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SYNOPSIS 

The momentum balance on a centrifugal fan, supplemented by a complete energy 
balance for rigorous interpretation of power-pressure interactions, relates these variables to 
flow rate and fan speed. Nonideal behavior is modeled by direct mechanical interpretation 
and by engineering correlation, leading to more general expressions than provided by the 
fan laws. First attempts to fit these expressions to measured data show promise but reveal 
limitations of current practice in the data collection and reporting process. 

LIST OF SYMBOLS 

Variables 
a Arbitrary pressure coefficient 
A Effective flow area 
b Arbitrary power coefficient 
c Absolute velocity of air [=I m/s 
d Characteristic fan size [=I m 
e Reynolds variation exponent [=I 1 
f Moody friction factor [=I 1 
rh Mass flow rate [=I kg/s 
n Fan speed [=] rpm 
p Pressure [=I kg/m.s2 
P Power [=] kg-m2/s3 
r Radial distance [=I m 
Re Reynolds number [=I 1 
T Torque [=I kg.m2/s2 

Operators, subscripts, and overscripts 
{ ] Functional relationship 
[=] Has the units of 

1 Of fan, at entrance to impeller 
2 Of fan, at exit from impeller 
exit At fan exit 
eye At fan entrance 
fan Through or across fan 
fan Of power, delivered by fan to air 

Impeller linear velocity [=I m/s 
Specific internal energy [=I m2/s2 
Air velocity relative to impeller [=I m/s 

Kinetic energy factor [=I 1 
Velocity diagram angle 
Absolute surface roughness [=] m 
Flow coefficient [=] 1 
Efficiency [=I 1 
Dynamic viscosity [=I kg/m.s 
Density [=I kg/m3 
Angular velocity [=I s-l 
Head coefficient [=I 1 

id1 Ideal result for lossless case 
imp Through or across impeller 
9 Tangential component 
r Radial component 
shft Of power, required at drive shaft 
z Axial component 

- Vector quantity 
* At zero slip 

1. INTRODUCTION 

In a Variable Air Volume (VAV) ventilation system, a central fan supplies a variable 
flow rate of air to the conditioned spaces. Flow is regulated by dampers, inlet vanes, or by 
speed modulation of the fan, to meet the temperature and fresh air requirements of the local 
zones served by the fan. A return fan, similarly regulated, exhausts air from the zones. 

Dampers and inlet vanes govern flow by increasing losses of mechanical energy along 
the flow path, thus decreasing the flow rate through the duct. If the same, lower, flow rate is 
established by decreasing fan speed, mechanical energy losses are reduced in the fan, rather 



than increased in the duct. Thus fan speed control is p r e f e d  from a power standpoint [I]. 
Field measurements have shown 45 to 65% energy savings for adjustable-speed drive 
(ASD) retrofits of inlet vanes on VAV supply fans [8], and a related study showed 20 to 
45% additional savings if the system controller is redesigned to take advantage of the fan's 
new range of pressure-flow characteristics [9]. 

To estimate savings in existing ventilation systems, and to predict the performance of 
novel system control strategies, requires a model of the fan's pressure, flow, and power 
characteristics at different speeds. Currently, polynomial curves are fit to data measured at a 
single speed, and adjustable-speed operation is accounted for using the "fan lawsn-- scaling 
factors based on similarity arguments between the variables of interest. This paper applies 
mass, momentum, and energy conservation principles to a centrifugal fan, using correlations 
from engineering practice to account for deviations from ideal behavior. The resulting model 
is matched to performance data and the results discussed in light of the fan laws. 

2. FAN LAWS AND DIMENSIONLESS CURVE FITS 

The fan laws are based on a dimensional analysis of the flow variables, together with 
the assumptions that: (1) the flow regime remains fully turbulent in all passages, so that 
Reynolds number effects on friction are negligible; and (2) wall roughness effects scale 
approximately with pump size [ll]. The flow variables-- pressure rise Ap, mass flow rate m, 
fan size d, fan speed n, air density p, air viscosity p, and surface roughness E-- may be 
nondimensionalized in terms of [1 11: (1) the head coefficient y = ApI(pn2d2); (2) the flow 
coefficient @ = W(pnd3); (3) the Reynolds number based on the linear speed n-d of the 
impeller Rend = (pnd2)/p; and (4) relative roughness dd. Neglecting the last two terms by 
the assumptions above, 

