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Synopsis

The evaluation of a code can be done by investigating two items: solving the correct equations
and solving equations correctly and efficiently. An indoor airflow code VentAirl has been
developed and is evaluated here. An evaluating procedure is suggested. The code is
characterized by the standard high—Reynolds—number k—€ model with wall function, the
two-band radiation model and the SIMPLE algorithm. Test examples are: 1. A
three—dimensional forced convection problem (Re=5000), 2. A natural convection problem
(Ra=5%*1019), 3. A natural convection—radiation interaction problem (Ra=1.45%10°). All
calculations are compared with experimental results and published numerical solutions. Grid
refinements are used to improve the accuracy of the predictions. The applicability of the
Boussinesq approximation is confirmed. The prediction of heat flux through the boundaries are,
however, less accurate. The code exhibits a relatively low convergence rate; the finer the grid,
the slower the convergence. A fast multi—grid solver combined with local grid refinements is
suggested. Consequently, another indoor airflow code VentAirll is developed.

1. Introduction

One crucial and frequently asked question about the numerical simulation of indoor airflow is:
are the accuracy and efficiency of the simulation acceptable? A good indoor airflow code
should have: 1) acceptable accuracy for the predicted velocity vector, its fluctuations, the
temperature fields (including radiant temperature), contaminant concentration fields and heat
transfer rates through the boundaries; 2) acceptable computational cost. Not all of these features
are required in all situations. The overall accuracy of the simulation can be influenced by the
applicability of the turbulence model, the assumption of Boussinesq approximation, the
representation of geometry, the truncation errors, and so on. The dimension of the problem and
the numerical algorithm determine the computational cost. In general, confidence in the
accuracy of the predictions produced by a code is obtained by investigating two items: 1)
solving the correct equations, i.e. evaluating the accuracy of the physical model equations that
are being used. 2) Solving these equations correctly and efficiently, i.e. evaluating the accuracy
and efficiency of the numerical solution procedure for the given set of governing equations.
Numerical algorithms produce only an approximate solution to the governing system of partial
differential equations. Errors arise from two components of the numerical methods:
discretization errors and iterative (convergence) errors .

The question of model accuracy (e.g. there exists currently no generally valid turbulence
closure models) should be kept separate from the one of numerical accuracy. Thus, the various
turbulence models cannot be evaluated unless the numerical accuracy is first established. The
first requirement is to reduce the numerical error to an acceptable level. For any consistent
numerical approximation, the error is reduced as the grid is refined. Therefore, grid refinement
is a natural means of improving accuracy. In addition to grid refinement, one may also use
higher order discrete approximation. However, higher order approximation can be applied only
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when the grid resolution is fine enough to represent the smallest length scales. Here, we shall
primarily discuss the spatial resolution aspects.

For evaluating the accuracy of a numerical solution, one may resort to the following: 1). Code to
experiment comparison. Ideally, the accuracy and limitations of the experimental data should
be known and be thoroughly understood. Such kind of experimental data are rather rare, and
also it should be noted that agreement with the experiment does not imply universally. A
comparison between the experiment and a single shot calculation should be avoided!!l. 2). Code
to exact solution comparison. For assessing the accuracy of a numerical method, comparison
with an exact solution of the problem is the best. However, exact solutions to flow problems are
known only in some simple, degenerated cases. Good accuracy in these cases does not imply
similar accuracy in other general situations. 3). Code to code comparison. It helps to quantify
numerical errors between algorithms when identical physical models are solved with different
methods. But a comparison of different codes for solving the same governing equations and the
same physical problem does not necessarily establish confidence, unless one of the codes has
been validated for different parameter values by other means. 4) Convergence history and
spatial resolution analysis. Slow convergence rate may mask iteration (convergence) errors.
Obtaining solutions on successively finer grids reduces the truncation errors and will quantify
the effect of grid resolution errors on flow quantities of interest. With Richardson extrapolation,
grid refinement can be used to obtain a more accurate result, and then the accuracy of the results
can be determined. Richardson extrapolation is applicable only once the asymptotic behavior of
the solution is established. |

The purpose of this paper is to evaluate the accuracy and efficiency of a computer code. A fast
multi—grid solver combined with local grid refinements is suggested for ventilation problems.
Three well-known turbulent-flow problems are selected, and computational results of the code
on these problems are compared with experimental data and published numerical solutions.

