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This paper presents the results of the testing of a statistical, rule-based fault detection 
and diagnostic method on a rooftop air conditioning unit.  When faults occur in the unit, 
the measured thermodynamic states differ from the states which are predicted by a model 
for normal system behavior, generating residuals.  The magnitude and statistical 
uncertainty of the residuals determine the detection sensitivity of the technique.  The 
directional changes in the residuals are statistically compared with a set of rules in order 
to diagnose a fault.  By experimentally introducing faults to the air conditioning unit at 
five different operating conditions and recording the changes in output states, the 
detection sensitivity of the technique was quantified and the robustness of the diagnostic 
rules was verified.  Results show that the technique is able to reliably detect refrigerant 
leakage, condenser fouling, evaporator fouling, liquid line restriction, and compressor 
valve leakage over a wide range of operating conditions, before a significant decrease in 
the capacity and COP has occurred. However, the sensitivity of the technique is 
influenced by the operating conditions of the unit. 
2. Introduction 

Fault detection and diagnostics (FDD) involves the application of artificial intelligence 
techniques to systems to monitor their health and to diagnose the cause of problems.  
Fault detection and fault diagnosis are the first two steps of process supervision described 
by Isermann (1984).  Methods to perform FDD have been developed for a variety of 
complex systems, from the space shuttle main engine to nuclear power plants.  As the 
costs of sensors and computer technology continue to fall, the ability to add FDD systems 
to equipment which is less critical and expensive than these examples continues to 
increase.   In buildings, there is a growing interest in incorporating FDD techniques 
within energy management and control systems (Norford et al. 1987, Pape et al. 1991).   
In addition to applying FDD to large systems, there is also an opportunity to apply the 
technology to the subsystems in a building.  FDD systems can increase efficiency and 
reliability and decrease service costs for vapor compression equipment by detecting 
faults which lead to a reduction in equipment efficiency and equipment life.  Service 
costs can be decreased by using FDD systems to determine when service is justified, 
rather than doing regularly scheduled service or waiting for the equipment to break 
(Rossi & Braun, 1996).  Some of the methods that have been developed to perform FDD 
on vapor compression equipment include work by Grimmelius et al. (1995), Stylianou & 
Nikanpour (1996), and Rossi & Braun (1997). 



1.1 Motivation 
Rooftop air conditioning systems are a good application for FDD for several reasons.   
First of all, the unit is an integrated system, allowing the sensors to be centralized in one 
location and to be factory installed.  Secondly, rooftop units are often used in situations 
where there are no qualified personnel on staff to operate and maintain the equipment.  
Additional information could be provided to untrained building personnel by an FDD 
system to determine when service is required on the equipment, before a fault becomes so 
severe that the unit is unable to maintain comfort.  A large service organization which has 
a contract to operate and maintain buildings might tie the FDD system to a remote 
communication unit which could report on the health of the equipment at regular 
intervals.  This information would facilitate better work planning and an overall 
reduction in the cost to maintain building comfort.       

A statistical, rule-based technique to perform fault detection and diagnostics on vapor 
compression air conditioners has been developed by Rossi and Braun (1997).  The 
technique detects and diagnoses five distinct faults common to vapor compression 
equipment: 1) condenser fouling, 2) evaporator fouling, 3) refrigerant leakage, 4) liquid 
line restriction, and 5) compressor valve leakage.  These faults will usually occur slowly 
over time and often go unnoticed until the equipment is unable to maintain comfort or 
they cause a more serious and expensive problem, such as a compressor failure.  The 
technique uses a model to predict the expected values for temperatures in a normally 
operating unit as a function of the driving conditions.  The expected temperatures are 
compared with current operating temperatures to generate residuals.  The magnitudes of 
the residuals are statistically evaluated to perform fault detection and compared with a set 
of rules based on directional changes to perform fault diagnosis.  

The method was developed using a detailed computer simulation model (Rossi, 1995) 
which solves the mass, energy, and momentum balances for vapor compression 
equipment given any set of driving conditions and fault levels.  The model was used to 
determine which measurements are the most important for detection and diagnosis, to 
develop diagnostic rules, and to study the sensitivity of the technique to each fault for a 
given level of measurement error. The results of the sensitivity study did not consider the 
additional error introduced to the technique by imperfect model predictions.  Some 
experimental verification of the technique was performed, but only at a limited range of 
operating conditions.  The effect of compressor valve leakage was not verified 
experimentally. 

