Identification of a change in the thermal dynamics of a wall
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ABSTRACT

In this work the problem of the estimation of a
change in the dynamics and time-varying
thermal parameters for a wall from experimental
data is solved in several ways. The problem is
firstly solved by the application of a classical
steady-state method. This method gives good
results with time series long enough, but shows
no predictive power. Secondly, linear time-
invariant (LTI) dynamic statistical models in
transfer function form are applied. They
estimate the thermal parameters and also offer
predictive power. Finally, linear and time-
varying (LTV) continuous time stochastic
modelling is applied. This last technique is able
to estimate the thermal parameters, fits the time-
varying dynamics and shows an accurate
predictive power. The first two methods need
some additional previous treatment of the time
series by the analyst, while the last one doesn’t.

The experimental data for the wall correspond
to the first case proposed for resolution in the
System Identification Competition III (SIC III,
www.dynastee.info),  organized by  the
DYNASTEE (DYNamic Analysis, Simulation
and Testing applied to the Energy and
Environmental performance of buildings)
network. The implementation of the European
Energy Performance of Building Directive
requires adequate calculation and modelling
tools which is the main reason why this third
competition has been organised. In this context,
SIC III has been organised with the objective of
further develop knowledge of system

identification applied to thermal performance
assessment in the built environment.

1. INTRODUCTION

The considered case study, presented and made
available in www.dynastee.info/events.php, is
concerned with the monitoring of a wall in a
house constructed in the 1990°s to assess its
thermal performance before and after the
installation of cavity-fill insulation. The wall as-
built consists in a lightweight concrete block
and a cavity providing the insulation. Filling the
cavity with insulating material should improve
thermal performance, resulting in lower energy
consumption to reach thermal comfort.
Monitoring was carried out during February and
March 2007. A heat flux (q;) meter was fixed to
the internal surface of the wall using double
sided tape. A temperature sensor was mounted
within the room (Tiy), a few centimetres away
from the wall. An external air temperature
sensor (Tex) was mounted within a solar
radiation shield fixed to the north facing exterior
of the wall. Measurements were logged at 1
minute intervals and hourly averages recorded.
817 hours of data were collected. A section
scheme of the wall and a plot of the collected
data can be seen in figure 1.

It is asked for the day on which the insulation
was added and the U-values before and after
filling the wall cavity.

Several models can be considered to model the
heat dynamics of building components (Jiménez
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and Madsen, 2008). This work considers some
of these approaches focusing in modelling time-
varying thermal parameters of the studied wall.

inside

fixed wath
“chibes™ of

Experimental data. Wall retrofit.
25 30

;
PRGN k] .
PRIATILL [
sl A PVTER A
""\ WY ov vy
wh !

:
. P P — P
sk SRS L MR E A A
AR AR AT e S T

Yl d “J ¥

ik

(;W/M) xni JeeH

Temperature (°C)

51101 151 201 251 301 351 401 451 501 551 601 651 701 ‘751 801

—--=Ti(°C) Time (hours)
5 —Te (°C) 5
------ HF (W/m2)

Figure 1. Section detail and plot of the experimental data
for the retrofitted wall.

2. CLASSICAL STEADY STATE METHOD

This method — also refered as the average
method — provides quantitative and qualitative
information about the measured data and allows
to estimate, for experiments long enough, some
of the parameters like the U-value of the wall
(ISO 9869, 1994). The formula below gives the
estimate of the U-value (in W/Km?) of the
average method:

go__ = (1)

where i stands for the index of an observation.
To obtain an accurate U-value with eq. (1) it is
required at least 72 hourly-spatiated data. Other

requirements for the accuracy of the average
method according to (ISO 9869, 1994), such as
“the estimate corresponding to the first 2/3 part
of the test period should not deviate by more
than 5% from the estimate corresponding to the
last 2/3 part of that period” do not hold in this
case, since there is an instant of time where
thermal dynamics - and consecuently the
parameters - change.
Anyway, the application of this method can give
useful information: the estimate at the beginning
of the time series must characterize the U-value
of the wall before the insulation treatment and
the estimate at the end of the period must
characterize the U-value of the retrofitted
wall. First, the average method has been
applied to estimate the U-value with the first
n hours of data, with n covering the whole
data series (U-forwards). Secondly, the U-
value has been estimated with the average
method with the last n hours of data, with n
covering the whole data series (U-
backwards). The results of these calculations
can be seen in figure 2.
It can be observed that in the sets of data
with less than 80 points the U-value presents
an oscillation. For the regime between 100 and
400 points the forwards estimation of the U-
value is very stable and near 0.8 W/m°K. The
backwards estimation, seems more estable in the
interval between 100 and 300, with an U-value
near 0.4 W/m’K. This estimation seems
physically consistent, since the U-value after the
retrofitting must be much more less than before.

