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ABSTRACT: 
 
 The problem developed and analyzed in this paper is that of the estimation of 
the uncertainty associated with the results obtained by numerical simulation codes of 
physical systems induced from input data. Implicitly posed by the authors is the 
delicate question concerning the use of the output obtained by calculation codes used 
in prediction situations, and the reliability which can be attributed to such ouput. One 
example of thermal behaviour of simple physical systems is treated, serving as an 
illustration. 
 In a first introductory section, a general problem is developed allowing the 
more specific problem to be located and the theoritical context of the study to be 
determined. It is shown that the methods which allow determination of output 
uncertainty are linked to the nature of the models used and to their mathematical 
formalism, notably in the most commonly seen case when the formulation of explicit 
analytical solutions is absent. Two classic methods are then presented. One is a 
probability method, the Quasi Monte Carlo method; the other, a determinist method, a 
differential analysis with finite differences. These two methods are tested on the 
models represented by linear systems, quite frequent in the area concerned, with 
emphasis on the question of singularities, for small dimension matrixes. 
 One example of model of thermal behaviour of building premises is then 
treated. The radiative thermal exchanges are decoupled and convection is not treated, 
which leads to the resolution of a dimension 10 linear system. This model is extracted 
fractions of larger models of thermal behaviour of buildings, allowing a simplified 
presentation of the methods proposed, the objective of which is its sequential 
application in large calculation codes. 
 The comparison of the two methods leads to conclusions in favour of 
differencial analysis, which is clearly more economical in calculation time and which 
makes it possible to identify sensitive data with significant bearing on output 
uncertainty. Nevertheless, it is emphasized that for this method it is essential to enter 
into the calculation code formalism in order to express the partial derivatives of the 
transfer function. Globally, the authors conclude that a relative superiority of the 
differential analysis exists, particularly in the case of large codes where Monte Carlo 
use would be prohibitive in calculation time. 
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1.  INTRODUCTION : DESCRIPTION OF THE PROBLEM 
 
 Let us consider a building model of which all the output can be grouped in the 
vector S with his components as walls surfaces temperatures, air rooms temperatures, 
air velocities in rooms, air humidities, ... . This vector can be expressed in the form of 
a linear or non linear relation � of the model's input data and the control parameters 
according to the very general expression presented by relation (1). Thus : 
 
     S = � ( E , C )         (1)
        
where S ={sB1B,sB2B,...,sBqB} is the output vector with dimension q. 
E ={eB1B,eB2B,...,eBnB} is the input data vector with dimension n. E contains the whole 
thermal and geometric building data. For example : south area windows, east area 
windows, ..., insulation thermal conduction coefficients, concrete thermal conduction 
coefficients, materials thickness....  
C = {cB1B,cB2B,...,cBmB}is the control parameters vector, with dimension m. For example: 
reference temperature in rooms, maximum heating power, ... 
E and C constitute the data. The function � is a function representative of the model, 
known analytically, numerically or even experimentally. 
 
 The problem of estimation of the reliability of results, i.e. error analysis, 
consists therefore in evaluating the repercussions on the components of the output S 
of disturbances generated on the elements of E and C. In this perspective, the 
fluctuations affecting the data must be distinguished. The most direct method is to 
associate a variation interval with each component eBiB and cBiB : 
 
     eBiB  � [ eBiB - ∆eBiB , eBi B +  ∆eBi B] 
    cBi   B� [ cBiB - ∆cBiB , cBi B +  ∆cBi B]  , where i  =  1, ..., n or m. 
 
Likewise, resolving the problem of error analysis will consist to reach a fluctuation 
interval on the output sBjB : 
 
    sBjB � [ sBjB - ∆sBjB, sBj B+  ∆sBjB]  , where j  =  1, ..., q. 
 
The variable of output sBjB may be considered as a function FBjB (j ith component of �). 
Taking an elementary case of 2 dimensions for the sake of convenience, we have a 
surface. The uncertainty analysis will proceed in function of the domain defined by 
the different variation limits. It is therefore expected that the optimal combination 
which produces the maximal amplitude variation of the response S be located in this 
zone. 
 
