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 Abstract 
 

An experimental setup of a water based central heating system has been used to 
measure the thermo dynamical behavior of a thermostatic valve in order to identify an 
adequate mathematical model. 

The identification of the thermostatic valve is based on nonlinear Grey-Box modelling. 
Grey-Box modelling is characterized by the fact that, in the modelling procedure, partial 
known information from physics about a system is combined with information from data. The 
parameters of the model are estimated by a Maximum Likelihood Method. In the paper an 
overview of this modelling procedure is given. The estimated model of the applied 
thermostatic valve is a first order differential equation with a static non-linear output 
description. 

The presented results constitute a part of a research project, where the primary goal is to 
establish a collection of dynamic models for the components of water based central heating 
systems in single family houses. 
 
Keywords: Identification; thermodynamics; nonlinear modelling; stochastic differential 
equations; constrained parameter estimation. 
 
1 Introduction 
 
During the last couple of decades the energy consumption of buildings has been reduced, 
mainly motivated by increasing energy costs. The reduction has been accomplished through 
improved building constructions, more insulation and introduction of local room temperature 
controllers. In the case of water based heating system, the introduction of thermostatic valves 
and pumps has increased the thermal comfort and significantly reduced the energy 
symposium. 
 
Research in building materials and building constructions, e.g. low energy buildings and zero 
energy buildings, continues to yield a decreasing energy consumption. This development 
increases the demands on the control equipment of the heating system, as the smaller energy 
demand implies a more sensitive heat balance. 
 
Today the design of a central heating installation is mainly based on static considerations. 
However, in the future this aspect might not be sufficient. The dynamic properties of the 



central heating system and its control equipment have to be taken into account in order to 
handle the increasing sensitivity of the heat balance in buildings. 
 
This study focus on the thermodynamic properties of a thermostatic valve. A mathematic 
model of the thermostatic valve is identified based on the Grey-Box modelling technique, 
where physical knowledge is combined with information from measurements. In this paper a 
gas based (saturated vapor) thermostatic valve is considered, due to its relative small time 
constant and its small hysteresis band. These two properties are very important for obtaining 
an efficient control in low energy buildings. 
 
2 Thermostatic Valve Model 
 
Today the thermostatic valve is a standard component in a water based heating system. 
Different thermostatic valve designs exist. In the following the gas based (saturated vapor) 
thermostatic valve (see e.g. (Danfoss, 1988)) is considered. This type of thermostatic valve 
consists of a thermostatic head (sensor part) and a valve body, as shown in Figure 1. The 
displacement of the valve spindle (valve stem) is denoted x, while s is related to the 
displacement of the spring and the set point temperature. When the thermostatic head is 
turned, the spring displacement is altered and thus also the set point, TBsetB. 
 
The thermostatic sensor operates as a P-controller, as sketched in Figure 2, where the valve 
spindle position x is determined by the surrounding air temperature.  According to the 
specifications for the thermostatic valve the P-band of the thermostatic sensor has a width of 6 
K. At point A the valve is fully open and at S point it is closed. A definition of the 
temperature point S is given in the European standard EN 215-1 (see e.g. (Dansk Standard, 
1988)). Point C in Figure 2 is equivalent to the set point temperature TBsetB. 
 
 

 
 
 
Figure 1: Schematic drawing of a thermostatic valve (based on saturated vapor). 



 
The so called P-band temperature XBpB (a relative temperature) is defined as: 
 

XBpB = TBsetB + 2 - TBaB (1) 
 
where TBaB denotes the ambient temperature. As sketched by the curves A, B, C and S in figure 
3, the relation between the pressure drop over the valve ∆p = pBiB - pBoB and the corresponding 
flow is influenced by the valve openings indicated in Figure 2 by the points: A, B, C, and S. 
 

 
 
Figure 2: P-band of the thermostatic 
sensor. Valve opening versus ambient 
temperature. 

Figure 3: Sketch of valve characteristics at 
different valve openings. 