If two fans from the same geometric family operate at = $1, then by Equation 1, 1y2 = 1y1. 
These give the familiar fan-law for geome&cdly similar fans [I]: 

Setting power P = m(Ap/p), a second fan law, P;! = ~~-(p2/p~).(n~/n~)3.(d~/d1)5, follows. 
Typically y ( @ )  in Equation 1 is approximated as y = ag + al@ + a2@ + a3@3 + 

where coefficients ai are to be determined by fits to measured - data [2]. Substituting, 

For convenience, fan size d, and the factor converting from n to o ,  have been absorbed in the 
coefficients ai. By expressing y as a function of @ only, Equation 3 implicitly satisfies the 
fan law as it would be applied to a single fan (d2 = dl) in order to estimate how a change in 
density or fan speed would affect mass flow and pressure rise. 

A polynomial expression for power as a function of flow can be defined in the same 
way-- the dimensionless power coefficient is pl(pn3d5) [l 11. A second method is to: (1) 
write the power delivered to the air as Pf, = m(Ap/p); and (2) express efficiency q = bo + 
bl@ + b2@2 + b3@3 + b4@4 so that shaft power Pshft = P f d q  is the ratio of two polynomials 
in m, p, and o [2]. Strictly Ap should be the "total" pressure rise, that is, the sum of the 
pressure form of all mechanical energy rises. However for curve-fitting purposes this 
probably is not necessary, as the change of kinetic energy usually is small and the 
coefficients bi need not be physically interpretable. 



Figure 1.  A centrifugal fan with backward-tipped impeller blades. 

3. PHYSICAL LAW, ENGINEERING CORRELATION, AND THE FAN 

In the classical treatment of centrifugal machines (see e.g. [3, 1 I]), a momentum 
balance, applied to an idealized, lossless impeller, yields an expression for fan power which 
is then: (1) combined with terms accounting for friction and shear forces to give shaft 
power; and (2) recast into an impeller pressure-rise relation. Finally, empirical relations are 
used to account for mechanical energy losses in the fan. This last step, of modifying the 
ideal pressure rise expression, has been described mainly by researchers seeking to predict 
the behavior of a centrifugal machine in its design stages [3,10,12] or to improve 
estimations of the pressure-flow relation at low flow conditions [4,7]. 

3.1. Definitions 
Figure 1 shows a centrifugal fan with backward-inclined blades, for which air, exiting 

the impeller with relative velocity F2, has a tangential speed we2 acting in the opposite 
direction from the linear speed T2 of the blade tips. With forward-tipped blades, W2 is in the 
same direction as T2; however, no impeller guides air perfectly, and we2 always is smaller 
than if air came off exactly at the angle of the blade [3], a phenomenon known as slip. 

Figure 2, a velocity diagram for the impeller exit, shows the effect of slip as air exits at 
an angle P2 < w, the blade angle. Air leaves the impeller with absolute velocity = iQ + 
F2, the vector sum of the blade tip speed and the air velocity relative to the tip. Figure 2 also 
shows the tangential and radial components, ce2 and cd, of the absolute velocity. Numerous 
estimates of slip, summarized in [5,10], have been made; most yield an expression of the 
form cot(P2) = cot@*) + (constant).(u~c~), which is used henceforward. 

A similar velocity diagram may be drawn at the inner impeller radius. Slip at the 
impeller entrance is treated by assuming that either: (1) Cj is always radial [3], so that eel = 
0 and pl varies with flow; or (2) pl remains constant, usually at the blade angle PI* [5, 101. 

u 2  
Figure 2 .  Velocity diagram at the impeller exit. 



3.2 Momentum Conservation in the Lossless Impeller 
The application of momentum conservation to a lossless centrifugal impeller is treated 

in detail in e.g. [3,11]; the following overview highlights the idealizations made. At steady- 
state, conservation of angular momentum requires the sum of applied moments to balance 
the net rate of outflow of angular momentum from the control volume [I 11. For the annular 
region between the impeller entrance and exit, the moments include the torque T transmitted 
through the shaft, and those due to bearing friction and shear forces from the flow of air 
along the blades. These last two are neglected for the idealized, lossless, process, but are 
included later. Since pressure forces act radially they produce no moment. Taking o 
positive as shown in Figure 1, torque acts in the positive axial direction and therefore only 
the axial component of angular momentum leaving the control volume need be considered. 

