Integrated Systems Demand Control Technology

D.P.W. Solberg, P.E.

HVAC Systems Technology 5939 Clinton Ave. S., Minneapolis, MN 55419, U.S.A.

ABSTRACT

The peak electrical demand of office building VAV systems will be reduced by ≈ 1.2 Kw/1000 Ft² by employing an Integrated Systems Demand Control Technology (ISDCT) sequence to reduce peak intake flow by $\approx 56\%$. Supply, return, and exhaust fan energy decreases with reduced airflows and pressures; and chiller system energy is saved by reduced cooling coil loads.

The ISDCT sequence continuously computes zone contaminant concentrations allowing compliance with reference standards. The office computer system identifies active personal computers and transfer this and manually inputted zone occupancy data to the building automation system—eliminating the need for CO_2 sensors.

All buildings require dynamic building pressurization control to adjust for substantial wind and stack boundary conditions—which can actually reverse intake and exhaust flows. Building differential pressure measurement should be used to calibrate and dynamically reset the building pressurization flow setpoint.

Pressurization flow accuracy was evaluated using 2% and 6% repeatable airflow sensors; the 2% sensors allowed 10 steps of control near minimum pressurization versus 3 steps for the 6% sensor. Given a minimum controllable building pressure setpoint of ≈ 0.0005 inches water column, a sensor repeatability of 0.00005 inches water column will provide 10 steps of control.

KEY WORDS

Demand Limiting, Building Pressurization, Indoor Air Quality, Energy Savings

BUILDING PRESSURIZATION

Since Integrated Systems Demand Control Technology (ISDCT) varies ambient exchange rates, it is part of the building pressure control loop. The primary objective of building pressurization control is to prevent damage to the building envelope in the summer through infiltration and in the winter through exfiltration--both of which cause high humidity in exterior walls. Secondary objectives are to minimize energy consumption by minimizing pressurization flow and to improve air quality by minimizing infiltration of unconditioned air.

Building pressurization is determined by the difference between total intake and total exhaust flows of all air handling units and exhaust fans. Large variations in intake and exhaust flows due to wind and stack effect was documented in constant speed exhaust fans and air handling unit intakes (with fixed damper positions) and exhausts as long as thirty five years ago and has been the central issue of later studies_{2,4,5,7,8}. Flow variations can be so large that exhaust and intake flows can be reversed_{4,7,8}.

Refer to Figure 1. During the minimum outdoor air cycle, air handling unit intake and recirculation dampers are modulated in sequence to maintain intake flow setpoint, and exhaust fans are controlled to maintain building pressure. During the economizer cycle, air handling unit exhaust is controlled along with exhaust fan speed to maintain building pressurization. The differential pressure sensor across the exhaust damper is used during switchover between minimum intake and economizer cycle—to stabilize wind and stack effects.

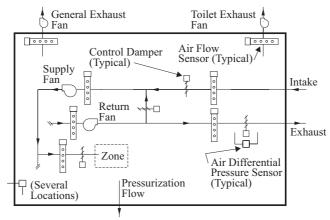


Figure 1: Building Pressurization Control

Supply and return airflow sensors, which are traditionally used to control building pressurization during the economizer cycle, cannot control building pressurization during the minimum intake cycle due to excessive errors. Table 1 lists intake, exhaust, supply, return, and pressurization flows for a 400,000 ft² tight building. Table 2 lists the pressurization flow measurement errors associated with 2% and 6% repeatability using: (1) measurement of all air handling unit intake flows and all exhaust fan flows; and (2) measurement of all exhaust fan flows and all air handling unit supply, return, and intake flows. The supply/return flow technique has excessive errors (>42% of pressurization flow with 2% repeatability sensors).