The flow q is proportional to the square root of the pressure drop ∆p over the valve (Fox and 
McDonald, 1985), i.e. in the case of a thermostatic valve: 
 

p)X(K=q pv ∆  (2) 
 
where KBvB(XBpB) denotes the valve constant, which is controlled by the thermostatic sensor. 
 
The purpose of a thermostatic valve is to control the water flow through a radiator in  order to 
maintain a certain room temperature, as sketched in Figure 4. The control properties of the 
closed loop system in Figure 4 is normally assessed by the P-band of the thermostatic valve. 
When the heat loss of a room is found, a suitable radiator can be selected and the nominal 
water flow can be calculated. Based on the desired pressure drop over the valve and on the 
nominal flow, a thermostatic valve can be selected, i.e. a thermostatic valve, which has 
approximately the desired pressure drop and flow at XBpB = 2K. A P-band of 2 K is often used 
as an appropriate compromise between thermal comfort and stability in the hydraulic system. 
 



 
 
 
 
As indicated in Figure 4, the flow is controlled by the thermostatic sensor (and the valve 
pressure - not sketched). The valve pressure ∆p depends on the pressure generated by the 
pump and on the actual distribution of hydraulic resistances in the heat network (pipes, 
radiators, valves, etc.). When the thermostatic valve is in its P-band, the hydraulic resistance 
of the valve is dominating. Hence in this case both q and ∆p depend on the thermostatic 
sensor. 
 
In (Svensson, 1978) the following 4 properties of the thermostatic valve are reported: a time 
delay, a time constant, hysteresis and a dependency of the supply water temperature. 
Meanwhile, (Dansk Standard, 1988) describes the following 4 properties: time constant, 
hysteresis, dependency of the supply water temperature and elasticity with respect to the set 
point temperature (due to the pressure drop over the valve). In (Gammelby, 1974), 4 
thermostatic valve types are presented and the above mentioned properties are discussed. It is 
further concluded that, the gas based thermostatic valve is the most advantageous, due to its 
relatively small time constant, the very small hysteresis band and its small dependency of the 
supply water temperature. 
 
Based on the considerations above, the following assumptions about the gas based 
thermostatic valve will be applied: 
 

1. No hysteresis. 
 

2. No supply water temperature dependency. 
 

3. No elasticity. 
 
Under these assumptions the temperature of the gas TBgB in the thermostatic head is described 
by : 
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where τ denotes the time constant of the gas temperature, when TBgB is exposed to the ambient 
temperature TBaB (see Figure 1). 
 
The stationary relation between the P-band temperature XBpB and the valve flow q is usually 
listed in the data sheet of a thermostatic valve. Data for the considered thermostatic valve are 
presented in Table 1. 
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 Table 1: RA-FN 15 data, at ∆p = 1 Bar (Danfoss, 1988). 
 
As defined by the standard (EN 215-1), the flow q must be zero, when the relative 
temperature XBpB is zero. The KBvB values in Table 1 are calculated using (2).  Based on the data 
in Table 1 a relation between the P-band temperature XBpB and the valve constant KBvB can be 
found. An adequate description is : 
 

KBvB(XBpB) = a tanh (b XBpB) (4) 
 
The parameters of this function have been found by non-linear least squares estimation and 
the estimated parameters are shown in Table 2. The estimated standard deviation of the 
residuals is denoted σBFB. An analysis of (4) yields: 
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 Table 2: Estimated parameters. 
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A dynamic thermostatic valve model can now be established. In the dynamic case, the 
ambient temperature TBaB in (1) is replaced by the sensor gas temperature TBgB. Hence, the 



dynamic model of a (gas based) thermostatic valve is: 
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where the input is denoted by the ambient temperature TBaB (air temperature). The output of the 
thermostatic valve model is the valve constant KBvB, which is generated as a non-linear function 
of the gas sensor temperature TBgB. It is noted that KBvB is indirectly measured by the fraction 

pq/=Kv ∆ . 
 
