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Thermal analysis of rooms vvlith diurnal periodic heat gain, ThermSim 
Part 1 : Derivation 

Synopsis 

Temperature and cooling demand in a room summertime is influenced by numerous factors like 
: internal gains, ventilation, solar gain, behaviour of occupants, thermal inertia of the room, and 
outdoor conditions (climate). 

The thermal environment and cooling demand summertime is often analysed using advanced 
computer programs. These programs require detailed input describing every feature of the 
room. Often the overview, transparency and some of the physical insight is lost using these 
advanced computer programs. 

In a predesign phase of a project it is preferable to do simple calculations of the thermal 
behaviour of a room. These simple calculations often gives more physical insight and overview 
than using computer programs. Simple calculations also gives a quality assurance of later 
computer analysis of the room. 

In this paper a simplified thermal analysis of a room is presented, called IhermSim, which can 
be used as a hand calculation method in the predesign phase of a project. 

In rooms with significant solar gain, the total heat gain to the room at any time of day, can be 
approximated with a simple cosine hnction. This assumption together with a thermal one- 
mass-model, and a frequency analysis model often used in electric circuits analysis, forms the 
basis of the thermal room model. The solution of this model gives a simple equation which can 
predict the temperature in the room, exposed for a heat wave midsummer. 

The method shows in a transparent way the time-lag between maximum heat gain and 
maximum occurring room temperature. I addition the "thermal build up" in a heavy room from 
day to day during a heat wave is easily predicted. ThermSim is compared (comparison found in 
part 2) with more advanced computer analysis and shows good agreement when the model 
assumptions is fulfilled. 

List of symbols 

Symbol 
&C 

Ai" 
cak 
L 
n 
- 
9 

t 

Description 
Facade area 
Area for whole window construction (including frame) 
Heat capacity of air (can be set to 0.34 W k g K )  
Mechanical or natural air flow rate 
Air infiltration in AGH 
Daily mean heat gain 
Daily amplitude heat gain 
Time 

Unit 
m2 
m2 
W k g K  
m3/h 
l/h 
W 
W 
h 



L Time for maximum heat gain and external temperature to occur h 
TI - 'Effective" room temperature "C 
Te Mean daily external temperature "C 
'e  Daily amplitude external temperature "C 
uh, U-value facade construction W/m2K 
urn U-value window construction W/m2K 
V Room air volume 

1 Introduction 

Thermal design of rooms are often done using advanced computer simulation tools. These 
tools are often cumbersome to use and give little insight in the physical process which is 
simulated. In the early stage of a design process it can be beneficial to use simple hand 
calculation for a rough predesign of a room. This gives a much better physical insight to the 
thermal process in the room. In addition it can be a valuable quality assurance for later 
computer simulations. 

This paper describes a simplified method for simulation of temperatures and cooling load, 
called XhermSim, which can be used for hand calculation or it can easily be implemented in a 
spreadsheet. This method can be used on most rooms provided they have a daily variation in 
the heat gain that can be approximated with a sinusoidal variation in the gain. This is often the 
case with rooms exposed to solar radiation. 

The method shows in a transparent way how the temperature evolves from day to day during a 
heat wave. In addition it gives the daily variation in room temperatur, with maximum and 
minimum room temperature. Or, it can be used to estimate necessary cooling load for keeping 
the temperature and daily temperature variation at an acceptable level. 

This paper, part 1, derives the method and interpret the different terms in the model. Part 2, 
which is given in a accompanying paper, contains tables which simplifies the use of the method, 
along with examples and comparison to advanced computer simulations. 

The model is based on a five main assumptions : 

1. Daily variation in heat gain and external temperature is approximated by a sinusoidal 
hnction 

2. Room air temperature, surface temperatures and "building structure" temperature is 
"merged" into one mean effective room temperature 

3. The effective heat capacity of the room is limited to a finite thickness of the building 
constructions 

4. Every input to the model is either constant or approximated with a diurnal sinusoidal 
variation 

5. Heat loss to adjacent rooms are negligible 



2 Formulation of model 

2.1 Physical and mathematical derivation 
In summertime rooms with a external windows are exposed to a diurnal variation in heat gain. 
This variation can oRen, with good approximation, be estimated with a sinusoidal function on 
the form : 

q(t) is heat gain in Watt as a function of time (t), q is the daily mean heat gain 0, 4 is the 
heat gain amplitude1 (W), t is time (hours) and t, is the time when maximum heat gain occur. 
The period is of course 24 hours. 

If there is a ventilation system (natural or mechanical) supplying the room with the air flow rate 
Lent the coding effect (heat loss) is : 

Cai, is the volumetric heat capacity of air which can be set to 0.34 Wm3K,  L is the air flow in 
m3/h, Ti is the room air temperature ("C) and T, is the external temperature (see below). Air 
flow is assumed constant, and mechanical cooling (cooling coil) is not considered here (treated 
separately in section 2.3). Heat gain from fans in mechanical ventilation has to be added to the 
other heat gains in equation (1). 

