and thus should include optimal control of the HVAC systems 
under random external climates and fluctuating internal heat generation. 

The solution of the optimal control theory indicates that the room must be air-
conditioned all day long although the heat input may be very little at some time such as 
midnight (Hokoi and Matsumoto 1991). Therefore, the starting time will be determined as a 
compromize between the optimal solution and other factors such as high nighttime labor cost. 
 
6. CONCLUSIONS 

This paper discusses the use of a building thermal analysis methodology in which the 
stochastic nature of the external climates and randomness of physical parameters are 
considered. 

The impact of the random infiltration rate and thermophysical properties (here, the 
thermal conductivity of the wall and the heat capacity of the room) on room temperature and 
cooling load are investigated in sections 2 and 3. 

Furthermore in sections 4 and 5, the methods of analysis that give the influence of the 
random variation of the internal heat generation and the optimal starting and stopping time of 
an HVAC system in an intermittent heating, are outlined. 

The probability density function of temperature and heating load, thus the maximum 
load also, can be obtained by making use of these results. Therefore, it is possible to correctly 



size an air-conditioning system with a certain degree of confidence, which should be decided 
by designers or owners. For the analysis and design of a thermal system, this method provides 
a rational and convenient way of handling uncertainties caused by the degree of imprecision 
in construction work (workmanship) and the variation in the way in which the room is used. 
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NOMENCLATURE 

aw = thermal diffusivity of the wall [m2/s] 
A1, A2 = constants 
As = absorptivity of the exterior surface of the wall to the solar radiation [-] 
[a]j, [b]j = matrices with (N+2) x (N+2), (N+2) x 3 elements, respectively 
[A]j, [B]j, [C]j = matrices with M x M, M x 3, M x 2 elements, respectively 

(M=N +12) 
cγ = volumetric heat capacity of the room [J/m3@K] 
D1, D2 = intensities of white noises g1(t), g2(t), respectively 
ej, e'j = mutually independent discrete white noises with 0 mean and standard 

deviations σe and σe', respectively 
E[@] = expectation operation 
fj : [To

j, Jj, Ts
j]T

Jp(j) = deterministic component of the solar radiation [W/m2] 
J'(j) = random component of the solar radiation [W/m2] 
j = discrete time 
Kg = overall heat transfer coefficient of the window [W/m2@K] 
lg = thickness of glass [m] 
lw = thickness of wall [m] 
n = air change rate [1/s] 
N = number of node points 
Po = αoΛx/λw, Pi = αi∆x/λw
Q0 = internal heat source generated by human body, illumination, etc. [W] 
Q = heat input by the air-conditioning system [W] 
Rj = variance matrix of Xj

s = aw/(Λx)2

Sw = area of wall [m2] 
Sg = area of window [m2] 
t = time (s) 
Λt = time increment (= 1 h) 
Top(j) = deterministic component of the outdoor temperature [EC] 
To'(j) = random component of the outdoor temperature [EC] 
TR = room air temperature [EC] 
Ts = target temperature [EC] 
Tw = wall temperature [EC] 
Twi = wall temperature of i th node point [EC] 
V = room volume [m3] 
V[@] = variance 
Vj = variance matrix of white noise vector ej

x = coordinate [m] 
∆x = mesh increment [m] 



@ = time derivative 
 
Greek Letters 

αo = exterior film coefficient [W/m2@K] 
αi = interior film coefficient [W/m2@K] 
λg, λw = thermal conductivities of glazing and wall, respectively [W/m@K] 
g1(t), g2(t) = Gaussian white noises 
σj(j) = diurnal standard deviation of solar radiation [W/m2] 
τg = transmittance of glazing to solar radiation [-] 
ωi = angular velocity [1/s] 

 
Subscripts, Superscripts 

g = glass, i = i th node point, 
j = time, that is, t = j∆t, 
T = transpose, w : wall. 
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Appendix 1 Fundamental Equations for Thermal Analysis 
(1) Outdoor Temperature 

Input outdoor temperature, To(t), is assumed to change as follows. 
To(t) = a0 + 3(aicosωit)+bisinωit)+σ(t)Z(t)= TP(t)+σ(t)Z(t)   (12) (A-1) 
Z(t)+d1Z5TE+D2Z(t)=g1(t)        (13) (A-2) 

 
(2) Wall and room 

A room consisted of a single layer wall and a window is dealt with, and the floor is 
assumed as adiabatic. 

Tw = aw@M2Tw/Mx2           (A-3) 
αo(T0 - Tw) = - λw @ MTw/M x         (A-4) 
αi(Tw - TR) = - λw @ MTw/M x         (A-5) 

Wherein, 
Tw=wall temperature [EC], To=outdoor temperature [EC], x=coordinate [m] 
aw = thermal diffusivity [m2/s], λw= thermal conductivity of wall [W/m@ K], 
TR = room air temperature [EC], 
αi, αo = inner and outer coefficients of heat transfer [W.m2 @ K]. 

 
(3) Room air temperature 

The equation for the room air temperature TR is as follows. 
cγ V @ TR = Swαi (TwN - TR) + (SgKg + cγ Vn)(To - TR) + Q   (A-6) 

Wherein; 
cγ = volumetric heat capacity of room [J/m3@ K], V = room volume [m3], 
Sw = surface area of wall [m2], Sg = surface area of glazing [m2], 
Kg = U value of window [W.m2 @ K], n = infiltration rate [1/s], 
Q(t) = heat supply [W]. 

 
(4) Heat input (supply) 



The heat input under intermittent heating is given approximately by the following time 
variant equation. 

Q = A1G1(t)(TS - TR) - A2G2(t)Q         (A-7) 
Wherein, 

A1, A2 = constants, G1, G2 = unit step functions, TS = target temperature [EC]. 
 
(5) Infiltration rate n 

An infiltration rate is modelled as follows. 
n(t) = n0(t)[1 + σn (t)n'(t)]        (14) (A-8) 

Wherein n0(t) is the average infiltration rate, and σn (t) is the normalized standard deviation. 
The random component n'(t) is assumed to be given by the following equation. 

n'(t) = a'n'(t) + g2(t)        (15) (A-9) 
Wherein g2(t) is a Gaussian white noise independent of g1(t). 
 



Figure 1 Mean and standard deviation of solar radiation 
Figure 2 Mean and standard deviation of outdoor temperature 
 
 
 



 

 
 
Figure 3 Mean and standard deviation of space cooling load 
Figure 4 Mean and standard deviation of room air temperature 



 
 

Figure 5 Relationship between thermal conductivity and probability density functions of 
cooling load and room air temperature. 
Figure 6 Probability density function of cooling load under random thermal conductivity 



 
 

 
 
Figure 7 Relationship between heat capacity and probability density functions of cooling load 



and room air temperature 
Figure 8 Mean and standard deviation of space cooling load (Effect of insulation) 
 
 

Figure 9 Means and standard deviations of space heating load, outdoor and room air 



temperatures under deterministic infiltration rate 
Figure 10 Means and standard deviations of space heating load, outdoor and room air 
temperatures under random infiltration rate 