1.2 Objectives 
The overall goal of the research described in this paper was to provide further 
experimental evaluation of the FDD technique of Rossi and Braun (1997).  The specific 
objectives of this research were: 

• To provide a realistic estimate of the technique’s sensitivity in detecting faults by 
accounting for error in the steady-state model prediction. 

• To determine the effect of operating conditions on the diagnostic rules used by the 
FDD technique. 
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• To determine the effect of operating conditions on the detection sensitivity of the 
technique. 

• To quantify, at the level at which faults can be detected, the change in the system’s 
capacity and COP. 

3. FDD Technique  

 

 

Figure 1:  Structure of Fault Detection and Diagnostic Technique 

 
The structure of the FDD technique is depicted in the block diagram of Figure 1.  The 
technique requires the measurement of nine temperatures and one relative humidity on 
the rooftop unit.  Three measurements, the temperature of the ambient air into the 
condenser coil (TBambB), the temperature of the return air into evaporator coil (TBraB), and the 
relative humidity of the return air into the evaporator coil (ΦBraB), are used to characterize 
the driving conditions (U) of the unit.  In a normally operating, simple rooftop air 
conditioning unit (on/off compressor control, fixed speed fans), all the output states (Y) 
in the system are assumed to be functions of only these three driving conditions.  The 
output state measurements used by this technique are five refrigerant temperatures and 
two air temperatures.  They include: 1) evaporating temperature (TBevapB), 2) suction line 
superheat (TBshB), 3) condensing temperature (TBcondB), 4) liquid line subcooling (TBscB), 5) hot 
gas line or compressor outlet temperature (TBhgB), 6) air temperature rise across the 
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condenser (∆TBcaB), and 7) air temperature drop across the evaporator (∆TBeaB).  A steady-
state model is used to describe the relationship between the driving conditions and the 
expected output states in a normally operating system.  By comparing the measurements 
of the output states (YBmeasB) B Bwith those predicted by the steady-state model (YBexpB), 
residuals (∆Y) are generated.  These residuals are used to perform detection and 
diagnosis.  The detection classifier uses the residuals to determine a binary “fault” or 
“no-fault” output.  The diagnostic classifier also uses the residuals to identify the most 
likely cause of the faulty behavior.     

Since a steady-state model is used to predict normal operating states, a steady-state 
detector must be used to distinguish between transient and steady-state operation.  
Because a simple rooftop unit of this type would likely utilize “on/off” control, it will 
spend a significant amount of time in a transient condition.  Glass et al. (1995) have 
suggested several methods which could be used to determine when the system is 
operating in a steady-state condition.  The steady-state classifier provides a binary output 
to a switch (SW), which ignores the output of the detection and diagnostic classifiers 
unless the system is in steady-state. 

1.3 Detection Classifier 
The detection classifier uses residuals to determine whether the current equipment 
behavior is normal or faulty.  The residuals are calculated by comparing the current 
output measurements with the expected output values generated by a steady-state model.  
When the current residuals are statistically different than the expected residuals (zero 
mean), a fault is identified. 

 
Figure 2:  One Dimensional Example of Detection Classifier 
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In Figure 2, the two curves represent the probabilities [P(TBshB)] of obtaining specific 
residuals for normal and faulty measurements.  The uncertainty of the residuals is 
assumed to follow a Gaussian distribution.  The integrated overlap of the two 
distributions, which indicates the likelihood that the faulty distribution of residuals 
represents normal operation, is termed the classification error.  A fault in the system will 
cause a difference in the mean values and/or standard deviations of the residuals.  As the 
fault becomes progressively worse, the difference between the mean values increases and 
the classification error decreases.  Once the classification error drops below a threshold 
value, a fault is indicated by the detection classifier.  In order to compare the current 
behavior with expected behavior using all seven output state measurements, an optimal 
linear classifier (Fukunaga 1990) is used.  The residuals for the current and expected 
operation are fitted to a Gaussian model which can be completely described by the mean 
vector and covariance matrix (Rossi and Braun, 1997).  A value of 10P

-3
P is used as the  

threshold classification error in this paper.   

1.4 Diagnostic Classifier 
The role of the diagnostic classifier in the FDD system is to determine the most likely 
explanation of the faulty behavior occurring in the system.  It compares the direction in 
which the output measurements change when a fault is introduced to the system with a 
set of rules.  Table 1 shows the rules used for diagnosis.  These rules were developed 
using a simulation model and tested experimentally at one operating condition.   