TABLE 1 Building Pressurization Flow

Building Pressurization Flow $400,000 \text{ Ft}^2 \text{ x } 0.03 \text{ Cfm/Ft}^2 = 12,000 \text{ Pressurization Cfm}$							
Peak Cooling Operation During Minimum Outdoor Intake Cycle							
	Supply x1000 Cfm	Return x1000 Cfm	Intake x1000 Cfm	Exhaust x1000 Cfm			
Air Handling Unit #1 Air Handling Unit #2 Air Handling Unit #3 Air Handling Unit #4 Exhaust Fan #1 Exhaust Fan #2 Exhaust Fan #3 Exhaust Fan #4 Exhaust Fan #5	100 100 100 100	77 85 72 77	23 15 28 23	0 0 0 0 18 18 18 11 12			
Totals	400	311	89	77			
Press. Flow x 1000 cfm (Total Intake - Total Exhaust) = 12							

With 2% repeatability, pressurization flow can be measured within $\approx 10\%$ of its true value. With 6% repeatability pressurization flow can be measured within $\approx 29\%$ of its true value. With 29% pressurization flow error, ≈ 3 steps of control will change building pressure across null pressure, versus ≈ 10 steps with 10% pressurization flow error.

Given the difference in actual measured leakage in a variety of commercial buildings with and without fans, pressurization flows in commercial buildings will vary by $\approx 400\%_{6,9}$ (≈ 0.03 -0.012 cfm/ft²) Since building differential pressure setpoints are very small when compared to effects of wind pressures, building differential pressure cannot be used as the primary input control variable. Rather, building differential pressure should be used to reset the pressurization flow setpoint based on temperature and wind. The minimum pressurization/depressurization flow is determined when there is no wind and the ambient temperature is the same as the building interior.

Variable speed exhaust fans can control flow to within Error! Not a valid link.0.5% accuracy. Air handling unit intake and recirculation dampers can control intake flow within $\approx 2\%$ of setpoint flow—if they are sized with the range of flow coefficients (C_O) required to accommodate wind and stack effects at the intake louver. Air handling unit exhaust flow can be controlled $\approx 1-2\%$ accuracy by modulating return fan speed.

TABLE 2
Building Pressurization Measurement Errors

Building Pressurization Control During Cooling Peak (Minimum Outdoor Intake Cycle)									
	6% Repeatability				2% Repeatability				
	Supply x 1000 Cfm	Return x 1000 Cfm	Intake x 1000 Cfm	Exhaust x 1000 Cfm	Supply x 1000 Cfm	Return x 1000 Cfm	Intake x 1000 Cfm	Exhaust x 1000 Cfm	
Unit #1 Unit #2 Unit #3 Unit #4 Exh. Fan #1 Exh. Fan #2 Exh. Fan #3 Exh. Fan #4 Exh. Fan #5	6.0 6.0 6.0 6.0	4.6 5.1 4.3 4.6	1.4 0.9 1.7 1.4	0 0 0 0 1.1 1.1 1.1 0.7	2.0 2.0 2.0 2.0 2.0	1.5 1.7 1.4 1.5	0.46 0.3 0.56 0.46	0 0 0 0 0.4 0.4 0.4 0.2	
Totals	24.0	18.7	5.3	4.6	8.0	6.2	1.8	1.5	
Methods: Measured Flows		Square Root of: [Sum of Individual Errors Squared]		Cfm Error % of Press. Cfm		Square Root of: [Sum of Individual Errors Squared]		Cfm Error % of Press. Cfm	
Sup/Ret/Exh. Fan Intake/Exh.		15.5 3.4		128.0% 28.7%		5.2 1.1		42.7% 9.6%	

AIRFLOW AND AIR DIFFERENTIAL PRESSURE SENSORS

Airflow sensing technology has significantly advanced in the last decade. Permanently calibrated electronic thermal dispersion airflow sensors, traceable to a national standard, are

commercially available with 2% installed repeatability over a full range of velocities₃. These sensors are used for intake, exhaust, supply, return, and zone flow measurement and for building differential pressure. Permanent calibration eliminates expensive and intrusive recalibration required to protect the building envelope.

