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A = discrete-time system matrix 
B = discrete-time input matrix 
c = vector of tracer gas concentrations 
D =output matrix 
F = matrix of interzonal flows 
G = matrix used to represent V-1F during discrete to continuous inversion 
g = vector of applied inputs 
I = identity matrix 
L = least-squares gain matrix 
M = matrix whose columns are the eigenvectors of A 
P = matrix used during recursive least-squares algorithm 
R = matrix used to calculate V-- formed from infinite series 
v = vector containing unmeasured system disturbances 
V = matrix containing effective volumes of zones 
W = transfer function matrix 

= least-squares output vector 3 = least-squares regression vector 
9 = least-squares parameter matrix 
&N) = least-squares estimate of 0 based upon N observations 
aij = parameter appearing in input-output system formulation 

b v  = parameter appearing in input-output system formulation 
c i = tracer concentration in zone i 
k' = time derivative of tracer concentration in zone i 
Ci = (concentration of tracer in zone i) - (outdoor tracer concentration) 
& = concentration difference in two-zone system after impulse is applied 

Fij = flow from zone i to j 
F = interzonal airflows of equal magnitude in a two zone system 
g i = tracer input in zone i 
h,i j,k,q = indices used for sequences or series 
n = total number of zones 
N = number of data points 
Pij = parameter appearing in input-output system formulation 
Q, = total flow into or out of zone i 
S(8) = total sum of the squared error using the indicated parameter matrix 
s = complex frequency variable defined in context of Laplace transform 
T = sampling interval 
t = time 
T* = T/(V/F,); Fo defined as total flow into a reduced order model 
t* = tl(V/Fo); Fo defined as total flow into a reduced order model 
Vi = effective volume of zone i 
yi,,t = ith actual measured output 
yni,gred= ith output predicted by an ARMA model of order n 
z = complex frequency variable defined in context of z transform 
a = constant used to set initial condition of P 

= used during least-squares analysis to apply varying weights to the data 
i j  = Dirac delta function (6ij = 0 for i+j; 6ij = 1 for i=j) 
A = constant used to bound maximum sampling interval 
E = Ac(t)/Ac(O) 
h = forgetting factor 
P = eigenvalue of V-1F 
Vi = eigenvector of A 
02 = variance 
z = time constant for tracer decay 
q = eigenvalue of A 



This paper presents and evaluates a new method, based upon tracer gas 
techniques, for determining interzonal airflows and effective volumes in a multizone 
enclosure. Presently used tracer gas techniques have a number of drawbacks 
including the need for multiple tracers when analyzing a multizone structure. Also, 
traditional techniques cannot be used to independently determine flows and volumes 
in the multizone case. The method described in this paper eliminates some of the 
problems introduced by multiple tracers and allows the independent determination of 
both flows and volumes. 

The proposed method uses a single tracer gas to disturb the zones. A state-space 
formulation is used to model the multizone system. The concentration data are used 
in combination with a recursive least-squares identification algorithm to determine all 
of the interzonal airflows and effective volumes. A number of simulations are then 
used to validate the method The simulations show that there are important 
considerations to keep in mind when selecting the type of input applied to each zone. 
They also indicate that the proper choice of sampling interval is critical for accurate 
identification. 

The recursive least-squares formulation is readily adapted to the case where the 
system parameters are varying. A number of simulations show that this method can 
be used to track varying interzonal flows and effective volumes provided they are 
changing slowly with time. 

Finally, a method for determining the number of interconnected zones in a system 
is introduced. The method uses a single impulse applied to one of the zones. The 
tracer concentration in that zone is then monitored. The data are fit to an auto- 
regressive moving-average model and the residuals are analyzed using Akaike's AIC 
criterion which provides an indication of the order of the system. 

In recent years, increasing emphasis has been placed upon reducing overall 
building energy usage, while still maintaining acceptable levels of indoor air quality. 
As a tool in analyzing potential indoor air quality problem areas, tracer gas techniques 
have been employed with varying degrees of success (~ar r je l ,  ~ f o n s o ~ ,  ~ensen3, 
Axley4, CharlesworthS). Proper application of these techniques, whether based 
upon single or multiple tracers, can yield quantitative knowledge of the internal air 
circulation patterns. 

