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SYNOPSIS 

This paper presents an analysis of different possibilities of representing mass transfers 
in zonal models. 
In this aim, formulations derived from the Navier-Stokes equations or from Euler's theorem 
are obtained. The models which result from them and empirical models are compared so that 
to define the best compromise between simplicity, accuracy and easy convergence. 

LIST OF SYMBOLS : 

a : coefficient (d2) 
b : coefficient (s-~) 
C : empirical constant 
(m/s '~a*'~) 
Fs : surface forces (N) 

Fv : volume forces (N) 
g : gravitation constant (m/s2) 
h : height of the cell (m) 
h, : convection transfer 
coefficient ( w / m 2 ~ ' )  - 
i : unit vector relative to the 
axe X 

1. INTRODUCTION 

: unit vector relative to the 
axe Z 
1 : width of the cell (m) 
n : empirical exponent (-) 
n' : perpendicular unit vector 
P : air pressure (Pa) 
qm : mass flow rate (kgls) 
r : air molar constant (m2/s2~)  
S : surface (m2) 
T : air temperature (K) 
u : velocity along the axe X 
( d s )  
P : velocity vector ( d s )  

The zonal method is a simplified tool which allows to study the air flow and heat 
transfers in buildings. Intermediate between one-node models, which results do not permit to 
predict accurately the thermal comfort or the air quality in a local, and CFD models, which are 
very slow and require large amount of memory, especially three dimensional, this approach is 
based on the partitioning of a room or group of rooms into a small number of sub-zones or 
cells. In these cells, energy and mass balance apply while the exchanges between cells are 
described at their interfaces. 

In our study, SPARK environment is used to develop the zonal model. SPARK is 
based on object oriented environment and is designed to solve large systems of non-linear 
equations. The modularity of SPARK permit to test successively the different models without 
having to rebuild the whole simulation each time. 

W : velocity along the axe Z 
( d s )  
X : horizontal axe 
Z vertical axe 
AP Pressure d i f f~~ence  (Pa) 
p :air density (kg/m3) 
Subscripts : 
0 : centre 
Bottom : bottom neighbour 
i : studied cell 
North : north neighbour 
South : south neighbour 
Top : top neighbour 

2. REDUCTION O F  THE NAVIER-STOKES EQUATIONS 

To make our approach clearer, we will carry out our calculations in two-dimensional 
cases only. 
The purpose of this part is the description of mass flows which occur to the interfaces of a 
standard cell in a local (cell << i >> in figure 2.1). 
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Figure 2.1 : Studied cell. 

2.1. REDUCTION OF TNE EQUATIONS 

In steady state, the Navier-Stokes equations combined to the mass conservation 
equation in two-dimensional Cartesian coordinates (X,Z), applied to the air of a local, can be 
expressed as follows : 

In these equations, air is assumed as an inviscid flow, only submitted to gravity forces. 
To describe the mass flows that cross the frontiers of the cell i that are perpendicular to the 
axe X, the first Navier-Stokes simplified equation will be studied. In this equation, w is 
assumed to be equal to zero, it means that flow lines are considered parallel to the axe X. 
Furthermore, perfect gas law is supposed to apply to the air. The first Navier-Stokes 
equation becomes : 

rT JP au 

By integrating this equation between the frontiers that separate the << cell i >> from the << South 
cell >> and the << North cell >>, with considering that temperature is homogeneous in the cell i 
and equal to i Ti, the following equation is obtained : 

Where P(U2, Z) (respectively P(-U2,Z)) is the pressure to the points included in the North 
(South) frontier which ordinate is Z. 
The pressure is supposed to be hydrostatic in the cell and because of this in the frontiers too : 

p ( + )  = p 0 ( ; )  - P , l z  , 

where Po(-U2) and Po(1/2) are the pressures in the centre of the frontiers. 



Air density has been assumed constant and equal to pi in the cell. This can be justified by the 
fact that it varies more with temperature (assumed to be constant) than with pressure. 

1 
Introducing the new relations PO (+) = T ( ~ ~ ~ ~ ~  + ) , where PoNorUl, POSovth and Poi are 

1 $1 = T ( p O S o ~ f h  + ' O t )  

respectively the pressures in the centre of the North, South and i cells, the final equation is : 

Knowing the velocity profile on the south frontier (X=-1/2) of the cell and the centre pressure 
of North, South and i cells, the velocity of the flow can be calculated in every point of the 
North frontier. The boundary conditions pennit to solve the problem. Once the velocity 
profiles evaluated, flow rates to the interfaces can be determined. 
A similar study allows to establish the equation for Z direction : 

2.2. MODEL 

The discretization of the vertical interfaces is made with a small number of iso-altitude 
on which velocity is calculated. The velocity profiles are then approximated by linearization 
and the mass flows calculated from these profiles. 
At the frontier separating a cell and a wall, the mass flow is set to zero (impermeable wall). 