2. Indoor airflow code VentAirl
2.1 Governing equations and Boundary conditions
The indoor airflow code VentAirl, which is under development by the authors, solves the

unsteady, Reynolds—averaged Navier—Stokes equations along with the closure k—€ model. The
equations can be written in the following conservative form:
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where u,v and w are the velocity components, p is the pressure, k is the turbulent kinetic energy,
€ is the dissipation rate of turbulence, [l is the sum of the kinematic laminar viscosity p and
kinematic turbulent viscosity y, G, is the heat capacity of constant pressure, Q is the internal
heat generation rate, g; is the gravitational acceleration in direction x;, 0 is the temperature, p is
the density ( in general p = p(8), when the Boussinesq approximation is used p=py., and the
buoyancy term in the momentum equation is replaced by (p—pref)gi, Where pys if the reference
density).

All variables are given at the supply inlets. The k and € values are determined either by
measurement or from the equations given by Awbil2l. A zero—gradient condition applies to the
exhaust outlets. At planes of symmetry, the normal gradient is zero for all quantities, and also
the normal velocity components and scalar fluxes are zero. At a wall boundary, Dirichlet
boundary conditions are used which are based on the wall functions for velocity, k and € [3 and
for 8 [4]. For the thermal radiation, the temperature at inside surface is obtained from the energy
balance equation of the surface. The radiation calculation considers both long— and short-wave
radiation by a two—band radiation model'sl. The indoor air is transparent, the surfaces are grey
and all energy is emitted and reflected diffusely.

2.2 Solution procedure

The equations are expressed in time—implicit and conservative finite difference form on a
staggered grid. The hybrid upwind/central differencing scheme is used to discretize the
advection terms. The finite difference equations are solved by the SIMPLE procedurel6), The
continuity equation is rewritten into an equation for the pressure correction. The resulting
algebraic equations are solved by TDMA (Tri-Diagonal Matrix Algorithm) line-by-line
method. The solutions presented here are obtained from a four to six order of magnitude
reduction in the L2-norm of the residual from its maximum value. The L2—norm of the residual
R is defined as:
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The convergence rate is defined as (R *zna/R *ax )i, where N is the total number of grid points
in the domain, N; is the iteration number, R,;, Ry, Ryi, Rni, Rui, Rg are the residuals of the three
momentum equations, continuity equation and k— and &- equations.

3. Evaluation of VentAirl

Test 1. Forced Convection

The evaluation is first carried out for a three—dimensional isothermally ventilated room for
which detailed velocity field measurements are availablel’l. The practical relevance of the test
problem relates to mixing ventilation systems, in which air is often supplied through a small
opening near the ceiling, and removed through a return opening close to the floor. The
ventilated room is shown in Fig.1. The height of the room is 89 mm. Other dimensions are: is
L/H=3.0; W/H=1.0; h/H=0.1; w/H=0.1. The Reynolds number, based on the inlet velocity U;,
and the height of the inlet, is 5000. The air velocity was measured by a Laser—Doppler
Anemometer. The plane y=0 is a symmetry plane. The flow is thus calculated in one half of the
room only. Two grids (18*20*20 and 36*40*40) are used. The calculated profiles of
longitudinal velocity u at two different z—planes (zw=0.1 and 0.4), and corresponding
measured results are given in Fig.2. The computed velocity profiles are in good agreement with
the measurement. A grid-dependent solution is observed and the grid refinement improves the
solution in the recirculation region.

One of the advantages of using the wall function method is that it is computationally
convenient, i.e. the near—wall region is excluded from the flow domain. This does not mean that
acoarse grid is adequate. It is shown here that the accuracy of the predicted velocity field can be
improved by a grid refinement. The convergence rate of VentAirl is rather poor for this
problem. With under—relaxation, convergence rates of only 0.986 for 18%20*20 and 0.990 for
36*40*40 can be reached. It has been observed that the convergence performance becomes
even worse when the grid is finer.