It makes little sense to employ an air balance contractor to take pitot tube traverses of system flows given the low cost of accurate permanently calibrated instrumentation. Traditional zone flow sensors (VAV boxes) have significant inaccuracies—as much as 30% at lower flows. Typically, zone flow sensors provide a feedback signal representative of the direction of flow change (increase/decrease) which is used only for the purpose of maintaining zone temperature.

A typical building pressurization after a successful air balance is in the range of 0.0015-0.0350 inches water column. This setpoint can be lowered to \approx 0.0005 inches water column by using sensors₃ with repeatability equal to 10% of this minimal setpoint. Heating and cooling energy savings for pressurization flow is \approx \$1-\$2.5/Cfm-Yr.

INDOOR AIR QUALITY

For the purposes of this paper, the building indoor air quality setpoint is determined by the design setpoint limit concentrations of particulate and gaseous contaminants. This definition of indoor air quality is similar to the internationally used *decipol* index in that it is directly tied to contaminant concentration. This definition is different than the *decipol* index in that it is not limited to only those contaminants that people can detect. ISDCT can be used with *ASHRAE Standard 62-2001 Ventilation Rate* and *Indoor Air Quality Procedures* and international decipol-based Standards including *CR 1752 Ventilation for buildings- Design criteria for the indoor environment* since all indoor air quality standards are tied to contaminant concentration.

Programs for zone contaminant concentration incorporating the following parameters have been commercially available since 1988 (CONTAM87)₁: (a) volume/mass of air in space; (b) ambient intake flow rates; (c) zone flow rates; (d) supply flow rates; (e) contaminant concentrations of ambient air; (f) emission rates of building, people, cleaning, and other sources; (g) transfer fan flow (conference rooms); (h) zone ventilation efficiency; and other data.

The building automation system is integrated with the office computer system. A software patch provides the building automation computer zone occupancies and scheduled emissions periods (cleaning and other). The office computer system determines zone occupancy based on status or activity of personal computers and through manual input of conference and assembly room schedules. Manual input to the automation system establishes base emission rates for building carpet, furnishings, cleaning, construction activity, and abnormal ambient contaminant concentration. Gas phase filtration can be factored in by the building automation system along the lines Yu and Raber presented in 1991₁₀.

SEQUENCE OF CONTROL

Refer to Figure 2. Based on the demand controlled ventilation modeling by Carpenter₁ intake flow rates can be decreased to near zero for approximately three hours, which is on par with the duration of an expected peak electrical demand period. During Period 1 ambient air intake is increased to dilute contaminant concentrations below the building indoor air quality setpoint limits—to a point that will minimize total energy cost (peak demand reduction and energy consumption). Historical trend data will establish the expected duration of future peak periods. Intake, supply, and zone airflow sensors will establish zone entering contaminant concentrations. During Period 2 intake is flow is reduced to a setpoint that will allow the contaminant concentrations to coast up to their setpoint limit at the end of the peak period.

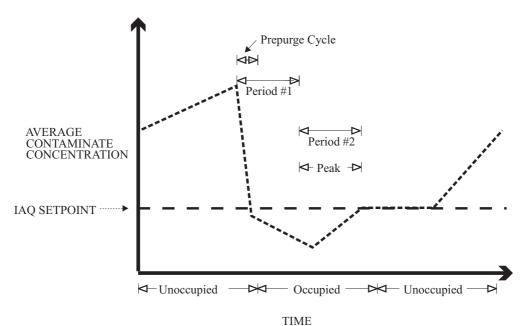


Figure 2: Daily Contaminant Concentration

ENERGY SAVINGS

Tables 3 and 4 show the energy savings associated with reducing the ambient intake airflow by 57% in the sample building. ISDCT operation reduces supply airflow requirements by decreasing the cooling coil leaving air temperature setpoint by 2°F and by raising the space temperature setpoint by 1°F. Since the load on the cooling coil is substantially decreased, the leaving air temperature can be lowered. Since lower leaving coil temperatures will lower space humidity, space temperature may be slightly increased.