2.3. RESULTS AND DISCUSSION 

Figure 2.2 : Examples of trivial cases. 

This model did not 
permit to obtain 2D or 3D 
convergent simulations, but 
gives good results in trivial 1D 
cases as those presented in 
figure 2.2. 

The non convergence in 2D cases, encouraged us to re-examine the equations 1 and 2 
so that to replace the logarithmic expression with a simpler expression. 
In equation the logarithmic term can also be written as follows : 

Inlet 

xhaust 



The terms (poi - ' ~ o u , )  - pi gz (poi - PO ) - p i  gz 
et are small behind 1, what permits 

( ~ O N o n h  + % S m B  ) ( ~ O N o n h  + ~ O S o u t h )  

to simplify the expression : 

' 0  North + 'Oi ) - pi gz 
('0, - p ~ ~ o u r h  ) - 2 pi gz ('0, - ' 0  NU& ) - 2 p i  gz - 

POSou, + P o i  ) - pi gz 
PONorrh + PO~uurh PONorrh + POSourh 1. 

Admitting that P,,,,,, + P,,,, = 2POi, and using perfect gas law, a simple expression is 

obtained : + Po.)- p t g z  
- 2rT, In -Pt  ('ONurrh - POSuurh ) ' 

,(poS".. + pot - Pt gz 

This expression included in equation 1 gives : 

This is Bernoulli equation applicable along a horizontal flow line. The reduction of equation 
(2) leads to Bernoulli equation applicable along a vertical flow line. 
These equations are therefore applicable to 1-D for which the flow lines that cross South (or 
Bottom) interface cross North (or Top) interface too. But this becomes false in 2-D and 3-D 
cases. It probably explains why the simulations did not converge. 

3. EULER THEOREM APPLICATION 
3.1. EQUATIONS DEVELOPMENT 

In steady state, the expression of Euler's theorem is : jj ( p ~ ) ( ~ . ~ ) d ~  = [Fv ] + [GI. 
S 

Applied in 2-D to the studied cell (figure 2.1), and projected onto X and Z axes it leads to : 

J j -  p u 2 d s  + J J p u 2 d s  + J J -  p w u d ~  + J J p w u d s  = [Fv . T I +  [F , .T]  
Sourh - fronrrer North- frontter Borrom- fronrlcr Top - fronrier 

j j - p u w d ~ +  J j p u w d s +  J j - p w 2 d ~ +  j J p w 2 d ~ = [ F v . P ] + [ F s . k ' ]  
Sourh - fronrtrr Norrh- fronttrr Borrom- fronrirr Top - frontier 

Admitting that the force of gravity is the only volume force and surface pressures the only 
surface forces that act on the cell, the equations become : 



JJ - pu2ds + JJ pu2ds + JJ - P W L ~ ~ S  + J" p w ~ d s  = JJ - pds + JJ P ~ S  
South- frrinner North- frontier Bortom-fiontrrr Top- frontier South- frontier North- fronner 

South- fruntier Nunh-frontier Booom-fronrrer Top- frontier Bottom- frontier Top- frontier ceN-i 

43) 
3.2. APPLICATION TO A FLOW 

To evaluate the integrals contained in equation (3), hypothesis on velocity profiles 
must be done. They are supposed to be plan : 

In the interfaces, the air density is considered homogeneous and the pressure hydrostatic : 

- Psouth ( w o ~ s l ~ u t h  uO-suufh + 
bSourh a South 
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Four unknowns per interface have been introduced while only two equations per cell have 
been obtained. Continuity equations between interfaces are needed. 

3.3. CONCLUSION 

This method leads to the introduction of many supplementary unknowns, (4 per 
interface in 2-D cases and 9 per interface in 3-D cases). The resolution will be all the slower. 
Furthermore, writing continuity equation between interface involves the addition in the model 
of new macro-objects linking the interfaces. These are the reasons why, for the moment, this 
method has been put aside. 