Only the tangential component of the fluid velocity produces an axial moment, so the 
outward angular momentum flux is J(r2ce2)drh at the impeller exit and k - r l c g l ) ~  at its 
inlet, where the flow is into the control volume. Combining, the momentum balance gives 
torque T = mimp(r2ce2 - rlcel) for the lossless impeller. 

Fan power is P = COT, and using u = m, 
Pidl = mimp(u2ce2 - ~ 1 ~ 0 1 )  (4) 

From the velocity diagram, c~cot(P2) = u2 - ce2. The slip expression described above gives 
cot@), and for incompressible flow the radial velocity is given by mimp = pA2c~.  
Estimates of the reduction of flow area A2 from its maximum of 2m2b2, taking into account 
blade thickness and recirculation effects at the periphery of the impeller [3,10], show no 
dependence on mass flow or angular velocity. Therefore A2 is treated as constant, although 
separation effects, which influence A2, play a role in impeller efficiency [12]. Since A2 
already incorporates scaling factors, it is not necessary to assume c d  is uniform over the 
flow area; only that the velocity profile across each blade passage remains similar, 
regardless of flow rate. 

The inlet geometry is similar, although slip is treated differently, as mentioned above. 
The question of slip at the impeller inlet can be rendered moot by extending the control 
volume into the impeller core so that air crosses the control surface in the axial, rather than 
the radial, direction. In this case the momentum flux at the inlet becomes k-~c&y~)&, 
integrated from r = 0 to rl. The tangential velocity at the inlet, ceeye, sometimes known as 
"swirl" [12], accounts for the power benefit associated with inlet vanes over dampers [I]: 
while both regulate flow through dissipation, inlet vanes impart a prerotation to the air. 

However slip is treated at the impeller entrance, the ideal power relation reduces to 
mlP20 

Pidl = b lmimpd + b2 P (5) 

where constants bl and b;! incorporate the physical and experimental parameters. 

3.3 Nonideal processes affectin? fan Dower 
The ideal power expression must be modified to include the nonideal processes 

affecting fan power. These are: (1) bearing loss due to friction in the shaft bearings, for 
which power is proportional to o [3,10]; and (2) disc loss, the power needed to overcome 
friction torque on the impeller surfaces [3,5, 101. From P = COT, disc power is proportional 
to o times a shear force; note that this treatment of disc power departs from that of [3,5, 
101, which use P = Ap.A.v rather than P = oT. 

The shear forces influencing disc loss, derived by analogy with turbulent duct flow, 
are proportional to pv2 [l 11. The characteristic velocity is o in the core and on external 
surfaces, and w2 in the blade passages. The disc friction power terms are: (1) p d  in the 
core; and (2) mimpG, mimp2w/p, and p d  in the flow passages, after w22 = cr22(1 + cot2P2) 
is substituted from the velocity diagram. Then shaft power becomes 



Table 1. Summary of shaft power terms and their sources. Power terms with Reynolds 
variation are divided by the appropriate Reynolds relation as shown. 

where the bi in Equations 5 and 6 are not related. 
Frictional losses sometimes are assumed to vary with Reynolds number as (Re)" 

where 0.2 1 e 10.25 [5, 101. Reynolds number is related to p o  in the impeller core, and to 
mimp in the blade passages. Table 1 sumrnarizes, by analytic source, the candidate terms for 
a shaft power expression, and the effect on them of assuming friction varies with Re. 

Among the nonideal processes not counted are: (1) variations in velocity profile or 
effective flow area; (2) impeller losses, described below, which transform pressure work into 
internal energy within the control volume; and (3) any processes taking place outside the 
control volume, which transform the energy already contained in the air stream. 