Figure 2. Estimation of the U-value “backwards” and
“forwards” by the average method.
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3. APPLICATION
FUNCTION MODELS

OF TRANSFER

An ARMAX model is considered (Box and
Jenkins, 1976), to take into account the
dynamics of the heat transfer through the wall
(Norlén, 1993; Jiménez et al.; 2008):
A@Q() = Bi(@)Tin(t) + BATex(t) + Cl@le(t), (2)
where A, B; and B, are polynomials in the lag
operator ¢, e(t) is white noise and the following
steady state relation must be satisfied:

3)

ext)+e

o=ulr,

124

Different ARMAX {1,1,%) model fitting

this has been done, one can check the following
features:

1. The orders of the fitted models increase
to (10,10,8) and (10,10,9) in the forward
case and (10,10,1), (10,10,6) and
(10,10,1), depending on the exact
interval selected for the estimation.
There is a final interval (near the half of
the time series) where the forward
predicted heat flux diverges from the
experimental data (provided the interval
used for the estimation doesn’t contain
the former).

There is a time interval at the beginning
of the data series (corresponding to the
complementary of the previous one) in

which the backwards
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Figure 3. First order ARMAX model fitting with heat flux
as output.

As a first approximation one could think of
fitting one-order models to estimate the
dynamics of the system. It is shown in

figure 3 how heat flux dynamics is
followed in the mean, while the peaks

are far to be represented. The two
different operation regimes are well
represented in the backwards and
forwards estimated models. The model
obtained wusing all the data series
exhibietes a good “mean performance”,

but fits worst in each regime than the
estimated model using data only in that
interval.

To better represent the dynamics of the

wall, higher order ARMAX models must

be fitted to the experimental data. Once
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from a reproduction.
In Figure 4 it is shown the estimation performed
forward with the first 380 points (order 10,10,8)
and backwards with data from the point 450 and
on (order 10,10,10). As in the first order case,
the transition near point 400 can be noticed.
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Figure 4. Estimation of the higher ARMAX models
considered.
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Features 1-4 mentioned before are also noticed
in figure 4. Numerical results for different
intervals are presented in table 1. As in the
application of the steady state method, the
results show physical consistency, giving a
lesser value for the U-value after retrofittting the
wall. It must be highlighted the low relative
value of the associated error of the parameter
identified.

Error plot for high order ARMAX medel fitting

the inside temperature of the wall (Tiy) as an
output and the outside temperature and the heat
flux through the wall as inputs to the model and
following an analog procedure.
Results are presented in table 2 and in figure 6
(for [1,200] forward and [700,817] backwards,
respectively) and are consistent with all
previous considerations. The divergence in
temperature is more noticeable than in the heat
flux, becoming a more illustrative

situation of the change of the

; * Backwards dynamics. . These models can
5 + Porward )
5o 4 — Total also be applied to evalute the
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effect produced in the indoors

temperature by the insulation
added.

4. DEVELOPMENT AND
APPLICATION OF A LINEAR
TIME-VARIANT (LTV)

3
o

£ i
Time {hours)
Figure 5. Residual for the high order ARMAX models.

The residuals of the time series are mostly
comprised between -5 and +5 W/m’K, which
represents a high relative percentage. Figure 5
shows the residuals for the same models as
estimated in figure 4.

Pl

MODEL

The dynamics of a wall can also
be modelled through an electrical circuit
analogy. One of the simplest circuits to identify
the thermal dynamics of a wall is shown in
figure 7, representing the wall as a two
resistances and one capacitor.

High order ARMAX model fitting. Temperature a3 output.
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Fig. 7. Thermal circuit for the dynamics of
a wall. R, R, and C; are functions of time.

The wall with a change in the
dynamics at the instant ty, can be
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Figure 6. High order ARMAX model fitting with inside
temperature as output

As reported in previous works other assignment
of inputs and output can be considered (Jiménez
et al., 2008). In this case it could be considered
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modelled with the same kind of
circuit, but component
characteristics time-varying. The adition of
insulation at ty can be modelled as two
resistances and one capacitance, each of these
parameters in the form of a heaviside function
of time with the discontinuity at the same
position for all these parameters.
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Table 1. Numerical results for different ARMAX fitted models considering the heat flux density as output.

