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Numerical Identification of Interzonal Air Flows from Tracer Gas Measurements

0. Synopsis

This paper presents a new approach to determine the interzonal airflows of
a multizone system using tracer gas measurements. In contrast to meth-
ods proposed earlier, the presented method does not use the mass balance
as basis for the least squares problem but identifies the interzonal airflows
as coeflicients of the evolution equations for the concentrations. Therefore
estimating the derivatives with respect to the time from measured data is
avoided. Furthermore the concentration can be calculated arbitrary points
in time. In addition, if exact intervals bounding the sampling error are avail-
able, interval arithmetic can be used to determine bounds for the interzonal
airflows.

1. Introduction

For determining the unknown interzonal airflows of a multizone enclosure, it
is modelled as an multizone system. To illustrate this, consider the following
example, for which we want to thank J. B. Mattson, Lund University, Sweden.
This model consists of 9 zones, where the zones 8 and 9 correspond to a main
air supply and exhaust air ducts.

/
/ -
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9
-

Later the method 'presented in this paper will be demonstrated on this ex-
ample.

Using the mass-balance for each zone we get
n n .
Vici= Y G - D, @&+ g, i=1--,n
=0, j#i §=0, j#i

where n is the number of zones, gij the interzonal airflow from zone j
into zone ¢ (index 0 for outdoor air), V; the volume of zone i , € the
concentration in zone j and §; the injection (constant) into zone i .
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With ¢; =¢&; — éy we get

n n
(1.1) Vié = Z Gij ¢j — Z djici + Gi i1=1,---,n
j=1, j#i j=1,j#1

The system (1.1) will be used to compute the modelled concentrations at
time % .

The problem of determining the interzonal airflows now leads to a nonlinear
least squares problem, which is solved using the Gauss-Newton-method.

Having identified the unknown parameters, one can get information about
the quality of these approximations using statistical considerations, i.e. the
d—posteriori—covariance matrix.

It may be possible that the structure of the multizone system does not allow
us to identify all parameters. In this case only certain fixed linear combina-
tions are identifiable. We use a heuristic algorithm to find ‘smallest’ sets of
dependent parameters.

Last, interval arithmetic is used to get bounds for the true values of the
interzonal airflows.

2. The Identification Problem

Now we have to determine the interzonal airflows from the measured tracer
gas concentrations. Let m be the number of sampling intervals, M the
number of samples, ¢; € R® the measured concentrations and ¢(t;, Q) € R"
the modelled concentrations at time t; (0 < ¢ < m) , where the parameter—
vector @ contains the unknown interzonal airflows. Thus the interzonal
airflows can be determined by the requirements

c(ti,Q) =& , 1=0,---,m

Under the assumption that the measurement errors and model uncertainties
can be described by a Gaussian statistics, the least squares method gives an
optimal estimator

(2.1) Q = arg mqi?n > et Q) — &ill2

=0

According to (1.1) the time evolution of the concentrations c(t,Q) can be
modelled by

(2.2) V@) = Qet,)+5 ,  c(t,Q)=co
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With V =diag(Va,--+,Va), §= (1, ,d2)F , g =V 1§ and

di; ifi#j
n
Q=(gi;) = Y G ifi=j
z=0, z#1%

we get

(23) é(t7 Q) = V_l Q C(t, Q) + g f(ta c, Q) ] C(t(h Q) = Co

There exist several methods to solve the linear differential equation (2.3),
e.g.

i) a closed formula for the exact solution

ii) solving (2.3) with a numerical scheme

With the aid of the variation of constants formula we obtain the solution of

(2.3) with A=V~1Q
(2.4) c(t,Q) = exp(At) c(to,Q) + A™' (exp(At)—1I) g

where I is the identity—matrix in R"™*™. The concentrations can now
be approximated using a Padé-Approximation to the exponential function.
But this method needs O(n?) operations to compute the solution and is
therefore not efficient.

To integrate (2.3) numerically, we can use

— an explicit method of Runge-Kutta type, e.g. as given by Dormand and
Prince (1980) with automatic step size control (see [1] page 171).

— an implicit method like the extrapolated lineary implicit Euler method
combined with a dense output formula and automatic step size control.
The advantage of this method is, that it is well suited for the (mildly)
stiff equations (2.3) and with the aid of the dense output formula we can
obtain the solution at each point of time within each integration step

(see [2]).