3.4 Pressure rise in the impeller 
In the conventional development, the ideal power expression of Equation 4 is 

compared with a power equation in the total pressure 13, 111, followed by geometrical 
substitutions [3] to show the total pressure rise is the sum of: (1) a dynamic rise (p12)-(c2~ - 
c12); (2) a static rise (p/2)-(u22 - u12) due to centrifugal forces of rotation; and (3) a static 
rise (~12)-(w12 - due to decreasing velocity in the widening flow channel [3,4]. The 
same result can be found by integrating Newton's second law along a streamline, 
considering centrifugal and pressure forces but neglecting shear [3,4]. Both approaches 
ignore the complete energy equation-- the first by substituting for power from a partial 
energy balance, and the second by avoiding power altogether. In either analysis, the power 
terms must be considered to arise because of pressure drops, when in fact they contribute, 
albeit inefficiently, to pressure rise. 

For incompressible adiabatic flow at steady-state, conservation of energy in the 
impeller may be expressed [I 11 

where: (1) Pf,, the net rate at which energy is added to the air stream, includes shear work 
at the control surfaces; (2) B is the internal energy per unit mass of air; and (3) a ,  the kinetic 
energy correction factor, accounts for the fact that in a stream moving with average speed c, 
the average kinetic energy per unit mass is not ~212. 

Pf, is given by e.g. Equation 6, excepting the bearing loss power b4o, which the 
motor provides to the shaft but which is not transmitted to the fluid. Disc power is 
transmitted to the fluid though not primarily as a pressure rise. Perhaps 30% of disc power 
is returned as useful work [5], recovered as pressure in the volute [lo]. This suggests that 
the immediate effect of disc friction is to increase the kinetic energy of the flow. 

Finally, fi2 increases as mechanical energy is lost through viscous and turbulent 
dissipation. Engineering practice is to express such hydraulic losses as either [lo]: 



(1) dynamic (mixing and shock) losses of the form Ap = pv2; or (2) friction losses of the 
form Ap = f pv2, where friction factor f may vary with Reynolds number. 

Impeller dynamic losses include: (1) entry shock due to the equivalent of slip at the 
impeller inlet, modeled as a mismatch velocity akin to cslip in Figure 2 [3,5, 101; (2) profile 
drag on the impeller blades, modeled as a relative speed w [lo]; and (3) wake shedding from 
the blades at the impeller exit, modeled as a sudden expansion loss in c n  [lo]. 

Impeller friction losses are attributed to a representative relative velocity w [3,5,10]. 
Where disc power treats friction as a force producing a torque, impeller friction treats 
friction as a mechanism transforming the input power from pressure work to internal 
energy. Therefore the terms generated by these hydraulic losses are not quite the same as 
those due to disc friction. Table 2 demonstrates the differences between the terms. 

3.5 Nonideal processes in the fan entrance and volute 
Energy balances similar to Equation 7 may be written from the eye to the impeller 

inlet, and from the impeller outlet to the fan exit. Summing the three equations yields an 
expression for the fan pressure rise. Replacing changes in internal energy by the 
engineering approximations - of the hydraulic loss terms, 

Pfan 1 
Pexit - Peye = P + 3 ~(%yeceye~ - %xitcexit2) + pg(Gye - Gxid - Uploss (8) 

where the pressures and kinetic energies internal to the fan have canceled, and the possibility 
of changes in gravitational potential energy has been admitted. 

Due to leakage between the high- and low-pressure sides of the fan, the mass flow 
through the impeller will be higher than that through the fan. Leakage flow (mirn - rhfan) = 

1/=[10]; unfortunately this expression leads to an implicit equation in (pi - pl). Thus 
this nonideality is ignored, and henceforward, mim d = Velocities ceye and cexit are related to mass ow by the density and the inlet and exit 
areas; the contribution of these terms, with a taken as constant, is given in Table 2. Note that 
at low flows the assumption %,it constant is especially problematic due to recirculation in 
the discharge duct [I, 71. Hydraulic losses in the eye and volute are summarized in [3,5,10] 
and produce the same functional terms as in the impeller; see Table 2. 

Table 2. Summary of pressure terms and their sources. 
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Table 3. Error sums of squares for data fits to the simplest fan law pressure models. 