If an accurate dynamic model of a building with respect to energy or mass 
transport is desired, the airflow measurement technique must determine the airflow 
rates, F, between zones and the effective volumes, V, of the zones as shown in 
Figure 1. 



Figure 1. Three-Zone Airflow and Volume Model 

The flows between zones can be the result of either mechanical (forced ventilation 
system) or natural convection (open doors or windows). Many buildings contain 
some combination of these two and most tracer gas techniques do not differentiate 
between them. 

The effective volume is the volume of the interior of a zone in which complete 
mixing occurs (Allen6). In order to determine interzonal airflows, most tracer 
techniques assume that the effective volume is known a priori. For example, the 
effective volume might be assumed to be nearly equal to the unfilled volume of a 
room. However, if dead zones or ventilation system short circuiting occurs, the 
results of these techniques may be completely erroneous. Accurate determination of 
the effective volume will ensure not only robust control of indoor air quality and 
human comfort but will also indicate areas where improvements are needed. 

This paper further evaluates a new method (O'~eill7), based upon tracer gas 
techniques, for determining interzonal airflows and effective volumes in a multizone 
enclosure. The method uses inputs of a single tracer gas to disturb each of the zones. 
A state-space formulation is used to model the multizone system and the 
concentration data were used in combination with a least-squares identification 
algorithm to determine all of the interzonal airflows and effective volumes. 

Several issues which arise during the implementation of this and other tracer gas 
techniques are also addressed. These include: 

required length of test 
sampling period based upon: 

numerical stability of identification algorithm 
system dynamics 

input requirements 
identifying the number differentiable zones 
varying flows andfor effective volumes 

For a multizone system as shown in Figure 1, conservation of mass for the tracer 
gas in a single zone, i, can be written as (~inden8) 



where 
gi(t) = tracer input into zone i (mass/time) 
Vi(t) = effective volume of zone i 
cti(t) = tracer concentration in zone i (mass/volume) 
c ';(t) = time derivative of tracer concentration in zone i (mass/volume*time) 
Fij(t) = flow from zone i to j (volume/time) 
6ij = Dirac delta function (&j = O for i#j; &j = 1 for i=j) 
n = total number of zones 

The subscript "Ow represents outdoor air. For the remaining theoretical analysis and 
simulations to follow, units will be omitted from the numerical results. These 
numbers may either be considered dimensionless or have units consistent with those 
defined in Equation (3.1). Also, for the remainder of the analysis, the concentration 
of tracer in the outdoors will be considered constant or relatively slowly changing. If 
this approximation is made, the outdoor concentration, c'o, can be eliminated from 
Equation (3.1) by defining the other concentration terms to be the difference between 
the actual zone concentration and the outdoor value 

Equation (3.1) represents n first-order simultaneous differential equations for the 
mltizone system. For the case where n = 3, Equation (3.1) could be written in state- 
space form as 

where 

In Equation (3.3) the term Q(t) represents the total flow into or out of zone i. 

Equation (3.3) can be represented more compactly in matrix form as 

or multiplying through by V-l(t) 

Equation (3.5) is known as the time varying state-space representation of the system 
of linear differential equations described by Equation (3.1). At this point, it is not 



necessary to assume that the matrices V(t) and F(t) are constant for the entire 
duration of the tracer gas test. 

The least-squares algorithm described below requires that the system be 
represented in discrete form. If it is assumed that the flows, F(t), volumes, V(t), 
and input, g(t), are held constant during the sampling interval, T, Equation (3.5) can 
be written as (K id)  

where A and B are defined as 

T 
1 ~ ~ 2  ( v - ~ F ) ~ T ~  +*. -  B = ex~[(~-1F)tlv-lcIt = [IT + + 
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with V-1 and F defined as the values of V-l(t) and F(t) on the interval (kT, B+l]T). 
Equation (3.6) is the linear discrete-time state-space formulation of the system 
described in Equation (3.1) with k = t/T. 

The problem of parameter identification has been studied extensively in many fields 
as a necessary first step in any type of system analysis (~ junglo ,  ~ ~ k h o f f l l ,  
Kudval2, Ossmanl3). One well known procedure used in parameter estimation is 
known as the method of least-squares. In this method, a model form containing one 
or more unknown parameters is assumed to describe the system. One or more tests 
are then run in which known inputs are applied and the outputs of the system are 
measured. These data are then used to select the best combination of parameters with 
respect to minimizing the sum of the squared error between the actual data and the 
predicted value. 

