
MODEL OF ROOM STORAGE HEATER AND SYSTEM IDENTIFICATION USING 
NEURAL NETWORKS 

 
Roberge, M-AP

(1)
P., Lamarche, LP

(1)
P., Kajl, SP

(1)
P., Moreau, AP

(2)
P. 

 
P

(1)
P Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal H3C 1K3, Québec, 

Canada.  
P

(2)
P Laboratoire des technologies électrochimiques et des électrotechnologies d’Hydro-Québec, 

600, avenue de la Montagne, Shawinigan, Québec, Canada. 
 
Abstract.  This paper presents two approaches used to develop a model of Room Storage Heater.  
The first one consists of a dynamic model of the RSH developed by the authors using the results 
obtained from tests performed in a calorimetric chamber.  The model was verified against the 
results obtained during five different charge-discharge test periods.  The second approach is a 
new concept based on Neural Networks applications.  In this approach, we suppose that we do 
not have a description of the RSH itself.  The input data in a neural network training are as 
follows: the immediate paste bricks temperature, the room temperature, the electric power input 
and the on/off activation function of the fan.  The energy released and the current brick 
temperature were the neural network outputs.  The results of two training and test procedures are 
presented.  In the first procedure we use the results of the tests performed in the calorimetric 
chamber which are sufficient to develop the dynamic model but they appear not adequate for the 
neural networks application.  Consequently, the second NN’s training and test were conducted 
with the modified training data set which was obtained by the simulations performed using the 
RSH dynamic model.  Two comparison are presented : comparison of the NN’s and simulation 
results and comparison of the NN’s and calorimetric chamber test results. The NN’s model 
accuracy seems to be very good.  It is comparable with the dynamic modelization methods.  
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List of  Symbols 
 
Avs  : RSH wall vertical area 
Ahs  : RSH wall horizontal area 
hvs   : Convection coefficient on vertical sides 
hhs  : Convection coefficient on horizontal sides 
hi   : Internal convection coefficient 
kw  : Equivalent conductivity of the RSH walls 
NuL : Nusselt number based on vertical height 
Nudeq

 : Nusselt number based on internal equivalent diameter 
&Qin  : Power electric input 
&Qout  : Heat released 
&Qvs  : Losses from the vertical surfaces 

Tb   : Brick temperature 
Ts : RSH wall  temperature 



Tr   : Room temperature 
Trs   : Room wall  temperature 
RaL  : Raleigh number based on vertical height 
Ral  : Raleigh number based on horizontal width 
β  : Volumetric thermal expansion coefficient 
 
1. INTRODUCTION 
 
For electrical producers and distributors, the power demand during the peak period causes many 
problems which reflect as much on the infrastructures necessary for the production and transport 
of electricity than on the production costs of energy.  Many tools and management techniques 
can be used to reduce peak demand such as, interruptible current, bi-energy furnaces, non-electric 
back-up heat pumps etc.  However, all these techniques do not apply to clients heated by electric 
baseboard heaters and these end up on the network at each peak demand produced during cold 
weather, hence the interest in a new technique for managing electricity consumption.  
 
Electric Thermal Room Storage Heaters (RSH) using sensible heat can fulfill this need.  They 
have been used in Europe for many years and more recently in the United States [1].  RSHs store 
heat during off-peak consumption periods (night, for example) in order to release it during peak 
periods. During the night, at the signal of a timer from the electricity company, the electric 
elements inserted in the thermal mass are activated and rise the temperature of the refractory 
bricks up to projected holding value.  Generally a seven to eight hours are required to fully 
charge the RSH.  After this period the electric elements are usually deactivated for the rest of the 
day.  Often, RSH includes a fan which is controlled by a room thermostat and/or by a timer.  In 
this case, two discharge periods are distinguished : the passive when the fan is off and the active 
discharge when the fan is on.  The charge-discharge cycle of RSH is usually completed over a 
24-hours period, shifting the heating consumption from day to night.  This shift reduces the 
maximum power demand.  In theory, it does not affect the overall consumption which could 
remain the same except the periods when the room is superheated due to the passive discharge 
which is, during these periods, greater then the room heating load. 
 
The principal components of RSH are the follows : 
 
• a large thermal mass, usually made of refractory bricks 70 to 200 kg ; 
• electrical elements that power rating is between 1.7 and 6.0 kW ; 
• an insulating layer, enclosing the refractory bricks (high density ceramic bricks) to minimize 

the heat losses and to reduce the wall surface temperature to around 60 P

o
PC. 

 
RSH storage capacity can vary from 12 to 48 kWh, but typically the 12 to 24 kWh units are used 
more often in the residential sector. 
 