Test 2. Natural Convection

The distribution of indoor air temperature is mostly non-uniform. For example, with
displacement ventilation, the flow is generally driven by buoyancy forces. The
buoyancy—driven flow in a cavity with differently heated vertical sides is considered here, as
suggested by othersf®9.. A full-scale air-filled cavity with dimensions corresponding to the
experimental results[1l is chosen here. The cavity is 2.5m high and 0.5m wide, see Fig.3. The
two horizontal walls are insulated. The vertical walls are isothermal with temperatures T, =
80°C and Tc=34.2.C. The corresponding Rayleigh number based on the cavity height is 5«1010,
The air velocities were measured by a Laser—Doppler Anemometer system. In our numerical
calculation, four different uniform grids, 20*20, 40*40, 80*80 and 111*111, are used. In
addition, a non-uniform grid, 53*53, is used to produce a very fine grid near the boundary and a
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coarse grid in the central region of the flow field. The convergence rate is in the range of
0.985-0.999.

Fig.4 compares the measured velocity profiles mid-way up the room with the ones computed
by the five different grid scales. The vertical temperature profiles in the central section are given
in Fig.5. Fig.6 shows the relationship between the local Rayleigh and the local Nusselt
numbers. A number of observations can be made, which confirm the conclusions of Chen et
all®l: 1), a good agreement is obtained between the experiment and calculations for mid—height
velocity; 2), The measured temperature of cavity in the central section is lower than the
computed one. The computed one is symmetric, but not the measured. This is possibly due to
the heat loss through the ceiling. There are also a number of points which emerge from a further
analysis of the effects of the grid refinements. 1), Fine grid can improve the accuracy of the
predicted velocity. 2), the coarse grid near the wall (20%¥20) gives a too-low convective heat
transfer coefficient, and the fine one gives a too—high coefficient (grid 80*80 and 53*53); 3), the
uniform grid 111*111 and nonuniform grid 53*53 give two almost equivalent solutions,
because they use same mesh space near walls. The importance of the near wall region explains
the importance of the model ”wall functions” that are used.

Test 3. Natural Convection and Surface Radiation Interactions

There is more energy exchange by radiation at room temperature than is commonly realized!19],
particularly when dealing with heating systems with heated surfaces and with displacement
ventilation(!!]. Radiation exchange between people and their surroundings is an important
factor in determining thermal comfort. So the study is extended to include the interaction
between natural convection and surface radiation in a square enclosure, for which the
calculated results by Fugesi and Farouk!12! are used for comparison.

The geometry of the problem is shown in Fig.7. The opposing walls are maintained at two
different constant temperatures, the temperature of left wall being higher than that of right wall.
The floor and ceiling are thermally insulated. The surfaces of the entire enclosure are black for
radiation, i.e. the wall emissivity is unity. The Prandtl number of the fluid is fixed at
0.686(CO,). The calculation is performed for Grashof number 1.45*10°and overheat ratio T of
unity (i.e. T, = 832.5K, T.= 277.5K). The calculations and comparison with the results of
Fugesi and Faroukl!2 for Grashof number 6.55%10¢ were reported by Li and Fuchs3l. The
Boussinesq approximation is used. Gebhart’s absorption method is used to calculate the
radiation exchange. The present calculation is performed with a 56*56 non—uniform grid for a
turbulent regime. It is impossible to get a converged solution for this problem if the number of
grid points is too small and/or the grid points are not properly distributed. This is due to the bad
resolution near the wall boundaries. Fig. 8 shows the temperature and flow fields with and
without surface radiation. When the radiation is totally neglected, the fields are symmetric.
When the surface radiation is considered, the symmetry completely disappears. The core of the
fluid becomes warmer when compared to the pure natural convection case. The low-velocity
region is moved from the core region to the lower part of the room, leaning toward the cold wall.

129



0.5 .
—— y

a adiabatic wall 0.4 Sanss
10740
X o R B
80<80
0.1 e
1112113
4] = o e=p
o}
[CRYR S
el |2 E ear
’s) z 2
o § = .3 F
=i 31
©.4) , . \
) o1 0.2 23 0+ 05

Fig.4 The measured and calculated
| < velocity profiles mid-way up the room
with five different grid spacings.

Fig.3 The full-scale airfilled cavity.

{Trore=Te)/(Th=T2)
1

0.8

0.6 |

2.4

0.2

o .5 1 15 2 2.5 i

Fig.5 The measured and calculated Fig.6 The relationship between local
vertical temperature profiles mid-way Rayleigh and local Nusselt numbers.
up the room by five different grid scales.

130



adiabatic wall

black wall

.

cold wall
0Q
hot wall

Fig.7 A square enclosure.