2. DETERMINATION OF OUTPUT UNCERTAINTY INTERVAL 
 
 2.1 Reference method : Monte Carlo method (MC) 
 In the Monte Carlo method, a probability density is assigned to all of the input 
model data which may be affected with uncertainties. For each simulation carried out, 
a value is randomly selected for all uncertain data according to their respective 
probability density, and all the uncertain parameters are simultaneaously disturbed. 
The Monte Carlo method thus makes it possible to take full account of the diverse 
interactions taking place among all input data of the model. The simulation product is 
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then saved, and the process is reinitialised, using a unique and different set of input 
data for each operation. 
 The total uncertainty of simulation results can be expressed by the standard 
deviation : 

   s p
N

P N m PD j jk jk( ) [
( )

( .( ( )) )]=
−

−∑1
1

2 2
1
2                            

(2) 
where N is the number of simulations and m the average of the output values,  the 
probability value of   parameter. 

Pjk

p j

 An estimation of sBDB can be deduced after each simulation and the precision of 
this estimation can be determined by using a distribution of ″ to calculate an 
interval of reliability for sBDB [1] . The precision of sBDB only depends on the number of 
simulations carried out, as shown by relation (2). The main inconvenience is that the 
sensitivity of the predictions related to the individual variations of each parameter is 
not accessible, since these input data all vary simultaneaously. The algorithm used is 
that of the IMSL Library [2]. Its consistency with an exact Gaussian is very good. 
 Another inconvenience is the large time computation when using MC method 
for complex models as building thermal behaviour simulation or fluid mechanic 
simulation. Figure 1 shows such variance variation with number of computations 

 in case of thermal system model. We observe number of computations 
must be greater than about 100 for a reliability interval less than 15% of final sBD B 
value (i.e. for a very great number of computations). Applications studied in §3 
involved about 800 computations to reach 5% of final sBD B value. 
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UFigure 1U - Variance variation with number of computations s f with Monte Carlo method. ND
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 2.2  Finite Differences Differential Analysis method (FDDA) 
 
 Two possible cases can then be distinguished : 
 
 - The function � has no singularity on the domain of fluctuation of the 
disturbed elements of the model. An analysis is done in first order of each output sBkB. If 
the function �  is differentiable to the point considered, we have : 
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where m, n are the numbers of disturbed input data and parameters. FBkB correspond to 
the expression of � relative to the output sBkB under considered. 
 
 - If the function �  exhibits one or more singularities, it is necessary to 
proceed to a case by case study. 
 
 2.1.1 Evaluation of partial derivatives 
 
 The calculation of partial derivatives can be developed according to various 
approaches in function of the complexity of the model studied. The ideal case lies in 
the possibility of analytically establishing these primary derivatives. The direct 
differential analysis then proceeds to the derivation of equations of the model. Thus, 
designating by  
S ={sB1B,sB2B,...,sBqB}  the output vector of a system of equations (which can be non-linear) 
: 
 

          
    (4) 
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, its differentiation gives the following system [3] : 
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     (5) 
  
 These equations of output sensitivity produce the sensitivities of all output on 
the parameter or input data observed. This approach may be adopted whenever the 
elements of the above equation (5) are easily accessible. However this opportunity is 
not frequent due either to the high degree of complexity of the equations, or to the fact 
that the model is not explicit (numerical or experimental model). In addition, the use 
of this approach automatically makes numerous modifications of the theoretical 
model necessary to be able to recuperate the derivatives. This continues to be difficult 
to carry out on complex models. 
 
 The possibility that remains is to resort to approximate calculations using the 
method of finite differences. Each partial derivative will be evaluated using the 
following relation : 
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with, 
      δ δE e j

T=[ ,...., , , ,... ]0 0 0 0
 
where δE  is equal to a weak disturbance (compared 1) to the j ith position, and zero 
everywhere else. For a first order calculation , δe j  is included between 10P

-3
P and 10P

-6
P . 