The paper is divided into five sections.  In section 1 a brief introduction and the statement of 
problem is presented.  Section 2 presents the description of the RSH and of the experimental test 
conducted in calorimetric chamber.  The numerical model developed based on the experimental 
results is presented in section 3.  In the section 4 we present the new approach to develop the 
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RSH model using the recurrent neural networks.  Some conclusions are provided in the last 
section. 
 
2. DESCRIPTION AND EXPERIMENTAL TEST OF RSH 
 
Two different types of RSH were tested, but the model presented in this paper concern only one 
of these two RSH.  View and schematic of this RSH are presented in figures 1 and 2.  The 
principal components are : the insulation layer (1), the bricks (2), the electrical elements (3) and 
the fan (4).  The total mass is 106 kg and the dimensions are follow : high 71 cm, length 79 cm 
and large 17 cm.  The power of the electrical elements is 2.52 kW and the RSH thermal capacity 
are 18 and 24 kWh.  

 

 

Figure 1. View of RSH 
 

Figure 2. Schema of RSH 

The tests consist in the evaluation of the thermal power released by the RSH during a 24-hour 
charge-discharge cycle.  They were conducted at the LTEE (Laboratoire des technologies 
électrochimiques et des électrotechnologies d’Hydro-Québec) [2]. in the calorimetric chamber 
measuring 2x2x2m, very well insulated and extremely well-sealed. This calorimeter is shown in 
figure 3.  The RSH are installed in the calorimeter across which circulates the small air flow rate 
in an open loop. The measurements, which step was 5 minutes, were as follows : 
 
• calorimeter air temperature ; 
• inside and outside walls temperature of the calorimeter ; 
• heating or cooling powers injected into the calorimeter ; 
• RSH walls temperature ; 
• inside and outside walls temperature of the bricks ; 
• power and on/off times of the RSH electric elements and the fan. 
 
The thermal power released by the RSH was determined by an energy balance applying the 
corrective factors which consider the thermal inertia and the heat losses of the calorimeter 
(factors determined by sampling). 
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Figure 3. Schema of the calorimetric chamber 

 
The tests provide the daily heat release profile of RSH operated according to five charge-
discharge scenarios which correspond to the need to reduce the electricity network’s power 
demand.  These scenarios, shown in the table 1, were established based on the network demand 
profiles of the different electricity companies.  
 
Table 1. 

Hour of day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Scenario 1 charge                         
 fun on                         
Scenario 2 charge                         
 fun on                         
Scenario 3 charge                         
 fun on                         
Scenario 4 charge                         
 fun on                         
Scenario 5 charge                         
 fun on                         
 
For scenario # 3 the measured results are shown on the figure 5. 
 
3. NUMERICAL MODEL OF RSH 
 
For any of the different scenarios discussed in the previous section, we can divide three different 
operational modes:  
 
• charge mode 
• passive discharge mode (Fan off) 
• active discharge mode (Fan on)  
 
The mathematical model of the RSH is based on a thermal balance for these three modes:  
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We have a similar expression for the vertical surface. In the simulation, we assume that the room 
surface temperature Trs  was the same as the room temperatureTr .  
 
The conductivity was assumed to vary linearly with temperature:   
 
 ( ) ( )k f T T b T Tvs b vs b vs= = −, c+  (4) 

 
with the constants b and c found in  tables. For the vertical plates, the convection coefficient was 
found using 
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The other losses during the passive energy release correspond to convective losses from the 
bottom of the unit which is open.  We used the following quadratic relation: 
 
   & ( ) ( )Q a T T b T Toth b r b r= − + − +2

2
2 c2

 
The empirical coefficients aB2B,bB2B,cB2B, are found from experiments.  When the fan is on (active 
release), the convective heat release can be modeled by: 
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The non-linear system was solved using SIMULINK and the diagram of the model is shown on 
the figure: 

 

Figure 4. Diagram of the RSH model 
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Each of the main block is a Simulink S-function which is not given here for clarity. Some 
comparison data are shown on the next figure. 
 

 

Figure 5. Comparison of the measured and simulation results 

 
We can observe that the simulated results follow the same pattern as the measured ones. The only 
noticed discrepency is in the active discharge mode of operation where the measured data were 
somewhat higher.  A possible reason is the fact that we neglected the power of the fan. 
 