Fig.8 The flow fields (left) and temperature fields (right), with (lower) and
without (upper) surface radiation.
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Fig.8 is graphically identical to those of Fusegi and Farouk!!2l. The velocity profiles along the
midplanes of the enclosure are shown in Fig.9. The figure indicates that intense flows are
induced near the insulated surfaces when radiation is taken into account. The thickness of the
boundary layer in the case of turbulent regime is thinner than in the case of laminar regimels],
The agreement between our results and the results of Fusegi and Farouki!2is very good. The
discrepancy may be due to the Boussinesq approximation in VentAirl, since the temperature
difference is very large.

To further confirm the applicability of the Boussinesq approximation, the calculation is also
performed without the Boussinesq approximation. The density variation due to the temperature
difference is considered. The results are presented in Fig.10 for overheat ratios of 1.0 (i.e. Ty, =
832.5K and T, = 277.5K)and 0.1 (i.e. T, = 582.75K and T, = 527.25K). Grashof number is
6.55*106.The error caused by the Boussinesq approximation is shown in the figure. When the
overheat ratio is 0.1, the result considering the density variation is almost identical to the one
with the Boussinesq approximation!s. Our results with the density variation are almost
identical to those of Fusegi and Farouk!!25]. When the temperature difference is less than 50°C,
the result with Boussinesq approximation is very good. So it can be concluded that for airflow
simulations in ventilated rooms, the Boussinesq approximation is reasonable, since the
temperature differences are very small.

4. Overview of Indoor Airflow Code VentAirll

One major numerical disadvantage of VentAirl is its slow convergence rate; the finer the grid,
the slower the convergence rate. A second code VentAirlI that uses the same governing
equations as in VentAirl has been developed. The multi-grid (MG) procedure by Bai and
Fuchs(® and the local grid refinement procedure by Fuchs!!4land Bai and Fuchs!13] are used.
The MG method is an iterative procedure which ideally exhibits a grid-independent
convergence rate. The local grid refinements make it possible to resolve large gradients in the
flow field without influencing the convergence rate of the MG scheme. In this new code
(VentAirll), the physical domain is discretized with a global uniform rectangular mesh. In
regions of high gradients, e.g. at near wall regions and at inlet/outlet regions, the locally refined
mesh is added. The diffusive term is approximated by the central difference scheme. The
convective term is discretized by the hybrid central/upwind differencing scheme®l. The wall
function of Launder and Spalding!1%1 that is used by Bai and Fuchs!13! is replaced by the wall
function of Rodil®l, which means that the boundary conditions for k is changed from dk/dn = 0 to
k=f{w). After these modifications, it is found that the convergence performance is improved
when the code is applied to the flow in an isothermal box model(13l, The Reynolds number based
on the inlet width is 7000 for the isothermal flow in this box. Fig.11 shows the multigrid
convergence history using a coarser grid (22*14*14*14) and a finer grid (42*26*26) with the
original MG codel'3l and VentAirl], respectively. The work unitis defined as the computational
effort for one relaxation sweep on the finest level. The residuals are reduced S orders of
magnitude within 35 work units with VentAirIl compared 55 work units with the original MG
code. The single grid results with VentAirII is also shown in the figure for comparison. The
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problem in test 1 is also solved by VentAirIl. The VentAirl and VentAirll give identical
predictions when using the same finest grid. The convergence history by VentAirIl is shown in
Fig.12. The coarser grid (22*14*22) and the finer grid (42%26*42) are used. The advantage of
the MG method over single grid method with respect to computational speed is displayed. The
computational speed with MG is a factor of 6 faster than that of the single grid for the coarser
grid and a factor of 50-60 for the finer grid. The main advantage of the MG method is that the
computational time is linearly increased with the number of nodes. Local refinements for the
problem in test 1 can be found in Li and Fuchs!16l,

5. Conclusions

Three turbulent incompressible fluid flows (forced convection, natural convection and
convection—radiation interactions) have been tested to evaluate the accuracy and efficiency of
the computer code VentAirl.