Therefore m + n + 1 evaluations of  �  are necessary to calculate the sBkB. 
Other authors have described Finite Difference method in sensitivity analysis context. 
It is important to note Finite Difference method ( marked FD) [4] is different of Finite 
Differences Differential Analysis method (marked FDDA). Indeed, FD method gives 

an approximate value for derivative ∂
∂
F
e

k

j

 as shown in figure 2, for a central value eBj,o B, 

between eBj,oB - ∆eBjB and  eBj,o B +  ∆eBj B , where [ eBjB - ∆eBjB , eBj B +  ∆eBj B] is the data variation 
interval defined in §1. Our calculation reach a numerical estimation derivative value 
with a very small displacement δe j  around eBj,o Bvalue (6). An approximative 
derivatives calculation is nevertheless correct for linear function FBkB with smooth 
variations, but is not efficient for non-linear cases with rapid variations which are not 
studied here. 
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e +∆e jj,oe -∆e jj,o
e j,o

δej
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Figure 2 - The two possible derivative calculations.  
In the case of approximative calculation, derivative ∂ ∂F ek / j  is obtained with eBi,oB - ∆eBiB and  eBi,o B +  

∆eBi B interval. Calculation with a weak displacement δe j  gives a better accuracy. 
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2.2.2 The particulary case of linear systems 
 
 Physical systems described by linear systems noted in the matrix form A X =  
B are considered, where A is a square matrix in n x n dimensions, and the vectors X 
and B are in n dimensions. The linear system's solution is written X = A P

-1
P B. For line 

k, we obtain : 
 

                     

(7) 

X bk k j
j

n

j=
=

∑ α
1

where αBkjB is the kj term of the inverse matrix AP

-1
P 

 
The disturbance of a term of the system is denoted by the symbol δ. Disturbances on 
A and B provide disturbances on X : 
 
               ( A  +  A) ( X  +  X) = B  +  B  
                (8) 
Our analysis is limited to the first order, which means that the second order term A 
. X of relation (8) is neglected, so :  
 
                A X + A X + A X  ≈  B  +  B                             
(9) 
  
We try to construct a framing for the output vector X. If we only consider 
disturbances on B vector, differentiating  (7) : 

                            

(10) 
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n
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1

and consequently, 
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Given the linearity of the system, the framing of the fluctuations is correct. 
Following the same reasoning as previously, and differentiating with disturbances 
only affecting matrix A terms, we obtain : 
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and finally, 
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   (13) 
Yet, explicit form of   is rarely avalaible and derivative analytic calculation of α k j

∂α
∂

kj

kla
 terms is not generally possible. So, the problem is solved by using general 

formulation (3) where � is represented by AP

-1
PB operator, and where sBkB = XBkB 

 
3. APPLICATION TO A RADIATIVE EXCHANGE THERMAL MODEL 
 
 3.1 Model of radiative exchange between an emitter and its enclosure.  
 
 The aim here is to determine the emission of a radiant panel towards the front, 
that is towards the room in which it is placed, generally against an inner wall. This 
heat flux is obtained indirectly by the intermediary measure of surface temperatures of 
the enclosure of which the radiosities are deduced. The determination of the heat flux 
towards the back is known and will not be treated here. 
This method of studying emitters, used by INARD and MOLLE [5], concerns only 
plane radiant strips (of negligible thickness) and leads to the evaluation of the 
radiative flux P . As the emitter can always be considered near the YZ plane, it can be 
written (figure 3) : 
 
   P = PBf   B+  PBbB = ( Radiat. Flux Forward) + ( Radiat. Flux Back) 
 

R E

 Z

X

Y

dx

 

      

dx

X

Pb+=

X

      
P Pf

      

X

Z ZZ

 
Figure 3 - Sketch of the experimental apparatus used for the evaluation of the radiant emitter RE heat 

flux. 
 

 PBfB B Bis the net flux evaluated through the general relation : 
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established for a grey, diffusing surface i the medium separating this surface from the 
other surfaces of the enclosure is assumed perfectly transparent. If RE designates the 
radiant emitter, the situation is : 

P
S

T Jf
RE RE

RE
RE RE=

−
−

ε
ε

σ
1 0

4( )  

 
where , the Stefan - Boltzmann constant, TBREB the absolute 
surface temperature (K); J, the radiosity of the surface (W/m²), SBREB the area of the 
surface (m²) and 

σ 0
8 25 68 10= × −, /W m K 4.

ε  the global and hemispheric emissivity of the surface. The 
radiosity JBRE Bcan only be determined by the complete evaluation of all radiative 
exchanges in the enclosures. JBREB is therefore one of the components of the radiosity 
vector J: 
 

[ ]J J J J Jj n

T
= 1 2, ,.... ...  

 
solution of the linear system A J = B : 
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......................................................... 
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4

 
n is the number of surfaces making up the enclosure (n = 10 in this case). FBijB the view 
factor of SBiB  towards SBjB . The matrix system has a dimension of 10x10.  

a Fij i j i i j= − −δ ε( )1      and     b T  i i= ε σ 0
4

i

 
 3.2 Uncertainties calculation.  
 
As we show in §2.2.2, we can calculate total fluctuation ∆JBkB of the JBkB component of J 
radiosity vector, resulting from the disturbances of A matrix and B vector. 