 

Table 1:  Rules for Diagnostic Classifier 

Fault ΤBevapB 
TBshB TBcondB TBscB TBhgB ∆TBcaB ∆TBeaB 

Refrigerant Leak ↓ ↑ ↓ ↓ ↑ ↓ ↓ 
Comp. Valve Leak ↑ ↓ ↓ ↓ ↓ ↓ ↓ 
Liquid Restriction ↓ ↑ ↓ ↑ ↑ ↓ ↓ 
Condenser Fouling ↑ ↓ ↑ ↓ ↑ ↑ ↓ 
Evaporator 
Fouling 

↓ ↓ ↓ ↓ ↓ ↓ ↑ 

Each fault has a unique set of rules when compared using all seven measurements.  By 
integrating the overlap of the current distribution with each of the fault classes described 
by the set of rules, the probability that the current behavior can be explained by each of 
the fault classes can be calculated and compared (Rossi and Braun 1997).  The fault 
probability ratio is defined as the probability of the most likely fault to the second most 
likely fault. A fault probability ratio of 2 was used in this study as the threshold below 
which the output of the diagnostic classifier was considered invalid.  

4. Experimental Set-up 

1.5 System Description 
The unit which was tested in this investigation  is a three ton (10.55 kW) packaged 
rooftop air conditioning unit (Carrier Model 48DJE00416).  It has constant speed motors 
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on both the compressor and the fans and capacity is controlled by cycling the compressor 
on and off.  The expansion device is a fixed orifice type.   

The indoor temperature and humidity and outdoor temperature were controlled using two 
psychrometric chambers.  The rooftop unit is located in the chamber at outdoor 
conditions and air from the indoor chamber is brought to the rooftop unit through an 
insulated duct.  A direct expansion vapor compression system is used to cool and 
dehumidify the air in the chambers.  Control of the air temperature and relative humidity 
is achieved with electric heat and steam injection.  

1.6 Measurements 
Temperature measurements which were used for this analysis were taken using two types 
of sensors.  The refrigerant temperatures were measured using K-type thermocouples 
which were soldered to the pipe surface and insulated.  Surface temperatures are close to 
the refrigerant temperature and are sufficiently accurate for the FDD technique evaluated 
in this paper.  RTD’s were used to measure air temperatures.  The specified measurement 
noise of the thermocouples and RTD’s is less than +/- 0.5 C.  The evaporator inlet and 
outlet relative humidities were measured using a capacitive polymer sensor with a 
published accuracy of  +/-3% relative humidity in the range of conditions considered in 
these tests. 

Pressure, flow, and power measurements were taken during this study to quantify the 
effect of the faults on the system.  Pressures in the system were measured using pressure 
transducers with an accuracy of +/- 6.9 kPa (low side pressures) and +/-17.9 kPa (high 
side pressures).  Flow measurements were taken using a Micromotion 25S-SS mass flow 
meter with an accuracy of +/- 0.4% of full scale.  The mass flow meter, however, loses 
some accuracy if it operates over a wide range of pressures or if a two-phase mixture is 
present.  These effects lead to a decrease in the accuracy of the meter in these tests.  
Power was measured using an AC watt transducer with an accuracy of  +/- 32 W.      

All measurements were processed using a Hewlett Packard HPE1326B multi-meter, and 
interpreted and recorded with a PC running the HPVee data acquisition software.  

1.7 Fault Simulation and Characterization   
All five faults were introduced experimentally to the rooftop unit via reproducible, 
quantifiable means.  The methods used to introduce these faults are explained in this 
section. 

Condenser fouling occurs in the field as a build-up of debris on the condenser coil.  This 
build-up will cause a net loss of condenser surface area available to transfer heat from the 
refrigerant to the air.  In the laboratory tests, condenser fouling was introduced by 
blocking the condenser coil with uniformly spaced, vertical paper strips.  The level of 
fouling is expressed as a total % reduction in the surface area of the condenser coil.  It 
was introduced at the following levels:  7.5%,15%, 22.5%,30% and 35% reduction in 
total condenser surface area.   

Evaporator fouling is generally the result of a plugged air filter or a blocked return air 
vent.  Unlike condenser fouling, it does not make sense to quantify this fault as reduction 
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in the area of the coil.  Instead, this fault was simulated by partially blocking the air flow 
upstream of the evaporator coil.  By measuring the change in differential pressure across 
the evaporator fan as a result of the blockage, a reduction in air flow rate was calculated 
from the fan curve.  Air flow across the evaporator coil was reduced in approximately 
10% increments.   