Solving governing equations correctly and efficiently. The grid refinement studies here
indicate that grid fineness can improve the accuracy of the predicted velocity and temperature
fields. Grid refinement is also expected to reduce the numerical diffusion. Fine grids and a
proper distribution of the grid points are required to get an accurate numerical solution. The
usage of a large number of computational elements requires faster convergence. The
convergence test shows that VentAirl exhibits a low convergence rate; and the finer the grid the
slower the convergence. The problem can be overcome by the MG method together with local
grid refinements. This has been demonstrated by VentAirIl. A nearly grid-independent
convergence has been achieved for the test problems with more than an factor 50 reduction in
CPU time for the finer grid. Thus the fast MG solver combined with local grid refinements is
very appropriate for ventilation problems

Solving correct governing equations: The applicability of the Boussinesq approximation
is confirmed. The results from the various grid scales differ most for quantities that are
determined in the inner layer of the boundary layer, for example, the wall heat transfer. This
implies that the high-Reynolds-number model with wall functions is not suitable for
simulating indoor air flow from the heating and cooling load point of view. HAVC engineers are
interested in heat loss and heat gain through the boundaries. Possible improvements to the
turbulent model may include improving the wall function treatment or rather eliminating the
need for a too coarse scale modelling (using Large Eddy Simulation). Experiments should also
be designed properly, so that the produced data are relevant and accurate for code validation.

6. Acknowledgement

This work was financially supported by the Swedish Council for Building Research (BFR). We
would like to thank deeply Dr. X.S. Bai for his help in adapting the 3D MG code into VentAirIlL

135



7. References

1.ROACHE, P. J. "Need for control of numerical accuracy", Journal of Spacecraft and Rockets, vol. 27,
no. 2, pp. 98-102, 1990.

2. AWBI, H. B. "Application of computational fluid dynamics in room ventilation”, Building and
Environment, vol.24 no.1, pp.73-84, 1989.

3. RODI, W. "Turbulence models and their application in hydraulics”, International Association of
Hydraulic Research, Monograph, Delft, 1980.

4. JAYATILLIAKA, C. L. V. Progr. in Heat Mass Transfer, vol.1 pp. 193, 1969.

5.LL Y., FUCHS, L. "A two-band radiation model for calculating room wall temperature”; 1st Baltic
Heat Transfer Conference, Goteborg, Sweden, 26th-31st, August, 1991.

6. PATANKAR, S. K. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corp.,
Washington, D.C., 1980.

7. RESTIVO, A. "Turbulent flows in ventilated rooms™. PhD thesis, Dept. of Mech. Eng., Imperial
College, London, 1979.

8. CHEN, Q.Y,, MOSER, A., HUBER, A. "Prediction of buoyant, turbulent flow by a low Reynolds
number k—e model”, ASHRAE Transactions, 1990.

9.BAKER, A.J,, KELSO, R.M. "On validation of computational fluid dynamics procedure for room air
motion prediction. ASHRAE Transactions, vol.96, part1, 1990.

10. MCINTYRE, D. A. "The thermal radiation field", Building Science, vol.9, pp.247-262, 1974.

11. HEISEILBERG, P., SANDBERG, M. “Convection from a slender cylinder in a ventilated room”,
Proceedings of Roomvent’90, Oslo, Norway, June 13-15, 1990.

12. FUGES]I, T., FAROUK, B. "Laminar and turbulent convection-radiation interactions in a square
enclosure filled with a monger gas”, Numerical Heat Transfer, part A, vol.15, pp.303-322, 1989.

13. BAL X. S., FUCHS, L. “A fast multi-grid method for 3-D turbulent incompressible flows”, 7th
International Conference on Numerical Methods in Laminar and Turbulent Flow, Stanford, California,
15th—19th July, 1991.

14. FUCHS, L. "A local mesh-refinement technique for incompressible flows”, Computers & Fluids,
vol. 14, no.1, pp.69-81, 1986.

15. LAUNDER, B.E., SPALDING, D.B. “The numerical computation of turbulent flows", Comp. Math.
in Appl. Mech. & Engi. 3, pp.269-289, 1974,

16. L1, Y, FUCHS, L., BAI, X.S."Accurate numerical simulation of air flows in ventilated
multi-rooms”, Building Simulation’91, Nice, Sophia-Antipolis, France, 20th-22nd, August, 1991.

17. CHEESEWRIGHT, R, KING, K.]., ZIA] S. “Experimental data for the validation of computer

codes for the prediction of two—-dimensional buoyant cavity flows", Significant Questions in Buoyancy
Affected Enclosure or Cavity Flows. ed. Humphrey, J.A.C. et al, pp.75-81, New York, ASME, 1986.

136