Each of the proposed methods is able to approximate the solution of (2.3)

at arbitrary points in time. Notice that c(¢,Q) is piecewise continously
differentiable with respect to time.

Since the initial values ¢y are not known we have to identify them as well.
Putting P = (g) € R", now (2.3) is replaced by "
LP)=VT'Qct,P)+g  c(t,Q) =co

25) Q=0 CQt) =Q
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Problem (2.1) now reads

m
(2.1 P= argml:i’n Z le(ti, P) — €il|2

=0

For this nonlinear least squares problem we have to evaluate c(ti, P), le.
solve (2.5), so the whole technique is similar to the shooting technique for
boundary value problems. Moreover, the nonlinear problem (2.1’) is solved
by iterating with the linearized problem — this technique is called the Gauss—
Newton-Method. We linearize c(t,P) at P . We get with ¢, = dc/pp

(2.6) (t,P) ~ c(t,P) + cp(t,P)(P — P)
Inserting (2.6) into (2.1’) we get
min Z; H ep(ti, P)(P — P) — (& -c(t,-,ﬁ))u2
With AP=(P—P)eR" and
Cp(to, 15) C(to, P) —Co
J= : eRM*N b= ; e RM
cp(tm, P) (tm, P) — Cm

where M is the number of samples and N is the number of the unknown
parameters, we get the linearized least squares problem

(2.7) min |J AP — b2

The solution P of (2.1) is now obtained with the aid of AP by iteration
(2.8) Pl — pF L AP

which terminates when ||AP]|s is small enough. For this iteration we have
to compute the Jacobian J .

Theorem 1 Suppose that the partial derivatives of f in (2.3) with respect
c

Q

Then the solution C(t, P) is differentiable with respect to P and the deriva-

tive is given by the matrix aC/a p = R(t,to) , where R is the solution of
the so called ‘variational equation’

to ¢ exist and are continous. Let C =

(2.9) R(t) = ( J{;((ttcc%))) “R(t,%) ,  R(to)=En
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where E ,, is the identity-matrix in R™*" (see [1], pp 97). Notice that here
we have f.(t,¢,Q)=A.

In our case, theorem 1 is not directly applicable since the right hand side of
(2.3) is discontinous at those points in time, where the injection § (a step
function) has jumps. But one can show that the conclusion of theorem 1
stays valid.

The solution R of (2.9) can now be obtained by the same methods as the
solution of (2.3). It is also possible to compute J by divided differences,
but in this case it is necessary to freeze the step sizes, that means the step
sizes used during the computation with the initial value & are memorized
and reused during the computation with the initial value &+ éc .

Differentiating the solution given by (2.4) one can give a closed form solution
of the variational equation (2.9) by theorem 2.

Theorem 2 Let A4 = (a;;) € R®*" be regular and ¢ > 0
Then

[e%) k-1

0 1 ..
At) = k p(ij) gk—2z—1 4k
Fa; exp(At) ,;zl o ZE=OA B\ A t
0 oo 1 k—1
—— A Y exp(At) — I) = : E:AZB(ij)Ak“z_lt’“+1
6a,~,~ ( p(' ) ) ; (k + 1)! =

where B — (b;ﬁ) with b;g — { 1 forl=¢and s=j

0 otherwise

To solve the linear least squares problem (2.7) we first compute the QR -
factorization of J suchthat J = QR , where Q € RM*M jgan orthogonal
matrix and R = (R;,0)T e RM*N 54 triangular matrix. Then we have

17 AP —blj3 = |Q R AP — b5 = || Ry AP — by |3 + ||t 3
with  QTb = (Zl) and b e RN
2
Thus (2.7) is reduced to the much smaller problem

2.10 i — '
(2.10) min [[By AP — by 2

which can be tackled by the singular value decomposition. For this one
computes orthogonal matrices U,V € RV and a diagonal matrix ¥ =
diag(oy,---,0n) such that Ry =U = VT .
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Using this factorization, the solution of (2.10) can be expressed as:
(2.11) AP=VZ}tUTH