 
3 Experiments 
 
The thermostatic valve experiments have been conducted in connection with a heating 
experiment (Hansen, 1996) in a test house (Rasmussen and Saxhof, 1982) at the Department 
for Buildings and Energy (IBE) at DTU. A test setup water based central heating system 
designed/build by Grundfos A/S was used as heating system. For further information see 
(Hansen, 1996). 
 
The measured quantities (defined in Figure 5) are: 
 

C TBaB, the air temperature next to the thermostatic head. 
 

C pBiB, pBoB, the inlet and outlet pressure, respectively. 
 

C q, the valve flow. 
 
The basic idea was to manipulate the ambient temperature around the thermostatic head.  For 
this purpose a modified heat blower was used. The blower part was blowing continuously, 
while the heat element was on/off controlled by the data acquisition system, as sketched in 
Figure 5. 



 
 
 
 
 
 Figure 5: Sketch of the experimental thermostatic valve setup. 
 
A predefined PRBS-sequence (Pseudo Random Binary Signal, see (Godfrey, 1980)) was used 
to control the heat element. In order to justify the assumption about no dependency on 
temperature of the supply water, the supply temperature was set to 30EC (i.e. close to the air 
temperature). The pump pressure was approximately constant. Due to the heat blower 
arrangement and the low supply temperature, the system in Figure 4 is operating in open loop 
during the experiment. The time constant of the thermostatic valve was expected to be in the 
interval 1-30 minutes. Thus, the data were sampled with a sample time of 10 seconds. Step 
"4" on the thermostatic head was selected to be the set point (-23EC). 
 
In order to be able to perform a cross validation of the experimental results, two data sets 
were collected. The two data sets, sequences I and II are shown in Figure 6 and Figure 7, 
respectively. Each plot contains TBaB [EC] in the first subplot, q [l/h] in the second, ∆p [mWc] 
(1.0 UmUeter-UWUater-UcUolumn is equivalent to 0.1 Bar) and the pump pressure [mWc] (the dotted 
line) in the third subplot and a pseudo measurement of the valve constant KBvB [mP

3
P/h/BarP

0.5
P] (i.e. 

calculated as pq/ ∆ ) in the last subplot. 
 
A PRBS-signal can be characterized by two parameters (Godfrey, 1980): 1) the number of the 
shift register stages n and 2) the smallest period time where the signal is constant, TBPRBSB. The 
following PRBS-signals were used: 
 

1. PRBS with n = 3 and TBPRBSB = 50 seconds. 
 

2. PRBS with n = 5 and TBPRBSB = 20 seconds. 
 
Two remarks on the data: 



 

 
Figure 6: Measured data: Sequences I. The first subplot contains TBaB [EC], the second q [l/h], 



∆p [mWc] and the pump pressure [mWc] (the dotted line) in the third subplot and a pseudo 
measurement of the valve constant KBvB [mP

3
P/h/BarP

0.5
P] in the last subplot. 

Figure 7: Measured data: Sequences II (contents as in Figure 6). 
 
1. The measured ambient temperature TBaB is - due to the experimental setup - a 

combination of a slightly low-passed version of the control signal to the heat element 
and a slowly varying room temperature. 

 
2. When the valve is almost full open (XBpB large), the calculated valve constant is noisy, see 

e.g. the first 5 minutes in the last subplot of Figure 6. This is mainly due to insufficient 
measuring accuracy. 

 
 
4 The Grey-Box Modelling Method 
 
In this section the method used to estimate the parameters of the model (6)-(7) of the 
thermostatic valve is briefly described. The method is a maximum likelihood method for 
estimating parameters in stochastic differential equations based on discrete time measurement 
data. For a more detailed description of the method we refer to (Madsen and Melgaard, 1991) 
or (Melgaard and Madsen, 1993). A description of a linear case is given in (Madsen and 
Holst, 1995). 
 
The observations are given in discrete time, and, in order to simplify the notation, we shall 
assume that the time index k belongs to the set {0, 1, 2, ..., N}, where N is the number of 
observations. Introducing: 
 

I(k) = [Y (k), Y (k - 1), ..., Y (1), Y (0)]P

T
P (8) 

 
i.e. I(k) is a vector containing all the observations up to and including sample number k. In the 
case of equidistant sampling with sampling time T, the time t and the sample number k are 
related as t = kT. 
 