Heat loss to the external that can be written : 

where U- is the U-value of the window and A- is the window area including the fi-ame(m2), 
n is the infiltration rate in ACH and V is the room air volume (m3), Uf,, is the U-value for the 
facade construction and Af,, is the facade area. 

The external temperature ( T,) in equation (2) and (3) , varies during the day, and this variation 
can be estimated with a sinusoidal fbnction in the same form as (1) : 

The amplitude can be taken as the difference between the maximum heat gain (~nax and the minimum heat gain q,,,,,, divided by two : 

4 = qmax -4min 
2 



If the room temperature fluctuates there will be heat accumulation in the building structure, 
and to some extent in the room air. If the roomtemperature rises dTi during a small timespan 
dt, the heat accumulation is : 

Where &, is the area of all surfaces in the room having significant heat capacity, C," is the 
effective heat capacity pr. square meter for the surface (the specific heat capacity of the 
accumulating layer in the construction), dTi is the infinitesimal temperature rise during the 
infinitesimal timestep dt. 

We are now ready to formulate the heat balance for the room. According to the first law of 
thermodynamics heat gain minus heat loss will equal heat accumulation : 

Gazn Losses Accumulahon 
m, 

Accumulation 
Galn Losses A 

For mathematical convenience it can be more compactly written as : 

where the new parameters : the frequency cu, the timeconstant z, the stationary temperature T, 
and the amplitude coefficient 6 have been introduced, which is given by : 

- 
z =  

Hvent  + H e x t  



2.2 Solution 
The solution to equation (6) can be written in the closed form 

Transzent Statronary Penodzc - c5 ? 

~ ; ( I ) = A T ~ - " ~  + T, -t,,)] C C )  (8) 

For a more detailed mathematical derivation of (8) see the appendix. The solution is the 
superposition of a transient temperature, a mean stationary temperature, and a diurnal periodic 
temperature. T, is the mean stationary value defined above, ATa is the transient temperature- 
difference given by : 

T(0) is the intial temperature (00.00 the first day). The temperature amplitude related to the 
.periodic temperature variation is given by: 

For interpretation of the solution it is wise to introduce the parameter time-lag, defined by : 

2.3 Estimation of cooling load 
If the calculated temperature is exceeding accepted limits, we need to estimate necessary 
cooling capacity to maintain comfortable temperature conditions in the room. By cooling 
capacity we mean mechanical cooling, which comes in addition to cooling by the external air 
flow rate (mechanical, natural or infiltration). 
Equation (8) can be used to calculate the cooling load if we do the following simplification : 

We assume that diurnal periodic stationary condition has been reached. It implicates that the 
transient term in equation (8) has become negligible. 

The total cooling load can then be estimated by the sum of the to effects : 

1. Qf removing so much of the mean heat gain that stationary mean temperature is reduced 
to a desired mean temperature zoo,. This load can be called the mean cooling load, 
denoted : qcoo, 



2. And removing so much of the amplitude heat gain that the temperature amplitude is 
reduced to a desired temperature amplitude ?coo,. This cooling load can be called the 
amplitude cooling load, denoted : ~,,,, 

The mean cooling load can be found by setting the stationary term in (8) equal to the desired 
mean cooling temperature   coo,, and reducing the heat gain with q,,,, : 

To reduce the amplitude temperature variation around the stationary mean temperature to a 
desired level (e.g. 2 "C), we have to remove the heat : 

A 

where Tcoo, is the allowed temperature amplitude (variation). The maximum total cooling load 
is then given as : 

3 Discussion and interpretation 

As seen in equation (8) there are three terms in the solution, that are significant to the resulting 
temperature. We have three constants with the unit of temperature ("C) : the transient 
temperature difference AT , the stationary temperature T and the temperature amplitude %.  
In addition there are two constants with unit time (hours), the timeconstant z and the time-lag 
71,. In the following these constants, and how they influence the solution, will be discussed. 
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Figure 1 : Graphic illustration of the three terms in eq. (9, and the resulting roo~ntemperature 



3.1 Transient term 
The transient term given by : 

Transzent 
A 

 AT^-*/* 

determine how fast periodic stationary temperatures in the room is reached. ATa is the 
difference between the initial temperature (00.00) before the heatwave began, and the maximal 
occurring temperature at time 00.00 (after a long time). Since the initial temperature is lower 
than the stationary temperature, ATa will always be negative! 
Typical values of ATa is between -5 "C and -20 "C. 