The pseudo inverse &} of ¥ is given by T} = diag(o; ', --,07%,0,--),
where r denotes the numerical rank of R; , which is equal to the numerical
rank of J (see [3], p. 242). Thus the use of the singular value decomposition
aids in determining the numerical rank of R; . This is combined with a
trust region algorithm for the nonlinear problem (2.1) (see [9]). In principle
the numerical rank is determined such that the solution AP of (2.10) is
bounded by Ry - the trust region radius. For more difficult problems —
characterized by a given amount of nonlinearity in relation to the minimal
value in (2.1) — we have to include a Levenberg-Marquardt regularization
technique, as well (see [9], pp 218-228). The relation of the numerical rank
r to the size of the step AP follows from (2.11)

IAP|| = (U b1)/o:

=1

3. Statistical Considerations

Once one has calculated the solution of (2.1) by iterating (2.7), it is desirable
to give error estimates for the solution. For this we consider the the last
iteration.

The vector b; of (2.7) coincides with the measured data € up to the bias
¢(+, P) . Therefore the components b{ (1 <i < N) of the vector by can be
viewed as statistical independent random variables with mean value b’ and
variance o , which equals the variance of the measured data ¢; .

Then one gets for the expected value :

E(b}):iﬁ ’ Z:'laaN
and for the covariances of b’i
. e 2 e s
b,K) = B(6 - —8) = 9 =
COU( 1 1) (( 1 1)( 1 1)) {0 otherwise

Under these assumptions the solution AP of (2.7) can be viewed as ran-
dom variable too and because AP is given by V T} UTb; we obtain the
expected value of AP

E(AP) =V UTH

Thus we have for the covariance matrix (see [10], p 182)

E((AP — E(AP)) (AP — E(AP)T) = o*V (2H)* VT =¢
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From this we also get the correlation coefficients cor(AP;,AP;) for the
solution, which indicate how much the computed parameter AP; depends
on the computed parameter AP; . We have

3

VCiiCij

cor(AP;, AP;) = Cij i,j=1,---,N

4. Singular Jacobian

Sometimes it is known in advance or detected in previous runs that the
Jacobian J in (2.7) is singular. This may have different reasons

~ there exists no connexion between some zones

~ some combinations of parameters cannot be identified numerically be-

cause some zones are hardly influenced by the given injections into other
zones.

In this case it is interesting to know which parameters or combinations of
parameters lie in the kernel of J and thus cannot be identified. We get the
(numerical) null space from the singular value decomposition of Ry

(3.1) null J = span{V,41,...,Vn}

But, to draw conclusions on which parameters are identifiable and on the
experimental settings, we need a special type of basis for the kernel where
each basis vector has as many zero components as possible. The remaining
(hopefully) few nonzero components can be interpreted as coefficients of those
linear combinations of parameters that cannot be identified — at least by
the current experimental settings.

It is well known that computing a ‘sparsest null space basis’ cannot be done
efficiently. Therefore one has to resort to heuristic algorithms which compute
a nearly optimal basis. In our case we propose the following simple algorithm.
Let k denote the dimension of the null space (here ¥k = N —r ), and
z,...,2F a basis for it. We start with 2/ = Vetj, 1<t < k. We now
try to replace each of these basis vectors z/ by a vector with fewer nonzero
components. We describe the first step only, the same technique is applied to
the remaining vectors — theoretically by renumbering the vectors z/ . For
ease of presentation let us rename 2! to z.

We need some more notation. Let us define the ‘indicator vector’ y

Xi = { 1 if z; = 0 (or should be 0)

0 if z; may be nonzero
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and
Z = (z2,za,...,zk)
Q2
o= aj eR
49
X = diag(x1,.--,XN)

Note that in this notation the new basis vector 7 has the representation
z+ Za.

We now proceed as follows

Loop over the following steps and the inner loop until we escape the inner
loop because the maximum number of iterations is exceeded.

e Increase the number of components in z , that should equal 0, by 1.
For this select an index [ at random for which x; =0 andset x;1=1,
i.e. z; should become 0, now.

* Solve the least squares problem
e= ngn I X(z+ Za)|l2
Note that multiplication by X is ‘shooting operator’ which kills all
components which are allowed to take nonzero values. If e is tiny, we
have succeeded in finding the replacement vector Z = z+ Za with just
that vector a for which the minimum is attained.

e Set e, =¢.

Iterate the following step until we escape or the maximum number of itera-
tions is exceeded.
e (Exchange step)
Select indices ¢ and j for which x; =0, x; =1 andset x; =1, x; =
0. Perform step ( x ) and escape if e is tiny. Otherwise proceed as in
‘simulated annealing’ (see [12] for an introduction).