4. MODEL TERMS AND THE FAN LAWS 

Compared to the analytic pressure terms, the polynomial y($) in Equation 3: (1) 
contains two dimensionally carrect but physically uninterpretable terms, and @; (2) does 
not contain the term p2dIri-1, corresponding to $-I; (3) does not contab a term p; and (4) 
does not account for variations of friction with Re. The fmt two differences relate to the 
choice of y{$), while the last two relate to the assumptions made in writing y = y($), i.e., 
no dependence on gravity or Reynolds number. Similarly, a dimensionless power function 
would not be able to incorporate Reynolds variation or the dependence of power on a ,  
though the other analytic k s  would be given by $0, $, and $2. 

- 

The model terms were fit using three sets of data: (1) 441 records for a 12", single- 
inlet fan, taken from a manufacturer's data table; (2) 487 data records, read from a second 
manufacturer's table for a 20", double-inlet fan; and (3) 92 records, read from the first 
manufacturer's fan curve for a 44", single-inlet machine. Each record consisted of n [=I rpm, 
volume flow Q [=I cfm, Ap [=] in. w.g., and P [=I hp. Because density was not varied in the 
data tables, Q was substituted for m and p was dropped from each of the mode1 terms, 
assumed to be absorbed in the model coefficients; likewise, n was substituted for a. 

The terms were fit by least-squares estimation. Partial results for the pressure fits are 
shown in Table 3. For example, in the 12" fan, using a model Ap = aon2 + aln-Q + a 2 ~ 2  
reduces a sum of squares about the mean of 5935 in2 to an error sum of squares of 1.6 in2. 
The reduction of the sum of squares using a four-term model, by factors on the order of lo4 
for the tabular data, and of 103 for data interpolated from a fan curve, suggests that the data 
presented by the manufacturers received some prior conditioning, either by application of 
the fan laws or by analytic treatment such as that described above. 

In fact the data reported by a fan manufacturer typically has undergone two trend- 
weakening manipulations: (1) pressure-flow points recorded at a futed fan speed are 
interpolated by cubic spline fits; and (2) the fan laws are applied to extrapolate the 
interpolated points to different fan speeds and fan sizes [6]. Applying the fan laws 
conditions the data, tending to strengthen the apparent contribution of terms derived from 
the fan laws, and to weaken those terms which do not conform to the fan law assumptions, 
e.g. those showing the empirical variation of friction with Reynolds number. Still it is 
possible to detect the effect of Reynolds number variation in the data. 

The following numerical experiment demonstrates this conditioning of the data: (1) 20 
pressure points were generated using Ap = n~0.75 with n = 100 rpm and Q increasing from 
5 cfm by steps of 5 cfm; (2) the 20 points were extrapolated by the fan law to new curves at 
n = 10,20,50, and 150 rpm; (3) the resulting 100 points were fit by least-squares 
estimation, using both the generating formula Ap = son@-75, and the relation Ap = aOn2 + 
aln-Q; and (4) it was observed that the error sum of squares from the fan law estimate was 
lower, by a factor of 0.6, than that due to the original formula. Thus a five-fold 
multiplication of the data weakens their defining relationship to the point where a two-term 
fan law can be judged superior. Since the tabular data are reported at varying rpm, the 
conditioning effect of applying the fan laws extends to virtually every point in a 
manufacturers' reported fan data-- not just to 80% of them. - 

It is possible, by algebraic evaluation, to rewrite the functional form of each term in 
Table 2 to account for the effect of applying the fan laws. If density is held constant, the end 
result is to multiply each term with Reynolds variation by OF. Fitting the new terms to the 



data gives an order of magnitude improvement in the error sums of squares, an effect which 
would not be expected if there was in fact no variation of friction with Reynolds number. 
However, it is impossible using this method to distinguish Reynolds effects due to changes 
in co, since the original data were measured at a single speed. 

5. CONCLUSION 

Analytic expressions have been developed for power and pressure in a centrifugal fan. 
These may be expected to represent fan behavior more accurately than do the fan laws, and 
preliminary data fits show evidence of the nonideal behavior modeled. However if the data 
to be fit are extrapolated from single-speed measurements using the fan laws, there is little 
incentive to seek more general or rigorous formulations. In any fan model, the choice of 
terms can be guided by physical law as well as by functional convenience. 
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