How fast the transient term vanishes, that is how fast stationary conditions are reached, is 
entirely determined by the timeconstant z. The timeconstant can vary from a few hours to 
more than 100 hours, depending on how large the thennal inertia of the room is. Table 1 
shows how many percent of the temperature difference that is left, after 1,2,3 and 4 
timeconstants have elapsed. After 3 timeconstants have elapsed, 95 % of the temperature 
difference is vanished, which can be a practical limit for the stationary level. For example : if 
the temperature difference is ATa = - 10°C and the timeconstant is 20 hours, the temperature 
would have rised 9.5 "C of possible 10°C aRer 60 hours. 

Table 1 : Shows how much of the temperature difference (ATa) is left after 1,2, 3 and 4 

Elapsed time after number of timeconstants 1 2 3 4 
% of temperature difference left 36.8 13.5 5.0 1.8 

3.2 Stationary term 
The stationary term is given by : 

As can be seen from (27) the stationary temperature is independent of the thermal capacity of 
the room. Furthermore we see that large mean heat gain (q), and high mean external 

temperature (Te) leads to high stationary temperature (T,). 

3.3 Periodic term 
The periodic term : 

gives raise to periodic temperature oscillation. Equation (28) gives periodic oscillation with 
temperature amplitude f , and a time-lag ( z d  . That is, the maximum temperature occur the 



time 71% after the time k ,  which is the time for maximum heat gain (and external 
temperature). Both f and r,, depends strongly on the thermal inertia of the room. Rooms 
with large thermal inertia gives small temperature amplitudes (as expected), and an increase in 
the time-lag. f is also depending on the heat gain amplitude and external temperature 
amplitude. 

3.4 Maximum possible room temperature 
The maximum possible temperature in the room occur when diurnal stationary condition is 
reached, together with daily maximum temperature amplitude : 

This maximum possible temperaterature is likely to occur in rooms with small thermal inertia 
(small heat capacity and large heat loss). For rooms with large thermal inertia (large heat 
capacity and small heat loss) stationary condition is seldom reached before the heat wave is 
over (or has been reduced). In offices or other rooms with a weekly 5 day occupation, the 
simulation period is often set to 5 days. In these rooms the maximum possible temperature 
(T-) is unlikely to occur (also see the accompanying paper, part 2). 

4.0 Conclusion 

We have presented a model which simulates temperature and cooling loads in rooms with 
diurnal variation of the heat gain 
The model is an alternative to use of advanced simulation tools, in an early stage of the 
thermal design phase of a room 

0 In rooms with small thermal inertia (small heat capacity and large heat loss) diurnal 
stationary condition ia reached fast (2 - 4 days) (see part 2) 
In rooms with large thermal inertia (large heat capasity and small heat loss) diurnal 
stationary conditions are seldom reached during a normal heat wave(5- 10 days), or during 
a normal 5 days working week (see part 2) 
Large heat capasity reduce the daily temperature variation to a large extent, and reduce the 
cooling demand (caused by high peaks in the heat gain e.g. solar gain) 

0 This implicate that use of heavy building structure can reduce temperature problems and 
mechanical cooling demand summertime, provided that the temperature is allowed to 
fluctuate 

References 

\ l \  B~rresen B.A., 'Room temperature variation and cooling loads. A simplified 
calculation method, Tempo", Energy Conservation in the built Environment, CIB. 
Copenhagen 1979 

U\ Zill G.Z.; "A first Course in Differential equations", 5th ed., PWS-KENT 1992 

\3\ Nilsson J.W., Riedel S.A.; '%Electric Circuits", 5th ed., Addison-Wesley 1996 



Appendix : Mathematical derivation 

Equation (6) is a first order nonhomogeneous differential equation which can be solved with a variety of 
methods, such as ; Undetermined coeffisients Laplace transform, D-operator method, integrating factor method 
and substitution methods. 

In all cases the general solution to (6) is the sum of the complementary solution, related to the lefi hand side 
(homogeneous part) , and the particular solution related to the right hand side (nonhomogeneous part). 

Complementary solution 
The lefi hand side in equation (6), which is called the homogeneous part, can easily be separated and integrated 

c + - - o ~ - - L - - -  T c ~  d c  dt 
t -- 

- 
dt 

- e qF ( t )  = Cle , C, = constant 
z T,c z 

Particular solution 
The particular solution can be found by using the method of undetermined coefficients. We then assume a 
particular solution in the same algebraic form as the right hand side of equation (6) : 

Differentiating (A.2) and substituting into (6) and collecting coefficients, we find A, B and C to be : 

General solution 
The general solution is then given by the sum of the complementary and the particular solution : 

(A.4) can be written more conveniently by a trigonometric identity" as : 

The constant C1 can be determined by the initial condition T%(t=O) = T(0) : 

C, =AT,  =T,(o)-c',, 