( ) ( )∆ ∆ ∆
∆ ∆

J J Jk k A k B= +  
In this application, input data vector  E is : 
 

E = [TB1B, TB1B, ........, TB10B, εB1B, εB1B, ......., εB10B, FB11B, FB12B, ...FB10,1B, ....FB10,10B,B BσBoB]P

T
P 

 
with ∆E which is reduced to : 
 

∆E = [∆TB1B, ∆TB1B, ........, ∆TB10B, ∆εB1B, ∆εB1B, ......., ∆εB10 B]P

T 
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with  10 temperatures and 10 emissivities uncertainty intervals, because we consider 
there is not or negligible uncertainties on FBijB form factors and σBoB Stefan - Boltzmann 
constant. 
Relation � is represenred by AP

-1
PB operator, and where sBkB = JBkB . Relation (3) becomes 

: 
 

∆ ∆J
J
T

T
J

k
k

j
j
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j
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n
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1 1
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We have to calculate derivatives : 
∂
∂

δ
δ

J
T

J T T J T
T

k

j

k j j k j

j

≈
+ −( ) ( )

    and     ∂
∂ ε

ε δ ε ε
δ ε

J J Jk

j

k j j k j

j

≈
+ −( ) ( )

 

In a first time, we have : 
J = AP

-1
PB       

 which provides central values  JBkB(TBjB) and JBkB(εBjB). Note that JBkB(TBjB) = JBkB(εBjB) = JBk B, same 
value. 

J

J
J

J

J

k
=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1

2

10

........

........

               requiring 1 computation. 

 
Then, we have to calculate : 
 
J(TB1B+δTB1B), J(TB2B+δTB2B), ......., J(TB10B+δTB10B),  
J(εB1B+δεB1B), J(εB2B+δεB2B),  ........., J(εB10B+δεB10B),          requiring 20 computations. 
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Derivatives are  calculated with components of these 21 vectors : 
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Finally, we obtain uncertainty of  JBkB with relation (14). 
Numerical data values of our example are ε

BiB = 0.9   for  i = 1,10   
and  i 4, ≠ ε

B4 B =  ε  =  0.93. 
T = 273[1]+[22.1,22.1,22.1,81.4,22.1,18.8,18.2,18.8,18.6,19.8] where [1] is the vector 
unity. 
 
Magnitudes of interval uncertainties are : 
     ε i  = ε i )BexpB  �  4.5 × −10 2  
      TBi B = TBiB)BexpB � 0.2  K 
 3.3 Results.  
 
 Table 1 sums up the results obtained respectively by the MC method  and by 
FDDA method. It presents only a few examples. For brevity, all of the results 
obtained for each component have not been included. The superposition of the 
framing by FDDA and of the MC ellipsoid is good (figure 4). 
  This original approach, initiated in this work, clearly offers quite a 
satisfactory estimation of the uncertainty on the output of the model. Consistency with 
the Monte Carlo simulations is excellent, and our approach, though limited to the first 
order, deserves complete confidence as to the boundaries it produces. Table 1 sums up 
the different uncertainties calculated by the two methods. Note that the Monte Carlo 
method and its estimation of the reliability ellipsoid have not, on certain components 
of J, included all the fluctuating values. This problem did not occur with FDDA. 
 As for time computation performance, time rate is about 1 to 40, for FDDA 
and MC method. 
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J components Non-disturbed 
Values 

 

Uncertainties 
estimated by 

FDDA 
(21 simulations) 

FDDA 
Uncertainties in 

% 
 

Uncertainties 
estimated by 

 MC 
(800 simulations)* 

MC 
Uncertainties in 

% 
 

J   1        429.0      � 43.4      � 10.1       � 39.0         �   9.1 
J   2        428.8      � 43.2      � 10.0       � 39.3         �   9.2 
J   3        428.9      � 43.8      � 10.2       � 38.8         �   9.0 
J   4        862.1      � 62.1      �   7.2       � 71.4         �   8.3 
J   5        429.0      � 43.6      � 10.1       � 39.7         �   9.2 
J   6        412.7      � 48.3      � 11.7       � 45.5         � 11.0 
J   7        410.4      � 43.0      � 10.5       � 36.7         �   8.9 
J   8        412.8      � 48.1      � 11.7       � 46.1         � 11.2 
J   9        411.7      � 42.8      � 10.4       � 36.6         �   8.9 
J 10        417.5      � 43.2      � 10.3       � 37.7         �   9.0 