Supply flow is reduced by the ratio of the space air temperature differential (20/24), a 17% flow reduction. Supply flow is further reduced another 2% because supply and return fan horsepower (cooling load) decreases with decreased flow. Total peak electrical energy savings for the chiller system and fan system are $\approx 1.2 \text{ Kw}/1000 \text{ ft}^2$.

TABLE 3
Peak Air Handling Unit and Exhaust Fan Savings

		x 1000 cfm	Inwc	Eff.	Kw	Total Kw	Total Kw Savings	Total Kw savings/1000 ft ²
Normal Peak	Supply Fan	400	4.0	0.60	420			
	Return Fan	311	1.7	0.60	139			
	Exhaust Fan	77	2.0	0.60	40			
	Pressurization	12				599		
Peak ISDCT	Supply Fan	324	2.9	0.60	248			
	Return Fan	285	1.5	0.60	109			
	Exhaust Fan	27	0.3	0.60	2			
	Pressurization	12				358	240	0.60

TABLE 4 Peak Chiller System Savings

	Normal Peak	ISDCT Peak	
Supply airflow	400,000	324,000	Cfm
Ambient enthalpy	46.0	46.0	Btu/Lb
Ambient intake fraction of supply airflow	0.22	0.12	
Ambient intake airflow	89,000	39,000	Cfm
Pressurization airflow	12,000	12,000	Cfm
Exhaust airflow	77,000	27,000	Cfm
Return air temperature	75	76	°F
Return air enthalpy	28.0	27.5	Btu/Lb
Cooling coil entering air enthalpy	32.0	29.7	Btu/Lb
Cooling coil leaving air temperature	55	52	°F
Cooling coil leaving air enthalpy	23.2	21.4	Btu/Lb
Space sensible air temperature differential	20	24	°F
Total sensible cooling load	723	703	Tons
Total cooling load	1318	1006	Tons
Peak cooling savings		311	Tons
Chiller system coefficient of performance		0.81	Kw/Ton
Peak chiller demand savings		252	Kw
Peak chiller demand savings		0.63	Kw/1000 ft ²

REFERENCES

- Carpenter, S. (1996), Energy and IAQ Impacts of CO2 -based Demand Controlled Ventilation, ASHRAE Transactions, vol.102, part 2, paper no.3988 (RP-740)
- 2. Clark, J.H. (1967), Airflow around buildings. *Heating, Piping, and Air Conditioning* 39(5):145
- 3. Ebtron Corp. (2002), Published specifications for NIST traceable airflow sensors. Loris, SC, USA; www. Ebtron.com
- 4. Houlihan, T.F., (1965), Effects of relative wind on supply air systems. ASHRAE Journal 7(7):28
- 5. Mumma, S.A. and Y.M. Wong, (1990), Analytical evaluation of outdoor airflow rate variation vs. supply airflow rate variation in variable-air-volume systems with the outdoor air damper position is fixed, *ASHRAE Transactions* 90-17-2
- Persily, A.K, and R.A. Grott, (1986) Pressurization testing of federal buildings. Measured Air Leakage of Buildings, p.184, ASTM STP 904,
- Seem, J.E. and G.E. Kelly, J.M. House, C.J. Klaassen (2000), A damper control system for preventing reverse airflow through exhaust air damper of variable-air-volume air-handling units, *International Journal of Heating, Ventilation, and Refrigerating Research*, vol. 6, No. 2
- 8. Solberg, D.P.W., D. S. Dougan, L.A. Damiano, (1990), Measurement for the control of fresh air intake, *ASHRAE Journal*, January 1990.
- Tamura, G. T. and C.Y. Shaw, (1976), Studies on exterior wall airtightness and air infiltration of tall Buildings, ASHRAE Transactions 82(2):179
- Yu, H.H.S., R. R. Raber, (1991), Ventilation and Filtration Requirements Based on Fanger's "Perceived Good Air Quality" and ASHRAE Standard 62-1989, IAQ 91 - Healthy buildings, ASHRAE Washington DC, September 4-8, 1991, 358-362, 4 figs, 6 tabs, refs. ISBN 0-910110-83-2