Using matrix notation the stochastic differential equation describing the dynamics of the 
thermostatic valve can be written as an Itô Equation (see e.g. (Øksendal, 1995)): 
 

dX(t) = f(x, U, t)dt + G(U, t)dw(t) (9) 
 
where X is the state vector, U an input (e.g. control) vector, w a vector Wiener process (or 
Brownian motion) (see e.g. (Kloeden and Platen, 1995)), and G is a matrix describing any 
input or time dependent variation related to how the variation generated by the Wiener 
process enters system. 
 
For the observations we assume the discrete time relation: 
 

Y(k) = h(X, U, k) + e(k) (10) 
 
where e(k) is assumed to be a Gaussian white noise sequence independent of w. All the 
unknown parameters, denoted by the vector θ, are embedded in the continuous time state 
space model (9) and (10). 



 
The likelihood function is the joint probability density of all the observations assuming that 
the parameters are known, i.e. 
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where successive applications of the rule P(A 1 B) = P (A* B)P(B) is used to express the 
likelihood function as a product of conditional densities. 
 
In order to evaluate the likelihood function it is assumed that all the conditional densities are 
Gaussian.  In the case of a linear state space model it is easily shown that the conditional 
densities actually are Gaussian (Madsen and Melgaard, 1991).  In the more general non-
linear case the Gaussian assumption is an approximation. 
 
The Gaussian distribution is completely characterized by its mean and covariance. Hence, in 
order to parameterize the conditional distribution, we introduce the conditional mean and 
covariance as: 
 

ì(k*k - 1) = E [Y (k)*I (k -1), θ] (12) 
 

R(k*k - 1) = V [Y (k)*I (k -1), θ] (13) 
 
respectively. It may be noticed that these correspond to the one-step prediction and the 
associated covariance, respectively.  Furthermore, it is convenient to introduce the one-step 
prediction error (or innovation): 
 

ε(k) : Y(k) - ì (k*k - 1) (14) 
 
When calculating the one-step prediction and its variance, an iterated extended Kalman filter 
is used. The extended Kalman filter is simply based on a linearization of the system equation 
(9) around the current estimate of the state (see (Gelb, 1974)). The iterated extended Kalman 
filter is obtained by local iterations of the linearization over a single sample period. 
 
Using (11) - (14) the conditional likelihood function (conditioned on Y (0)) becomes: 
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where m is the dimension of the Y vector (number of outputs).  Consider the logarithm of the 
conditional likelihood function: 
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The maximum likelihood estimate (ML-estimate) is the parameter vector ^θ, which 
maximizes the likelihood function. Since it is not possible, in general, to perform the 
optimization analytically, a numerical method has to be used. A reasonable method is the 
quasi-Newton method. 
 
An estimate of the uncertainty of the parameters is obtained by the fact that the ML-estimator 
is asymptotically Gaussian distributed with mean θ and covariance : 
 

D = HP
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where the matrix H is given by : 
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An estimate of D is obtained by equating the observed value with its expectation and 
applying: 
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The above equation can be used for estimating the variance of the parameter estimates. The 
variances serve as a basis for calculating t-test values for tests under the hypothesis that the 
parameter is equal to zero. Finally, the correlations between the parameter estimates are 
readily found based on the covariance matrix D. 