Accept this exchange if eleo=/T &
Here ~ is some constant v <1, y=1 and T > 0 is the simulated
temperature which is driven to 0 gradually. Note that a step with

e < e, is always accepted. Set e, =¢ .
Otherwise undo this exchange step.

5. Calculation of Intervals for the Parameters

Interval arithmetic gives a possibility of computing bounds for the parame-
ters, if there exist bounds for the measurements. Analogous to calculating

with real numbers, one can calculate with intervals using the following arith-
metic
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Let xe{ +, —,*,/ }, L =][ab] and I =[c,d] then we define
LxL={zcxy|lzelhb Nye€l} where I;/I, is defined only if
0& 1.

This can be extended to vectors and matrices (see [4,6]).

Now we want to compute intervals bounding all parameters. For this the
solution of the interval version of (2.3) is needed

(5.1) é(t,P)=Ac(t,P)+g |, c(to, P) = co

where now A is an interval matrix, c¢(f,p) and c¢o are interval vectors.
The interval differential equation (5.1) can now be solved by an algorithm
due to R. Lohner[7]. This gives the interval solution ¢(¢,P) for a given
parameter interval P . The parameter interval has again to be determined
by solving (now an interval) nonlinear least squares problem. Similarly as
in (2.1), given an interval vector ¢; of measurements, an interval vector P
containing all solutions of

(5.2) argmin »  |le(t;, P) — &z  forall &eg
P

=0

has to be determined. This can again be reduced to a sequence of linear

interval least squares problems. Let AP be the interval vector containing
all solutions of

(5.3) argmin ||J AP — b||
AP

where J is an interval extension of the Jacobian in (2.7) and b is an
ordinary vector given by

C(to, p ) — ég

b= :
(tm, P) = &m

where P denotes the midpoint of the interval vector P and ¢; denote the

midpoints of the interval vectors ¢;, 0 < 7 < m . Therefore the solution AP

of (5.3) is an interval vector and can be obtained using an algorithm due to
Neumaier[5].

"The solution of (5.2) is again obtained by iteration
Pk+1 — Pk 4+ APk

and this iteration terminates when P**+! c pFk .
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Numerical Example

We used the experimental setting of [11]. We were able to get the same
results as quoted in [11] using 8 iterations. The results agreed within 3% in
most cases and up to 12% in a few cases.

In addition we computed the correlation coefficients and variances. All initial
values could be identified with a variance of about 1%. The variances of the
interzonal airflows differ widely. We got the following results (the notation
i—i denotes the sum of all outflows from zone i )

interzonal airflow between zones variance|%]

159, 250, 359, 450, 50, 69, 79, 858, 98, 959 | 0-0.7
1-1 1.7

1-2, 2—2, 23, 3—3, 3—4, 44, 55, 6—6 25-9

617, T—T, 8—T 1418
8—1 86

8—2, 8—4, 8—5, 8—6 109 - 280

8—3 550

Furthermore the correlation coefficients between the initial concentrations
and all the other parameters are quite small (about 10™3 ) except the cor-
relations of initial concentrations of connected zones which amount to 0.1
(approximately). Quite high correlations were found for the the following
pairs of airflows (9—8,1—9), (1—9,2—9), (4—9,9—9) which amount
to 0.914, 0.956, 0.916 , respectively.

Summary and Conclusions

We have presented a new technique for estimating the interzonal airflows
from tracer gas measurements. We set up a system of differential equations
for the time evolution of the concentrations in each zone. The interzonal
airflows enter these differential equations as coefficients. These unknown
coefficients as well as the unknown initial concentrations are numerically
identified by solving a (nonlinear) least squares problem where one function
evaluation amounts to solving these differential equations with given initial
values and coefficients. With the aid of the Jacobian of this ‘function’ we
are able to estimate variances for and correlations between the unknown
quantities. Furthermore, studying the (numerical) null space of this Jacobian
shows unidentifiable interzonal airflows (or combinations) and gives hints
on possible optimizations of the experimental settings. If rigorous bounds
(intervals) for the measured data are available there is also a technique for
computing rigorous bounds for the interzonal airflows (intervals), provided
the applicability of the underlying model is out of question.
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