To formulate the least-squares estimate of the system parameters, Equation (3.6) is 
rewritten in a slightly different form 

where y[k] is a vector containing the measured tracer concentrations in each zone at 
time step k. The symbol, 8, is used to denote the parameter matrix, 

and contains the unknown parameters of interest. The variable, $(k-1), is the 
regression vector whose components are comprised of past observations of the 
inputs and outputs of the system (regression variables) 



The vector, v(k-1), contains unknown and unmeasurable disturbances to the system 
(eg. measurement noise). 

The method of least-squares is described by the criterion function 

assuming v(k) is a sequence of random variables with zero mean (white noise). In 
Equation (4.4), the term, N, is the number of data points collected and P(k) is a 
sequence which can be used to give varying weights to different data. The optimal 
choice of the parameter vector is that vector which minimizes S(8)-producing the 
smallest summation of the squared errors. Since Equation (4.4) is quadratic in 8, it 
is straightforward to solve analytically. This gives 

&N) is the least-squares estimate, based upon N observations, of the actual 
parameter matrix 8. 

The method of determining the unknown system parameters by fust collecting all 
of the data and then calculating b ( ~ )  using Equation (4.5) is known as the batch 
method. The batch method is useful for systems which are well understood and 
prior knowledge about when to apply the inputs is known. However, it is often 
more useful to represent Equation (4.5) in a recursive fashion. With a recursive 
identification algorithm, the unknown parameters can be calculated as each new data 
point is recorded. 

While the derivation of the recursive form of Equation (4.5) is straightforward, it 
is somewhat algebraically involved (See ~ j u n ~ l o  or Eykhoffll). Therefore, just the 
results will be presented here. The recursive least-squares algorithm is simple in 
concept. Using this procedure, the new estimate of the parameter matrix, b(k), is 
equal to the old estimate, b(k-1), plus some gain matrix, L(k), times the error 
between the predicted and actual values of the output(s). The algorithm is thus, 

b (k) =b(k- 1) + L ( k ) [ y ~ ~ ] - $ ~ ( k -  l)b(k- 1)] (4.6a) 

where 



Therefore, the most computationally involved part of the algorithm comes in 
computing the gain matrix, L(k). 

Examination of Equation (4.6) leaves the question of initial conditions of the 
matrices &kg) and P(kg) as yet unresolved. As N+ m the effect of the initial values 
disappears. In practice however, even for a small number of data points, the effect 
of initial conditions is negligible. Thus, common choices for the initial values of 
P(k0) and b(ko) are P(k0) = aI and b(kO) = 0, where a is some large constant. 
However, if an 'exact' initial guess is desired or only a few data points are available, 
the following values of P(kg) and b(kg) should be used 

The value of kg in Equations (4.7a) and (4.7b) should be chosen such that the 
required matrix inversion is possible. 

The recursive least-squares method allows one to examine, in real time, the 
response of the system parameters to the applied inputs and determine when (and 
possibly where) new inputs should be applied. For example, if one or more inputs 
have been applied in the past and the parameters of interest are no longer changing 
appreciably with each new data point collected, then it is appropriate to apply an 
additional input or terminate the test. 

Before evaluating the least-squares algorithm described above, some discussion is 
necessary on how to interpret the values of the flows, F, and effective volumes, V, 
from the matrices A and B. In the development of Equation (3.6), it was not 
necessary to approximate the differentials appearing in Equation (3.5). Thus, the 
values of A and B obtained during the least-squares analysis are not affected by any 
such approximations. However, when going in the opposite direction, that is, 
calculating F and V from A and B it is not as simple. 

Depending upon the length of the sampling interval, different approaches may be 
necessary. If the sampling period is short, relative to the system eigenvalues, then an 
Euler approximation (forward differencing) may be adequate. For example, if the 
Euler approximation is made, the differential is written as 



and Equation (3.6) becomes 

thus, 

Examination of Equations (3.7) and (3.8) show that the Euler approximation is 
equivalent to using the first two terms of the infinite series for A and the first term in 
the infinite series for B. Tustin's and other higher order approximations are obtained 
in a similar manner. In practice, it has been found that using the first several terms 
from each series is adequate in most cases. 