Time interval

Time interval Model
[1,150] 0.9039 0.002 10,10,8
[1,200] 0.7851 36E-4 10,10,8
[1,250] 0.7880 1.58 E-4 10,10,8
[1,300] 0.8261 1.078 E-4 10,10,8
[1,350] 0.8451 1.3 E-4 10,10,9
[1,375] 0.7819 24E-4 10,10,8
[1,400] 0.7732 2394 E-4 10,10,8
[1,425] 0.6736 24E-4 10,10,8
[1,450] 0.6141 4437 E-4 10,10,8
[1,500] 0.6572 0.0014 10,10,8

[650,817] 0.3428 1.54 E-4 10,10,10
[600,817] 0.3303 6.1475 E-5 10,10,10
[550,817] 0.3542 8.0164 E-5 10,10,10
[500,817] 0.3478 5.8E-5 10,10,10
[450,817] 0.3216 5.8E-5 10,10,10
[425,817] 0.3420 6.48 E-5 10,10,10
[400,817] 0.3549 7.59 E-5 10,10,10
[375,817] 0.3205 838 E-5 10,10,1

[300,817] 0.1757 0.006 10,10,1

[200,817] 0.2543 0.003 10,10,1

Table 2. Numerical results for different ARMAX fitted models considering the indoor temperature as output.

Time interval Error Time interval
[1,200] 0.7358 0.0927 10,10,1 [600,817] 0.4309 0.0065 10,10,1
[1,250] 0.7988 0.0109 10,10,1 [550,817] 0.4222 0.0011 10,10,1
[1,300] 0.7998 0.018 10,10,1 [500,817] 0.425 0.002 10,10,1
[1,330] 0.8070 0.0104 10,10,1 [575,817] 0.4247 0.0018 10,10,1
[1,350] 0.8289 0.016 10,10,1 [650,817] 0.4148 0.0012 10,10,1
[1,375] 0.8259 0.0083 10,10,1 [450,817] 0.4332 0.03 10,10,1
[1,400] 0.8342 0.0045 10,10,1 [400,817] 0.4434 0.0048 10,10,1
[1,425] 0.8137 0.0133 10,10,1 [350,817] 0.4946 0.0189 10,10,1

Putting all these hypotheses together we can
write a model for the wall:

dT= —(1+1j11;+[1 II];’“] t+o; dw
R R)C  \RG RC\IL,

(3)

o--Ltr4lo L L. ©9)
R R \Ti)

R, R R (10)

= + ,
T e e

Where tg is the instant when the insulation was
added and 1 = 1,2,3 and R3 = Cl1. CTSM
(Kristensen et al., 2003) has been used as
software tool to estimate the parameters of the
considered model. As recommended in CTSM
user manual (Kristensen et al., 2003), the
heaviside function has been changed for the eq.
10 with a value of y=10" to allow this, to
estimate the parameters correctly, since the
heaviside function is discontinuous. The
supercripts “b” and “a” stand for before and
after the retrofitting, respectively.

Estimating the parameters of this model with the
whole set of experimental data gives results
summarised in table 3.

These results are consistent with all previous
results presented in sections 2 and 3, and also
provide an estimation of the time of the change
of the dynamics of the wall without need of
further pre-processing the input data.

Table 3. Parameter estimation using a simple LTV model.

U-value before | 0.8078
U-value after | 0.4272
Time of change | 390

It can be seen in figure 8 that this model can
reproduce the experimental behaviour both
backwards and forwards. This model also shows
a good fit to the heat flux peaks before and after
the installation of the insulation.

If identifications by separation of intervals were
performed, one could have noticed that even in
the worse region it presents less error in the
peak tracking that the transfer function models
considered. At this point, it should be remarked
that the same linear and time-variant model can
be used for estimation in intervals of data
without change in the dynamics. A value of the
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time of change close to zero or greater than the
leght of the interval considered will take into
account of this phenomenon, without the need
of reformulating the model and the analysis
algorithms.
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Figure 8. Time-varying dynamic model estimated with
the whole series without previous treatment.

For example, in the backwards estimation, the
probabilities of being negligible the resistances
and capacity of the “previous insolation” part
are near one (0.9992 for Ry,, Ry, and C,,). For
the estimated time-of-change, a negligible
probability is obtanied for this parameter of
0.9998.

Error plot for LTV complete model

Heat Flux (W/K m?)
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Figure 9. Residuals for the complete LTV estimation

In the figure 9 a plot of the error is presented. It
can be seen that the error plot is nearly
homogeneous as before as after the global
identification, with values between -2 and 2
W/m’K.

5. CONCLUSION

Several methods have been applied to identify a
change in the dynamics os a wall. The steady-

state method solves the problem in a simple way
but give no information about the dynamics of
the system.

Transfer function form models considered
represent the dynamic better than the average,
but in principle is difficult to select the right
interval to estimate.

A LTV model has been developed and applied,
showing a good predictive capability, capturing
the dynamics of the model.
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