A liquid line restriction can be caused by a plugged filter/dryer or some debris lodged in 
the fixed orifice expansion device.  In either case, it results in an increased pressure drop 
in the liquid line.  It was simulated in the experiments by partially closing a globe valve 
placed in the liquid line.  The level of fault is characterized by the following ratio: 

Restriction Level =  100%  * 
P
P  

res

sys

∆
∆

            (1) 

where ∆PBres Bis the pressure drop across the restriction valve and ∆PBsysB is the difference 
between high side (condensing) and low side (evaporating) pressures in the system before 
a restriction fault is introduced.  The restriction valve was closed to achieve restriction 
levels of approximately 2.5% increments. 

A compressor valve leakage is one cause of a reduction in the capacity of a compressor.  
It is typically caused by slugs of liquid refrigerant which damage the suction valve in the 
compressor, causing it to lose an effective seal.  When this happens, some of the high 
pressure refrigerant in the compression cylinder leaks back into the suction line across 
the suction valve.  This results in a reduction in the volumetric efficiency of the 
compressor.  A compressor valve leakage was simulated by opening a globe valve which 
allows gas from the discharge line to recycle into the suction line.  The % reduction in the 
net volumetric efficiency of the compressor is calculated using the known compressor 
specification, the inlet refrigerant state, and the mass flow measurement.  The net 
volumetric efficiency of the compressor was reduced in approximately 2% increments. 

Refrigerant leakage is simply the loss of refrigerant from the system.  It was simulated 
by discharging a fixed amount of refrigerant from the rooftop unit into a receiving vessel 
and weighing the vessel before and after the discharge.  The level of refrigerant leakage 
is quantified as the % reduction in the total charge in the system.  Refrigerant was 
removed from the system in approximately 2.5% increments. 

5. FDD Evaluation Approach 

1.8 Characterization of Measurement and Modeling Errors 
The uncertainties in the measurements and modeling predictions have a large effect on 
the sensitivity of the technique in detecting faults in the system.  In the one-dimensional 
example shown in Figure 2, the amount of uncertainty in the measurements and the 
model predictions will increase the standard deviation of both the expected (normal) and 
current (faulty) distributions of residuals, causing them to become wider.  As the 
uncertainty increases, the difference between the mean vectors, and, therefore, the level 
of fault, must be greater before the integrated overlap of the two distributions 
(classification error) is less than the threshold value.  This reduces the sensitivity of the 
FDD technique.  When considering all seven measurements in the detection and 
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diagnostic classifiers, the overall uncertainty in the residuals due to measurement and 
modeling errors are represented by the covariance matrix.  The effect of measurement 
and modeling error on the covariance matrix is considered in this section.     

Measurement noise will increase the uncertainly of the distribution of residuals in two 
ways.  Consider the measurements shown in Figure 1.  First, the sensor noise will 
introduce error in the direct measurement of the output states (YBmeasB).  In addition, the 
error in the measurement of the input states (UBmeasB) of the model will propagate through 
the model, causing error in the prediction of the output states (YBexpB).  These two effects 
were included in the previous sensitivity results given by Rossi and Braun (1997). 

In addition to measurement error, a model will be unable to give a perfect prediction for 
the system output states, even if it is given perfect measurements for the input states.  
Error in the steady-state model predictions will result from: 1) driving conditions which 
are not accounted for in the model, and 2) an imperfect model form to map the 
relationship between inputs and outputs.  

It is inevitable that driving conditions which cannot be easily quantified or are 
unexpected will have an effect the system performance.  An example of a driving 
condition which is unaccounted for in this model is solar radiant energy on the condenser 
coil.  Although the amount of radiant energy gained by the coil is expected to be small 
when compared with the energy lost from the coil due to convection, it may cause the 
unit to operate slightly differently at the same apparent driving conditions. 

Even when all of the important inputs are considered, a steady-state model with a finite 
number modeling coefficients can not perfectly describe the relationship between the 
inputs and outputs given in the training data.  In this case, the modeling error depends on 
the extent of the nonlinear relationship between inputs and outputs, the model form 
which is chosen, and the method used in learning the model.   

To account for the effect of measurement and modeling errors, Equations (2) and (3) 
were used to construct the diagonal and off-diagonal elements in the iP

th
P row and jP

th
P 

column of the covariance matrix used to characterize the distributions of residuals. 

Σ
Φ Φi j T M i

i
T

i
T

if f f
≈ + + + +σ σ

∂
∂

σ
∂
∂

σ
∂

∂
σ2 2 2 2 2 2 2 2

, ( ) ( ) ( )
T Tamb ra ra

 , i = j (2)  
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∂

∂
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∂

∂
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σ

∂
∂

∂

∂
σ
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where: 

ΣBi jB  is the element in the iP

th
P row and jP

th
P column of the covariance matrix. 

fBiB  is the steady-state model prediction for output i. 
σT

2    =  E(wBTPB

2
P), where wBT B is zero mean noise added to the temperature 

measurements (measurement error) and E( ) is the expected value 
operator.   