When larger sampling intervals are used however, the higher order terms in the 
series remain significant. Here, the simple approximations described above may not 
prove adequate. One method for circumventing difficulties associated with larger 
sampling intervals uses properties of eigenvalues and eigenvectors in the calculation 
of the exponential of a matrix (~inhal4). 

If the eigenvalues, 01, 02, ...,an are distinct the eigenvectors v~ ,v~ , . . . , v~  of the 
matrix A can be calculated (In case of multiple eigenvalues, the eigenspace must have 
equal multiplicity) then it is possible to form the matrix M 

which will diagonalize A. The quantity V-IF is given by forming the following 
equality 

If A has negative eigenvalues, the logarithms in Equation (5.5) become undefined. 
This problem is eliminated by proper selection of sampling interval and will be 
discussed in a following section. Finally, the matrix V is given by 

where the matrix R is defined as 

The algorithm described by Equation (4.6) was tested on various multizone 
systems using computer generated data, P(k)=l. The interzonal flows and volumes 
were picked arbitrarily and chosen so that the system was asymmetric. The algorithm 



was tested for systems with'one, two, and three-zones. Table 1 shows the results of 
these simulations for the case of clean data (no noise) and also for cases of data with 
low and moderate measurement noise. The noise added to the simulation data were 
random variables with a maximum value equal to a fixed percentage of the zones 
initial concentration. The maximum values of the noise used in the simulations were 
5 and 10% and resulted in variances of 02 = 0.002 and 0.008. 

Table 1. Identification of Flows and Effective Volumes using Least-Squares 
Algorithm 

The total time for all the identification runs listed in Table 1 was 10,000. The 
sampling interval was 10-a total of 100 samples each. The table shows that in most 
cases, the identification procedure was able to estimate all the flows and volumes to 
within + 20%. As the amplitude of the noise increases, the system parameters are 
identified less accurately. If the noise is increased significantly beyond that shown 
(02 > 0.008) , the algorithm is unable to adequately identify any of the parameters 
and becomes unstable. For the case of no noise, the identification algorithm was able 
to predict the system parameters to within + 10% in all cases and usually much 
closer. For all of the simulations, the inputs were assumed to be impulses which 
mixed instantaneously with all of the air within the zone. 

Figures 2 thru 7 show the 'real time' estimation of the parameters for the three- 
zone case. Figures 2 thru 4 indicate that when there is little noise in the data, the 
estimated parameters converge to steady-state values shortly after the impulses. 
Also, the parameters converge to their final, correct values, only after all of the zones 
have been pulsed. This is because all of the modes of the system are not suitably 
excited by the impulses unless they are applied to all of the zones. 

Figures 5 thru 7 indicate that when there is significant noise (02 = 0.002) 
associated with the data, the character of the least-squares solution changes 
considerably. The noise has the effect of slowing the convergence of the solution. 
Between the impulses, there is a considerable amount of random oscillation before 
the parameters settle down and approach steady values. Figure 7 indicates that the 
calculation of the effective volumes of the zones is much less sensitive to noise than 
that of the flows. The figure also indicates that the effective volume of each zone is 
determined immediately after the pulse and varies little thereafter. 

All the figures show that the identified parameters steady-out sometime shortly 
after the previous pulse. Thus, when all of the parameters are changing only slightly 
with each new sample, then it is appropriate to apply an input to another zone. Also, 



Figure 2. Tracer Concentrations for Three-Zone Simulation (No Noise) 

Time Step (k) 

Figure 3. Interzonal Airflows Calculated using Recursive Least-Squares (No Noise) 

Time Step (k) 

Figure 4. Effective Volumes Calculated using Recursive Least-Squares (No Noise) 



Figure 5. Tracer Concentrations for Three-Zone Simulation (02 = 0.002) 
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Figure 6. Interzonal Airflows Calculated using Recursive Least-Squares (02 =0.002) 
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Figure 7. Effective Volumes Calculated using Recursive Least-Squares (02 = 0.002) 



as described above, a sampling interval of 100 was used in all of the identification 
runs listed in Table 1. This interval proved adequate for the cases shown. However, 
as the unmeasured disturbances to the system and the number of zones increases, the 
selection of the sampling interval becomes more important. Choosing a sampling 
interval which is either too small or too large can result in incorrect parameter 
estimation or instability of the identification algorithm 

The identification of a dynamic system using the least-squares technique requires that 
the input which is applied to the system provide sufficient excitation. Another way 
of stating this is that the input must independently activate all of the modes of the 
system. In most control systems literature, an input which is often used to ensure 
that this condition is satisfied is a pseudorandom binary sequence (~ensen3) 
Unfortunately, to apply this type of input requires well regulated and calibrated 
equipment capable of providing real time readings of the flow rate of tracer into each 
zone at each sampling interval. 