 
 
5 Estimation and Results 

l model of the thermostatic valve (equations (6) and 
)) as a stochastic differential equation : 

 

 
The first task is to reformulate the physica
(7
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 of Gaussian white noise. It is further assumed that w(t) and 
(k) are mutually uncorrelated. 

simple 
xperimental setup. Due to this fact, a is set to the estimated value given in Table 2. 

urther decrease the number of parameters to be estimated, the following constraint 
 applied: 
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The output of the model y(k) denotes the calculated valve constant KBvB at sample time t = kT. 
The system noise process w(t) is assumed to be a Wiener process and the measurements noise 
e(k) is assumed to be sequence
e
 
The next step is to determinate whether all parameters are identifiable. The parameters of the 
model are: τ, TBgB (0), TBsetB, a, b, and the two variances σBwPB

2
P and σBePB

2
P, i.e. in total 7 parameters. In 

an equivalent linear  model (single input, single output) it is only possible to identify 5 
parameters (of which 2 are noise parameters (Melgaard, 1994) and one the initial value). The 
considerations below (2) combined with the analysis in (5) (and the second comment in 
Section 3) indicate that the information in data about the valve constant will be small - in the 
case when XBpB is large.  Hence, it will not be possible to estimate parameter a with 
e
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where KBv0B denotes the valve constant (known from data) at time 0. TBgB(0) is equ
(0
 
The estimation results from the two sets of data are shown in Table 3. Both the estimated 
parameters and their standard deviations are shown.  The presented estimates are found to be 
consistent in the way that the estimation procedure converges to the same set of estimates 
independent of the initial settings. Furthe
n
 
 
 



 Table 3 : Parameter estimates. 
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The estimate values of τ are around 13 minutes, which is quite reasonable. The estimated 
values of TBsetB are around 25EC, which is somewhat larger than expected, as step "4" should be 
equivalent to 23EC according to the specifications. It should be noted, however, that under 
normal conditions the airflow around the thermostatic valve is small (compared with the 
airflow in the experiments). Furthermore, the temperature of the water was only 30EC. A 
higher supply temperature would probably lead to a smaller set point temperature. The 
estimated values of b are both smaller than the estimated parameter value given in Table 2. 
Based on the analysis in (5) it can be concluded that the derivative of the valve constant with 
respect to the P-band temperature is smaller than expected. In other words, the hydraulic 
valve resistance is increasing faster, when the P-band temperature is decreasing. This fact 
ould be explained by a smaller P-band of the system. 

 in the found optimum - are shown in Table 4, together with Neg.L/N in the last 
olumn. 
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The prediction and simulation performances of the dynamic estimated models are shown in 
Figures 8 and 9, respectively. The first of the subplots contains the measured valve constant, 
the one-step predicted valve constant and a simulation of valve constant. The prediction error 
is shown in the second subplot. It can be observed that the prediction error is big, when the 
valve constant is big due to the limited information in data (see second remark in Section 3). 
In the first subplot, the dash-dot-dash line indicates the simulated valve constant based on the 
chieved parameter estimates and the measured ambient temperature TBaB as  

 

a
 
 
 
 



Figure 8: Data, prediction, simulation (in the first subplot) and prediction error (in the 
second subplot) of sequences I. The dash-dot-dash line in the first subplot indicates the 
simulated valve constant. 
 
 
input in the simulation. Also the stimulated valve constant is quite close to the real valve 
constant. 
 
One way to evaluate the achieved estimates is to perform a cross validation, i.e. to use the 
estimated parameters from one estimation in a simulation with the other set of data. Thus, 
defining the following cases: 
 

1. Using the estimated parameters from sequence II in a simulation with the data 
from sequence I. 

 
2. Using the estimated parameters from sequence I in a simulation with the data 

from sequence II. 
 
a comparison can be performed. 
 
The results of the cross validation are shown in Table 5. The cost function values in Table 5 
are of course larger than the cost function values in Table 5 (i.e. which are based on the 
optimal parameters). The variance of the one-step prediction error in the cross validation case 
is virtually of the same size as in the optimal case. 
 
 
 
 
 
 



Figure 9: Data, prediction, simulation and prediction error of sequences II (as in Figure 8). 
 
 
 Table 5: Cross validation characteristics. 
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The achieved estimates for the two data sequences can be compared, as shown in Figure 10, 
based on the intervals of the estimates. A visual test can easily be performed by looking at the 
estimates, in order to decide whether or not the individual parameter estimate from each 
sequence are alike. It is clearly seen that the two set of parameters do not significantly differ. 
The two set of parameter estimates are alike. 
 