4. ROOM STORAGE HEATER MODEL USING THE NEURAL NETWORKS 
 
The numerical model presented in section 3 allows to analyze the impact of different RSH 
parameters on its performance (the energy released, walls temperature etc..) and to optimize the 
RSH conception.  Suppose that this conception is already finished and we wish only to estimate 
the energy released by RSH.  We don’t have a description of RSH itself.  We are given only a 
time series data including a time stamp, energy data (output value) and the most important 
parameters which have an effect on the output values.  This most important parameter is, for 
example the RSH brick temperature because it is the on/off control value of the fan and the 
electric elements.  If we know only these parameters, can we estimate the energy released by 
RSH ?  The way to accomplish this is to assume that we know the form of an equation relating 
inputs and outputs values.  We may in this case, apply a very general input-output model to the 
data in the hope that the appropriate model is a special case of the general model.  The neural 
network is often used for this application, since it is a kind of general-purposes nonlinear 
regression model.  The most commonly used neural network have several layers.  The first and 
the last are called the input and output layer and between them are one or more hidden layers.  
The neurons of the input and the first hidden layer are connected by lines that have varying 
weights. The neurons of the first hidden layer are connected with the neurons of second layer and 
so on till the last hidden layer which is connected with the output layer.  The inputs to a neural 
network can be any quantifiable variable, but, in the complex model, a considerable experience is 
necessary to select the proper inputs.  For example, in a previous paper [3] we have predicted a 
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building heating load without knowledge of heating load for the immediate past.  For this 
prediction we have selected the following variables : day of a week, hour of a day, current and 
previous hour’s solar radiation, wind speed, outside temperature and five hour’s previous 
combined temperature.  So in this neural network application we don’t have selected the past 
output value as a part of the current input but often it is necessary to include this value to the 
current input.  If we do it, the neural network is called recurrent since its outputs feed back into 
its inputs.  This type of neural network was used in our approach, presented in this paper, to 
« identify » a Room Storage Heater.  Since the energy released ( ), depends on the brick 
temperature (TBbB) which is the on/off control value of the electric elements, we consider the both 
as the output values.  Really, the output value is ∆TBbB which is the difference between the actual 
(TBb(n)B) and the past brick temperature (TBb(n-1)B).  During NN’s training, the known values of the 
past brick temperature (TBb(n-1)B) are used as inputs, but during testing, the network’s own past 
brick temperatures (TBb(n-1)B) are cycled back into the inputs.  This temperature was calculated as a 
sum of the past value (TBb(n-1)B) and actual difference ∆TBbB.  The inputs to the neural net were : 

&Qout

 
• past brick temperature (TBb(n-1)B) ; 
• current room dry bulb temperature (TBrB) ; 
• power electric input ( ) ; &Qin

• on/off activation function of the fan (binary flag 0 or 1 to distinguish the active and passive 
discharges). 

 

 

Figure 6. Neural networks schematic diagram 

 
The figure 6 shows neural network schematic diagram.  The neural network used in this study 
have one input, one output and one hidden layer containing 10 neurons.  The tan sigmoid 
function was the activation function for the hidden units while the output layer was linear.  The 
method used was the Levenberg-Marquard method.  The training for the neural network was 
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done using 40% of the measured data (set of 574 inputs and outputs data) in the calorimetric 
chamber during the five charge-discharge scenarios described in section 2 of this paper, while the 
tests were conducted with 100% of the measured data for these scenarios.  The results of these 
tests concerning only the energy released by RSH are presented in the table 2.  The coefficient of 
variation CV is the root mean square RMS error (between the energy released obtained by neural 
network and the one measured in calorimetric chamber) divided by the mean value of the testing 
data set.  We present also the relative error RE, in order to compare the sum of energy exchanged 
by RSH (including QBinB and QBoutB) during 24 hours.  This error was calculated by the following 
equation : 
 

( )
RE

Q Q

Q
NN measured

measured

=
−∑

∑
 

 
Table 2. 
 CV [%] RMS [W] Relative Error [%] 
Scenario #1 3.0 21.02 1.0 
Scenario #2 6.0 46.95 4.0 
Scenario #3 3.0 22.35 2.0 
Scenario #4 3.0 25.89 1.0 
Scenario #5 7.0 68.79 5.0 
 
The comparison of the brick temperature differences (∆TBbB) measured and obtained by NN’s is 
presented on the figure 7.   
 

 

measured data 

NN’s data 

Figure 7. Comparison of the ∆TBbB measured and obtained by NN's 

 9



According to this comparison and to the errors presented in the table 2, the testing results of 
neural network seem very good.  However, we know that the training and testing data sets 
contain only one value of electric elements power.  We know also that, the room temperature 
varies during the calorimetric tests.  Hence, to know the NN’s behavior when the electric power 
or the variation of the room temperature is different, we have tested the NN with a fixed room 
temperature.  Since we do not have the measured data with the fixed room temperature, the 
results of this test are compared to the simulation results obtained using the numerical model 
presented in section 3.  The figure 8 shows the comparison of the brick temperature, which is the 
one of outputs values, obtained by simulation and by NN’s application.  We can find that the 
NN’s model does not give the adequate results when the inputs values behavior is different than 
that in training data set.  This conclusion is particularly important for the room temperature 
because the training data set seems to contain enough values of this temperature. 
 