The identification runs described in the preceding section used inputs which were 
rapid injections (impulses). This type of input proved to be adequate for complete 
identification of the systems in question. It is also believed that an impulse type 
injection is practical to implement. A near impulse injection could be achieved by the 
sapid discharge of a pressurized cylinder or bursting a balloon filled with a known 
amount of tracer. 

The simulations indicate that as each additional pulse is applied to the system, more 
parameters are identified. The simulations also reveal that all of the unknown flows 
and effective volumes are not determined until after an impulse has been applied to 
each zone. Thus, the conclusion can be drawn that for the impulse type input, 
sufficient excitation for complete system identifiability is achieved only by applying 
an impulse to all of the zones. Also, as will be discussed in the next section, if 
system parameters are varying, multiple impulses over time are required to track the 
parameters. 

It was mentioned in the previous section that a new input should be applied as 
soon as possible after the preceding one. The natural question to ask is how close 
the inputs can be applied to one another and still result in satisfactory identification of 
the system parameters. To test this, the identification algorithm was run for the two- 
zone system examined in the previous section (02  = 0.002) . Two different input 
intervals were examined. In the first case, the impulse inputs were applied 
simultaneously (Figure 8). Both of the inputs were applied at t = 2000. 

figure 9 shows how the least-squares algorithm responded to the applied inputs. 
The figure indicates that the calculated flows take a considerable amount of time to 
approach their correct values4oing so only after an additional 100+ time steps 
following the applied inputs. Figure 8 also indicates that the tracer concentration in 
Zones one and two was considerably different after the two were pulsed with tracer. 
Further simulations have shown that as this difference is reduced, the identification 
algorithm becomes ill conditioned. It was also noticed that noise affects the 
identification procedure more significantly for the case of simultaneously applied 
inputs. 



Figures 10 and 11 show the results of a nearly identical simulation. The only 
difference is that the inputs applied to the two zones are separated by 10 sample 
periods. Examination of Figure 11 indicates that the effect of this slight separation is 
to significantly improve the conditioning of the identification procedure. The inputs 
are applied to the zones at time steps 20 and 30. The figure also indicates that the 
identification is essentially complete by time step 40. This is a significant 
improvement over the simultaneous pulse results. Thus, while it appears possible to 
apply simultaneous inputs to each zone and still identify the parameters of interest, 

Time Time Step (k) 

Figure 8. Data for Simultaneous Figure 9. Calculated Flows for 
Impulse Injection Input Simultaneous Impulse Injection Input 

Time 
0 20 40 60 80 100 

Time Step (k) 

10. Data for Separated Figure 1 1. Calculated Flows for 
Impulse Injection Input Separated Impulse Injection Input 



the recursive least-squares algorithm is much more robust if the inputs are separated 
by several sample periods. 

It should be noted that as the level of noise associated with the data is reduced 
toward zero (ie. the system becomes deterministic), the least-squares algorithm is 
able to identify the parameters much more rapidly. For simultaneous impulse inputs 
and clean data, the system is completely identified within 20 time steps following the 
inputs. However, even for clean data, separation of the inputs by a few time steps 
speeds the convergence of the least-squares algorithm. 

The flows and effective volumes calculated using Equation (4.6) with P(k) = 1 are 
assumed to be constant for the duration of the test. If this assumption is not valid, 
the system parameters calculated by the least-squares analysis will be those which 
give the best overall fit of the data to the assumed system model and not necessarily 
the true values. If the system parameters are varying, then a slightly different 
approach must be followed when using the identification algorithm. 

One of the primary purposes of obtaining the recursive formulation of the least- 
squares algorithm is for tracking the parameters in a system which is varying slowly 
with time. It should be noted that the approach presented below is not suited for 
identification of a system with high frequency parameter fluctuations. The variation 
in the parameters must be slow enough to allow the algorithm to 'catch' up with the 
new values before they change again significantly. If this condition is not satisfied, 
then the procedure will not work. 