 8



σ M i,
2  = E(wBM,iPB

2
P), where wBM,i B is zero mean noise added to the model predictions 

(modeling error) for output i.  E( ) is the expected value operator.   
σΦ

2    =  E(wBΦPB

2
P), where wBΦ B is zero mean noise added to the relative humidity 

measurements and E( ) is the expected value operator. 
 
This analysis assumes that the steady-state model output can be expressed as an predicted 
value (fBiB) plus a zero mean, normally distributed error term (σBM,iPB

2
P) .  This analysis also 

assumes that the steady-state model can be approximated by a Taylor series 
approximation about the known operating point (Rossi & Braun 1997).  To quantify the 
error in the model outputs due to input measurement error, the partial derivatives of the 
model outputs with respect to each of the inputs must be known.  These partial 
derivatives were evaluated numerically using a simple steady-state model which was 
developed for the rooftop unit from experimental data.  This model uses data for the 
output measurements which were recorded over a 5x5x5 grid of driving conditions (TBambB, 
TBraB, and ΦBraB).  This data was placed in a regularly spaced lookup table.  A series of 1 
dimensional linear interpolations were used to calculate the outputs for driving conditions 
which did not lie exactly on the grid points in the table.        

1.9 Approximations for Measurement and Modeling Error 
In this study, conservative estimates for sensor error were used.  For temperature 
measurements, a 0.5 C standard deviation of error was used.  For the relative humidity, 
the standard deviation of error was assumed to be 5%. 

There is be a different amount of modeling error associated with each of the seven output 
measurements used in the FDD method.  Based upon initial modeling of laboratory test 
results for normal operation, a standard error of 0.3 C was assumed for all the 
measurements except suction superheat and hot gas temperature.  TBshB and TBhgB appear to 
be more difficult to predict than the rest and are characterized with a higher standard 
deviation of error (1.0 C).  
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Figure 3 shows the trend of suction superheat to “accelerate” toward zero at high ambient 
temperatures.  When the superheat is small (<  5 C), small changes in the operating 
conditions can cause large changes in superheat.  This non-linear change in the behavior 
for suction superheat has a cascading effect on the hot gas temperature.  This non-linear 
relationship is difficult to characterize with a model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Suction superheat vs. TBambB - Lines of constant TBraB 
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1.10 Summary of Testing Procedures 
Each of five faults were introduced at five separate operating conditions.  The five 
conditions which were tested are listed in Table 2. These conditions represent a base 
point and four extreme types of operation. 

Table 2:  Operating Conditions Tested 

Condition TBambB (C) TBraB (C) ΦBraB 

Normal 28.9 21.1 50% 
Low Load 18.3 19.4 40% 
High Load 44.4 27.8 55% 
Low TBshB 37.8 20.0 40% 
High TBshB 18.3 25.6 60% 
 

Normal operation at each set of driving conditions was first recorded with no faults 
present.  The faults were then each introduced at a minimum of 4 distinct levels while 
keeping the driving conditions constant.  Measurements were taken every five seconds 
for all of the input and output variables.  After the system came to steady state, the mean 
values for the output measurements were calculated by averaging the data in a window 
with a minimum of 20 steady-state measurements.  The residuals were calculated by 
subtracting the output state measurements at each fault level from the output state 
measurements which were recorded for normal operation. 

1.11 Estimating FDD Sensitivities 
Once the elements of the covariance matrix have been calculated, the sensitivity of the 
technique to different faults will depend on the relationship between the fault level and 
the size of the residuals.  It is expected that as the fault level is increased, the magnitudes 
of the residuals will increase.  If the magnitudes of the residuals increase in the expected 
directions, the detection error decreases and the fault probability ratio increases.  The 
sensitivity of the technique to each fault is defined as the level of fault which needed to 
be introduced to the system for it to be successfully detected and diagnosed.  A fault was 
detected and diagnosed once the classification error dropped below 10P

-3
P and the fault 

probability ratio exceeded 2.  Linear interpolation of the experimental results was used to 
approximate the residuals at fault levels which were between the fixed levels introduced 
during the experiments.   