Table 1 - Uncertainties associated with each component of J calculated by FiniteDifferences 
Differential Analysis (FDDA) and Monte Carlo (MC) 

*  number of computation must be greater than about 100 for a reliability interval less than 15% of 
final standard deviation sBD B value. This case involved about 800 computations to reach 5% of final sBD B 
value. 

 
 

 DEPECKER & al. [6] had examined this model of radiosities using the conditioning 
number. The authors had thus calculated : 
 
  cond(A) = 1.169 et 
δ δ δA A A B B2 2 2 20 683 0 657 0 053= = =. , / . , / .  

 
from which 
      δJ J2 2 3586/ .=  
 
was obtained using the expression of FRANKLIN [7]. From the results just presented, 
we find by FDDA, for norm of the vector of radiosities : 
 
      δJ J2 2 01926/ .=  
 
 Consequently it can be simultaneously concluded that the model of radiosities, 
such as has been considered here, is stable in the face of the disturbances undergone, 
and that the uncertainties taken into account on the temperatures and the emissivities 
impose variations of about 12% maximum on each component of J. In other words, 
the preceding work [6] based on the notion of majorant tended to aggrandise the 
uncertainty affecting the resolution results. We go then from an (absolute) majorant of 
relative uncertainty of 358% to an uncertainty estimation (non-absolute, but 
representative) of 19%. 
  
 Let us note that it is the definition itself of the majorant which led to 
uncertainties of very high amplitudes. The subsequent use of these models, in 
engineering practice, is unquestionably enriched further by this second result than by 
the first. While the conditioning number makes it possible to base decisions on the 
global stability of a model in the face of uncertainties on certain of its parameters, we 
are now in a position to offer a satisfactory estimation of variation limits for each 
component of the output vector, with a calculation cost that remains acceptable. 
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4. CONCLUSION 
 
 We have compared, through the use of the example or radiative thermal 
exchange in building, two uncertainty evaluation methods. These two methods 
involve different approaches. The first is a probabilistic type (Monte Carlo, MC), the 
second a deterministic type (Finite Differences Differential Analysis, FDDA). 
 The FDDA method has to be particularly dependable and effective. As regards 
dependability, we have observed that the uncertainty interval described by this 
method almost systematically includes the values computed by the MC method. In 
addition, this framing of the MC results by first order approximation of FDDA does 
not lead to an excessive extension of the area of uncertainty of the results, but on the 
contrary, narrows the extrema of the cloud. 
 The interval which the FDDA method leads to is therefore always more 
pessimistic than that obtained by the MC method, but the difference does not exceed 
2%. The FDDA first order approximation therefore proves to be satisfactory. 
 
 As regards effectiveness, the calculation times necessary to obtain the 
uncertainty interval are far below those of the MC method. As for performance, 
calculating time rate is 1 to 40, and for other examples not presented in this paper 1 to 
100, showing that FDDA method is more economic than the probabilist reference MC 
method. The only precaution necessitated by the FDDA method is within the 
determination of the B Bcalculation step of partial derivatives. This is a particularity of 
the FDDA method which must be enters in the calculation code, in the different stages 
of resolution. But it is likely that in deterministic type approaches, a sequential 
analysis of the numerical and mathematical treatment of the model is essential. 
Nonetheless, when this is done, and the partial derivatives are coded, the uncertainty 
of the output vector is easily calculated. 
 Finally we note that this method imposes few a priori restrictions concerning 
the nature and the amplitude of the uncertainties associated with data. 
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Figure 4 - Superposition of Monte Carlo values on Finite Differences Differential Analysis intervals. 
Presented here are three projections of Monte Carlo sets of points on planes (JB1B , JB2B), (JB2 B, JB3B) and (JB3 B, 
JB4B). It can be observed that the domain of the Finite Differences Differential Analysis indeed includes 
all of the MC points 
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