6 Concluding Remarks 
 
A dynamic nonlinear model of a thermostatic valve has been established and validated using 
two sequences of measurements. A set of parameters is estimated for each of the sequences. 
The dynamic model with the estimated parameters gives a good description of the 
measurements. 
 
 
 
 
 
 



 

Figure 10: Confidence intervals of the estimated parameters: τ, TBsetB and b. Used symbols: 
estimate (+), 95%(o) and 99%(x). 
 
The validation of the results includes a cross validation, where the two sets of parameter 
estimates have been compared using their confidence intervals. Also the cross validation 
indicates that very reasonable results are found. 
 
Hence, the real time constant is approximately 13 minutes. The set point temperature turned 
out to be about 2EC larger than the value given in the specification. This could be explained 
by the low supply temperature. 
 
The described dynamic model of thermostatic valve is implementable as a component in our 
library of dynamic models. The model will be extended with a dynamic model for the 
dependency of the water supply temperature. Furthermore, the influence of hysteresis is to be 
investigated. 
 
 
Acknowledgment 
 
This work has been financial supported by the Danish Energy Agency, the Danish Academy 
of Technical Sciences and Grundfos A/S. 
 
The authors are also grateful to Bjarne Saxhof and Jørgen M. Schultz, the Department for 
Buildings and Energy at DTU, for their support in connection with the experiments in the test 
house. 
 
 
References 
 
Danfoss (1988). Radiatortermostat/Ventilhuse, RA 2000/RA-FN og RA-G. Danfoss A/S, 
VD.51.A5.01 edition. 
 
Dansk Standard (1988). Thermostatic Radiator Valves. Part 1: Requirements and Test 



Methods. (Danish title: Termostatiske radiator ventiler. Del 1: Krav og prøvningsmetoder). 
Technical report, Dansk Standard. DS/EN 215-1. 
 
Fox, R.W. and McDonald, A. T. (1985). Introduction to Fluid Mechanics. John Wiley & 
Sons. 
 
Gammelby, J. (1974). Heizkörperthermostate. Grundsätze und Eigenschaften. The Danfoss 
Journal, 3. 
 
Gelb, A. (1974). Applied Optimal Estimation. MIT Press, New York. 
 
Godfrey, K. R. (1980). Correlations Methods. Automatica, 16(2):527-534. 
 
Hansen, L.H. (1996). Dynamic Analysis of a low Energy Test House and a Central Heating 
System. Technical Report No. 20, Department of Mathematical Modelling, Technical 
University of Denmark. 
 
Kloeden, P. an Platen, E. (1995). Numerical Solutions of Stochastic Differential Equations. 
Springer-Verlag, 2 edition. 
 
Madsen, H. and Holst, J. (1995). Estimation of Continuous-time Models for the Heat 
Dynamics of a Building. Energy and Buildings, 22:67-79. 
 
Madsen, H. and Melgaard, H. (1991). The Mathematical and Numerical Methods used in 
CTLSM. Technical Report No. 7, IMSOR, DTH. 
 
Melgaard, H. (1994). Identification of Physical Models. PhD thesis, IMM, DTU. 
 
Melgaard, H. and Madsen, H. (1993). CTLSM, Continuous Time Linear Stochastic 
Modelling. In Bloem, J.J., editor, Workshop on Application of System Identification in Energy 
Savings in Buildings, pages 41-60. Commission of the European Communities, DG XII. 
 
Øksendal, B. (1995). Stochastic Differential Equations. Springer-Verlag, 4 edition. 
 
Rasmussen, N. H. and Saxhof, B. (1982). Simultaneous Testing of Heating Systems. 
Technical Report No. 128, Thermal Insulation Laboratory, Technical University of Denmark. 
 
Svensson, A. (1978). Functionality of Thermostatic Radiator Valves. (Swedish title: 
Radiatortermostatventilors funktion). Technical report, The national Swedish Institute for 
Building Research. Lägesrapport M78:4. 