 

NN’s data 

measured data  

Figure 8. Comparison of the ∆TBbB obtained by simulation model and by NN's 

 
The question is « why the results of the test conducted with 100% of measured data for five 
scenarios are correct and they are unacceptable when the inputs pattern change ? ».  In [4] the 
authors have analyzed the several factors that influence NNs learning, such as : (1) input pattern 
sequencing and related notion of persistently exciting, (2) the effect of normalizing techniques 
and input scaling on the rate of convergence and (3) the concept of learning in environments with 
a nonunique solution.  In our case, the first factor is particularly pertinent and consequently to 
response to question mentioned above we have analyzed the training data set.  We can conclude 
that there are following reasons to obtain those unacceptable results : 
 
• the variation of room temperature in experimental data set is always similar to the variation of 

the brick temperature ; 
• there is only one value of the electric power used during the calorimetric test ; 
• the using of the on/off activation function of the fan is not enough. 
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Figure 10. Distribution of ∆Tb in the modified 

therwise, the training data set is not adequate because the outputs, it means the brick 

 three values of the RSH electric power are used during the charge period, it means 2.1, 2.4 and 

• e-discharge frequency is more important then that during the test in calorimetric 

• en 15 oC and 50 oC ; 
ive 

 
he figure 10 shows that the modified training data set contains more values of the brick 

he neural network was trained the second time using the modified training data set including 

 

Figure 9. Distribution of ∆TbB in the training B

data set 
B B

training data set 

 
O
temperature and the energy released, do not cover the output domain.  According, for example, to 
the figure 9, we find that the training data set does not contain the brick temperature difference 
(∆TBbB) between -2 to 4 P

o
PC.  This is similar for the other output value, it means for the RSH energy 

released.  The training data set must then be modified in order to cover the outputs domain.  
Since it was difficult to remake the experiments in the calorimetric chamber, we have made these 
modifications using the numerical model described in the previous section.  During the 
simulations performed by this model the following assumptions are taken into account : 
 
•

2.7 kW ; 
the charg
chamber.  The charge time depend on the electric power used.  Three or four discharge 
periods, alternatively active and passive, follow each charge period.  
the variation of the room temperature is sinusoidal and it varies betwe P P P P

• the simulations were performed for 130 hours, it means for quite the same period then the f
scenarios described in section 2.   

T
temperature difference (∆TBbB) between -2 to 4 P

o
PC than the previous training data set, but it does 

not contain many values between 0 and 1 P

o
PC.  To explain that, it should be noted that the ∆TBbB is 

positive only when the electric elements are on.  Consequently, it is clear that, when these 
elements, which power is equal or greater then 2.1 kW, are on, the ∆TBbB is rarely between 0 and 
1P

o
PC.   

 
T
1560 data records.  The tests were conducted with the measured data for the five same scenarios 
mentioned above and with the modified scenario #1, called here scenario #1A.  This modification 
consist in the fixed room temperature while during the scenario #1 this temperature was variable.  
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The inputs used during the tests were the following measured data : the room temperature TBrB, the 
power input &Qin  and the fan on/off activation function.  The measured brick temperature, which 
was also the input parameter during the first NN’s training, was used only as initial value during 
the first step, later this temperature was calculated taking into account the ∆TBbB which is the NN’s 
output that feeds back into the inputs.  The coefficient of variation CV, root mean square error 
RMS and relative error previously defined are presented in the table 3.  The figure 11 shows the 
comparison of the RSH released energy obtained by the NN’s model and in the calorimetric 
chamber for the scenario #3.   
 
Table 3. 

CV [%] RMS [W] Relative Error [%]  
Scenario #1 6.0 44.93 1.0 
Scenario #1A 5.0 37.85 1.0 
Scenario #2 7.0 49.11 3.0 
Scenario #3 6.0 41.12 0.0 
Scenario #4 6.0 43.37 2.0 
Scenario #5 4.0 35.36 1.0 
 

 

Figure 11. Comparison of the measured results and obtained by modified NN's  

 
ven if the simulation results were used as the training data set, the comparison with the 

. CONCLUSIONS 

measured data

NN’s data

E
experimental results shows that the accuracy of the NN’s model is very good.  The modification 
of the training data set allows to obtain the acceptable coefficient of variation CV for the variable 
and fixed room temperature and for the electric power different than that used in training test 
(2.52 kW in the test against 2.1, 2.4 or 2.7 kW during the NN’s training).   
 
 
5
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The presented new approach using the NN’s is quite comparable with the dynamic model 

ignificant improvement occurred after the modification of the training data set using the 
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