6. FDD System Test Results 

1.12 Refrigerant Leakage 
The rules used to diagnose a refrigerant leakage shown in Table 1 held in all of the tests 
which were conducted. The detectable level of the refrigerant leakage and its 
corresponding effect on system capacity and COP at all five test conditions are shown in 
Table 3. 
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Table 3:  Detectable Level of Refrigerant Leakage 

Quantity Normal High 
Load 

Low 
Load 

High 
TBshB 

Low TBshB Average

% Loss of Refrigerant 6.4 12.1 7.7 7.0 5.2 7.7 

% Change in Capacity -4.0 -17.3 -6.7 -8.8 -7.3 -8.8 

% Change in COP 0.0 -7.5 -2.9 -4.7 -6.8 -4.4 

The technique performed well at all conditions except the High Load case.  In this case 
the fault was not detected and diagnosed until the system lost 12.1% of its refrigerant and 
17.3% of its capacity.  The reduction in FDD sensitivity for this case is best explained by 
comparing the results of Figure 4 and Figure 5.  Figure 4 shows effect of a reduction in 
refrigerant charge on the classification error and fault probability ratio for the Low TBshB 
test.  The Threshold line indicates a detection classification error of 10P

-3
P on the left axis 

and a fault probability ratio of 2 on the right axis.  A fault is detected and diagnosed once 
the Error drops below the Threshold and the Ratio exceeds the Threshold.  In this 
case, the threshold for classification error is reached slightly after the fault probability 
ratio reaches its threshold.  The fault is detected and diagnosed after 5.2% of the charge 
has leaked from the system. 
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Figure 4:  Refrigerant Leakage FDD Sensitivity:  Low TBshB Conditions 
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Figure 5:  Refrigerant Leakage FDD Sensitivity:  High Load Conditions 

 

Figure 5 shows classification error and fault probability ratio results for the High Load 
test.  In this case, the fault probability ratio does not reach its threshold until 12.1% of the 
refrigerant has been removed from the system.  The classification error dropped below its 
threshold at a 5.2% charge reduction.  However, the diagnostic classifier could not 
distinguish between a refrigerant leakage and a liquid line restriction until significantly 
more refrigerant was removed.  Table 1 shows that the rules are the same for these two 
faults in all measurements except for liquid subcooling.  At High Load conditions, the 
subcooling initially increased a small amount as refrigerant was removed, giving a weak 
indication of a liquid line restriction.  Eventually, the subcooling started to decrease and 
the diagnostic classifier correctly identified the refrigerant leakage fault.  A high ambient 
temperature causes a low level of subcooling and a loss of sensitivity of the subcooling 
residual to a refrigerant leakage.  This theory is supported by the fact that the Low TBshB 
test, the other high ambient test, also showed a smaller than average change in 
subcooling.  

The size of the residuals at the level at which refrigerant leakage was detected and 
diagnosed is shown in Figure 6.  These results show that the suction superheat (TBshB),B Bhot 
gas temperatures (TBhgB), and the evaporating temperature (TBevapB) are the most sensitive 
residuals for a refrigerant leakage. 
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Figure 6: Average Residuals at Detectable Level of Refrigerant Leakage 

1.13 Condenser Fouling 
The rules used to diagnose condenser fouling shown in Table 1 also held at all five 
operating conditions.  The detectable level of the condenser fouling fault and its 
corresponding effect on system capacity and COP at all five test conditions are shown in 
Table 4.  Condenser fouling was detected at all five test conditions before a 6% decrease 
in capacity occurs.  The FDD sensitivity to condenser fouling decreases slightly at high 
ambient conditions, but is relatively insensitive to operating conditions.  In Normal and 
High TBshB tests, a slight increase in capacity was calculated using a refrigerant side energy 
balance.  This increase is most likely due to the difficulty in accurately measuring 
refrigerant mass flow rate coupled with the relatively small change in system 
performance at the detectable level of condenser fouling  An actual increase in capacity 
due to condenser fouling does not make sense physically.   

 

Table 4:  Detectable Level of Condenser Fouling  

Quantity Normal High 
Load 

Low 
Load 

High 
TBshB 

Low TBshB Average

% Decrease in Coil Area 28.5 28.5 28.1 23.8 31..8 28.1 

% Change in Capacity 2.0 -1.7 -0.7 1.9 -5.5 -0.8 

% Change in COP -1.9 -6.0 -4.6 -3.1 -8.9 -4.9 

The average residuals at the detectable level of condenser fouling are shown in Figure 7.  
As one might expect, the condensing temperature is the most sensitive residual for 
condenser fouling.  For diagnosis, the temperature difference of the air across the 
condenser is an important measurement, since a condenser fouling fault is the only fault 
which causes this residual to increase.   
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Figure 7:  Average Residuals at Detectable Level of Condenser Fouling 

1.14 Evaporator Fouling 
The rules used to diagnose evaporator fouling shown in Table 1 also held at all five 
operating conditions. The detectable level of the evaporator fouling fault and its 
corresponding effect on system capacity and COP at four test conditions are shown in 
Table 5.  The detection classifier was unable to detect evaporator fouling at the levels 
which were introduced at the High Load condition. The technique performed well at 
Normal, Low Load, and High TBshB conditions, detecting and diagnosing an evaporator 
fouling fault before the capacity or COP changed by more than 4%.  The High Load and 
Low TBshB test, which both involve high ambient temperatures, were significantly less 
sensitive to the evaporator fouling. 