4. EMPIRICAL MODEL 
4.1. DESCRIPTION OF ZONAL MODEL 

In the zonal model studied by E. WURTZ [ 5 ] ,  mass exchanges between cells are 
calculated from the equation of flows across large enclosures K. LlMAM et a1.[2] : 

4,  = Cp(AP)nds  where c and n are empirical coefficients. 
S 

E. WURTZ [5] has shown that with C equal to 0.83 and n equal to 0.5 where the flow is 
turbulent (usual case) and equal to 1 where the flow is laminar (for example when crossing a 
permeable wall), the zonal model gives results similar to those obtained with FLUENT. 



4.2. ADVANTAGES AND LIMITS 

The aforementioned method yielded good results for certain typical physical 
configurations (openings, cases for which flow is easily predictable) but falls short in 
particular in the case of natural convection. It is thus quite hard to demonstrate a thermally 
stratified problem, and impossible to represent properly a decelerated flow. 
Furthermore, it is sometimes difficult to obtain the convergence of the simulation. This must 
be due to the coefficient n=0.5 that makes mass exchange equation non-linear. 

4.3. REDUCTION OF TNE MODEL 

Pressure differences that occur 
in rooms are very small. As 
shown in figure 4.1, the 
function f(AP )=o .~~*AP"~ ,  - - 0,83'DP1/2 

-Approx~mat~on 

separated in three intervals can 
be approximated by linear 
functions : 
* fl(AF')=0.2*AF'-0.75 

if APE [-10,-0.751, 
Q f2(AP)= 1.2*AP 

if APE [-0.75,0.75], 
f3(AP)=0.2*AP+0.75 
if AP ~[0.75,10]. 

Figure 4.1 : Approximation of f(AP ) = 0 . 8 3 * ~ ~ " ~ .  

5. RESULTS 
5.1. PRESENTATION OF SPARK 

The Simulation Problem Analysis and Research Kernel (SPARK) is a modular 
environment that automates writing code for systems of non-linear equations. It was 
developed for building science but is applicable to other fields. First written for steady state 
problems, (J.L. ANDERSON [I]), it has been extended to handle transient problem by the 
addition of time integrator objects (E.F. SOWELL and al. [4]). 
As TRNSYS, CLEM2000 and Allan Simulation, SPARK allows the user to build complex 
simulations by connecting smaller elements that can be objects (single equations) or macro- 
objects (equations subsystems). 
Objects are automatically generated from equations expressed symbolically (J.M. NATAF and 
F. WINKELMANN [3]) 
SPARK use the graph-theoretic techniques to reduce the size of the equations system so that 
SPARK'S Newton-Raphson solver words on the reduced equations set and, after convergence, 
the remaining unknowns are solved for. 
The output is a C program that is automatically compiled and executed. 

To build zonal models in SARK environment, two main object classes are created, 
they correspond to the cells and the interfaces between cells. 



The cell class consists of the balance equations for the cell, the pressure drop equation and the 
perfect gas law while the interface class consists of the mass and energy flow calculations. 
These classes are used as many time as necessary to define the simulation and linked in the 
connection file. 

5.2. COMPARISON ZONAL MODEL - SIMPLIFIED MODEL 

Empirical zonal 
model and simplified one 
are studied from the 
simple configuration 
shown in figure 5.1 
(ventilated room with 
heating floor (301K) and 
exterior wall (288K). The 
cells are 0,8m side 
squares. The results (flow 
rates, temperature density 
and pressure are 
represented in figure 5.2 
and figure 5.3. 

Roof 
T=293 K 

Outside air 
T=283 K 

~=1.248 kg/m3 

I Floor 

Figure 5.1 : Studied configuration 

5.3. RESULTS AND CONCLUSION 

The results given in figure 5.2 and figure 5.3 have been obtained with the simplified model 
and empirical model, they are presented as follows : 

italic : vertical and horizontal mass flow rates(kg/s), 
0 dotted outlined, from top to bottom : temperature (K), density (kg/m3), pressure (Pa). 

1 I 

Figure 5.2 : Simplied model, results. Figure 5.3 : Empirical model, results. 



One can notice that the temperatures and mass flow rates obtained are very similar while the 
differences between pressures are more important. It does not really matter because pressure is 
not the most interesting result in thermal and mass transfers representation. 

6. CONCLUSION 

The best compromise between simplicity of the model, convergence of the simulation 
and calculation time seems to be the simplified model presented in chapter 3.3. This model 
gives as good results as the empirical one, thus in very short calculation times, so it will be 
possible to couple it with other models. The aim of the next studies will be the coupling of the 
simplified zonal model with wall models, comfort models, moisture and pollutants transport 
models. It is also projected to create new sorts of cells that represents plumes or jets. 
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