Table 5:  Detectable Level of Evaporator Fouling  

Quantity Normal High 
Load 

Low 
Load 

High 
TBshB 

Low TBshB Average

% Decrease in Air Flow 34.1 > 42.5 17.9 21.0 21.1 23.5 

% Change in Capacity 0.6 > 0.2 -3.5 -2.8 -12.1 -4.5 

% Change in COP 3.7 >0.2 -0.9 -1.8 -9.1 -2.0 

  

The average residuals generated at the detectable level of evaporator fouling are shown in 
Figure 8.  The TBsh Band the TBhgB residuals are again the most sensitive to the fault.  In terms 
of diagnostics, however, the temperature difference across the evaporator is the most 
important measurement, since evaporator fouling is the only one of the five faults which 
causes this temperature difference to increase.   
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Figure 8:  Average Residuals at Detectable Level of Evaporator Fouling 

1.15 Liquid Line Restriction 
The rules used to diagnose a liquid line restriction shown in Table 1 also held at all five 
of the operating conditions. The detectable level of the liquid line restriction fault and its 
corresponding effect on system capacity and COP at the five test conditions are shown in 
Table 5.  In terms of restriction level, capacity, and COP, the technique is again the least 
sensitive at High Load conditions.  In terms of the effect on capacity, the technique was 
significantly more sensitive at Normal and Low TBshB conditions.   

 

Table 6:  Detectable Level of Liquid Line Restriction  

Quantity Normal High 
Load 

Low 
Load 

High 
TBshB 

Low TBshB Average

Restriction Level (Eq. 3) 11.2 16.1 9.2 7.2 9.0 10.5 

% Change in Capacity -2.9 -15.7 -6.7 -7.1 1.7 -6.1 

% Change in COP -0.5 -11.9 -3.8 -3.2 2.4 -3.4 

The average residuals for a detectable level of liquid line restriction fault are shown in 
Figure 9.  Again, TBsh Band TBhg Bare the most sensitive of the measurements to the 
introduction of a fault.  
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Figure 9:  Average Residuals at Detectable Level of Liquid Line Restriction 

1.16 Compressor Valve Leak 
The rules for diagnosis of a compressor valve leakage, which were developed through 
simulation, did not hold during the experimental introduction of the fault.  The rule which 
needed correction was the direction of the TBhgB residual.  Depending on the operating 
conditions, the hot gas temperature may either increase or decrease with compressor 
valve leakage.  The hot, high pressure gas which recycles back into the suction line from 
the discharge line raises the temperature of the suction gas.  At a constant pressure ratio, 
the recycled gas would cause the temperature of the compressor discharge gas to 
increase.  However, a compressor valve leakage also causes a reduction in the pressure 
ratio, which will tend to decrease TBhgB.  Thus, the direction in which TBhgB moves during a 
compressor valve leakage is a trade-off between these two effects.  At Low Load and 
Normal conditions, the hot gas temperature decreased.  At the other conditions, the hot 
gas temperature increased.  This is the one rule which appears to change as a function of 
the operating conditions.  The simulation model did not account for the effect of the hot, 
recycled gas on the suction line temperature since it modeled a compressor valve leak 
simply as a reduction in the compressor volumetric efficiency.   

The rule for TBhgB was updated to expect an increase in the hot gas temperature when a 
compressor valve leak is present.  With the rule for TBhgB updated, a sensitivity analysis for 
compressor valve leakage was performed. The detectable level of the compressor valve 
leakage fault and its corresponding effect on system capacity and COP at the five test 
conditions are shown in Table 7.  The sensitivity to a compressor valve leak is 
comparable to the sensitivity to the other faults at all conditions except for the Low  TBshB 
conditions.  As with the other faults, the least sensitive cases for compressor valve 
leakage are the high ambient temperature tests.  The Normal case, where the air 
conditioner will likely spend most of its operating time, is still quite sensitive to a 
compressor valve leak in terms of the effect on capacity.   
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Table 7:  Detectable Level of Compressor Valve Leakage  

Quantity Normal High 
Load 

Low 
Load 

High 
TBshB 

Low TBshB Average

% Decrease in Vol. Eff. 7.7 13.6 7.9 13.8 16.3 11.9 

% Change in Capacity -1.4 -6.9 -0.9 -5.5 -17.1 -6.4 

% Change in COP -3.3 -10.9 -1.7 -7.0 -21.0 -8.8 

The average residuals generated at the detectable level of compressor valve leakage are 
shown in Figure 10.  TBsh Band TBevapB are the most sensitive residuals to the introduction of a 
compressor valve leakage. 
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Figure 10:  Average Residuals at Detectable Level of Compressor Valve Leakage 

7. Conclusions/Future Work 

 

This paper has reported on the testing of a statistical, rule-based fault detection and 
diagnostic technique on a simple rooftop air conditioning unit.  The technique compares 
the current operating states with the expected states generated by a steady-state model to 
generate residuals.  These residuals are statistically compared to the expected zero-mean 
distribution of residuals to detect a fault.  They are compared to a set of rules based on 
the directional change of the residuals to perform diagnosis of the fault.  The technique 
was  experimentally tested at five different conditions to quantify the sensitivity of the 
technique over a range of driving conditions and to verify that the diagnostic rules did not 
break down.  Noise was introduced into the expected and current distributions of 
residuals to account for measurement and modeling error. 

 18



A summary of the FDD sensitivity averaged over all five operating conditions which 
were tested is shown in Table 8. The results in Table 8 show that the technique was able 
to detect and diagnose these five commonly occurring faults in vapor compression 
equipment before they would have a significant impact on the operation of the 
equipment.  The results also showed that the level at which the faults can be detected and 
diagnosed was dependent on the operating conditions.  The technique was the least 
sensitive to faults when operating at high ambient conditions.   

  

Table 8:  Average Sensitivity of FDD Technique 

Quantity Condenser 
Fouling 

Evaporator 
Fouling 
(High Load Case 
Not Included) 

Refrig. 
Leak 

Liquid 
Line 
Restriction 

Comp. 
Valve 
Leak 

Fault Level 28.1 23.5 7.7 10.5 11.9
% Capacity Change -0.8 -4.5 -8.8 -6.1 -6.4
% COP Change -4.9 -2.0 -4.4 -3.4 -8.8

 
Two problems with the diagnostic rules were identified which require further 
investigation.  The dependency of refrigerant leakage diagnosis on the liquid line 
subcooling state was shown to be a problem at high ambient conditions, where the 
subcooling becomes less sensitive to a loss of refrigerant charge.  Also, the rule for hot 
gas temperature used to diagnose a compressor valve leak was incorrect.  The change in 
the hot gas temperature due to a compressor valve leak is dependent on the operating 
conditions.   

The suction superheat and hot gas temperature residuals which were the most sensitive to 
the five faults.  However, they are also the most difficult states to predict with a steady-
state model.   

Additional work to further demonstrate this technique should be directed toward the 
development and testing of a steady-state model and steady-state detector.  This study 
assumed model predictions with a normally distributed error term.  In practice, a real 
model will give a biased prediction of the expected output states at different operating 
conditions. Techniques to efficiently and accurately learn a steady-state state model 
should also be investigated.  Once a steady-state model and detector have been 
developed, then on-line testing of the technique can take place.   

8. Nomenclature 

E( ) expected value operator 
fBiB plant model for iBthB output 
P( ) probability density function 
TBamb Bambient temperature (inlet to condenser) 
TBcondB condensing temperature 
TBevapB evaporating temperature 
TBhgB hot gas temperature (compressor outlet) 
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TBraB return air temperature (inlet to evaporator) 
TBsc Bliquid line subcooling 
TBshB suction line superheat 
U vector of inputs that affect plant performance, driving conditions 
Y vector of measured plant outputs 
∆PBres Bpressure difference across liquid line restriction valve  
∆PBsys Bdifference between high side and low side system pressures for normal operation 
∆TBcaB air temperature rise across condenser 
∆TBea Bair temperature drop across evaporator 
∆Y vector of residuals between measured and modeled plant outputs 
ΦBraB return air relative humidity (inlet to evaporator) 
σ standard deviation of measurements or modeling error 
Σ covariance matrix for residuals 
 
Subscripts 
expB Bmodel prediction (expected performance predictions) 
meas measured 
T temperature 
M model 
Φ relative humidity 
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