Equation (4.4) included the parameters, P(k), and it was indicated that these 
parameters were a sequence which could give different weighting to the data during 
the recursive calculations. For example, proper selection of this sequence can reduce 
start-up transients which may pose problems if the data were very noisy. However, 
if P(k) is assumed to have the form (~junglo, ~oodwinl5) 

where 0<h<l then the algorithm is said to employ exponential forgetting of the data. 
ter, h, is referred to as the forgetting factor. W l e  in general, h may also 

vary in time, in the following discussion, it is assumed a constant. The addition of 
this term effectively reduces the importance of data which were collected in the past 
and gives increasing weight to new data as they are recorded. Hence, if the flows 
and volumes are varying slowly, then this method can be used to track that variation 
in time. 

This form of P(k) also results in a slight modification of Equation (4.6). The 
recursive least-squares algorithm becomes 

d(k) = d(k- 1) + ~ ( k ) [ ~ ~ [ k ]  -$~(k- l)d(k- 1)] 



Examination of Equation (8.2~) shows that the addition of exponential forgetting 
effectively keeps P(k) from approaching zero, thus keeping the algorithm robust with 
respect to tracking. 

The selection of the forgetting factor will have a substantial influence on the 
identification algorithm. Using a relatively small value of h (he 0.9) will have the 
effect of discounting all but the last few data points. However, if substantial noise is 
associated with the data, the identification procedure will perform poorly and may 
become unstable. As h approaches 1, the algorithm approaches that of the standard 
least-squares and all data are weighted equally. Thus, there exists a trade-off 
between noise considerations and the ability of the procedure to track varying 
parameters. 

The use of the forgetting factor is shown in Figures 12 and 13 for the two-zone 
system described previously. Initially, the system is identical to that described in 
Table 1. However, at t = 5000, several of the system parameters associated with the 
second zone change: V2 increases from 2000 to 3000, F drops from 0.5 to 0.3 and 
F ~ o  decreases from 0.3 to 0.0. The data were noisy (ay= 0.002) and a forgetting 
factor of 0.97 was used during the identification. 

The inputs are applied to Zone 1 at t = 1000 and 6000 and applied to Zone 2 at t = 
2500 and 7500. Figure 12 shows that the algorithm is able to follow the flow 
parameters reasonably well with some fluctuation occurring around the times of the 
impulses. Figure 13 indicates that the algorithm is able to follow the effective 
volumes but only after the zone in which the volume changed is pulsed a second 
time. 

In simulations using clean data, the algorithm was able to respond in a manner 
similar to that shown in Figure 3. The new values of the system parameters were all 
accurately identified (with little fluctuation) a few time steps after the conclusion of 
the second round of impulses. As might be expected, a more exciting input is 
required for identification of the time varying system parameters. If an impulse type 
input is being used as the excitation, it has been found that each zone must receive 
mulriple inputs. 

One final note on the selection of the value of the forgetting factor, h. If the 
system is noisy, a value of h less than 0.95 is usually not satisfactory for the cases 
studied. The algorithm becomes too sensitive to the random fluctuations induced by 
the unmeasured disturbances and does a poor job in tracking the system parameters. 
However, if very clean data are available, it is possible to use forgetting factors of 
0.95 or slightly less. 



Time Step (k) 

Figure 12. Interzonal Airflows Calculated using a Forgetting Factor (h = 0.97) 

In the past several sections little mention was made as to how the sampling interval 
was chosen. However, selecting the correct sampling interval can make the 
difference between successful identification of the unknown system parameters or 
complete failure, Either the least-squares algorithm produces erroneous results or 
becomes unstable, 

In choosing some 'optimal' (optimal in the sense that the system is accurately 
identified) sampling interval, there are two different though related considerations 
which must be addressed. First, the sampling interval must be rapid enough to 
capture the fastest dynamics of importance within the system. Sampling too slowly, 
with respect to the fastest system eigenvalue, will result in poor identification of the 
overall system. Second, the sampling interval must be slow enough to allow 

ing of the inputs between the injection and the first sample following it. 



The question of selecting an optimal sampling interval with respect to capturin 8 important system d namics has been studied by several researchers (Sinhal , 
Sinhal', Puthenpurah ). A rule of thumb which is often mentioned by these authors 
is that the sampling interval should be chosen such that 

where p is the eigenvalue with the largest magnitude (fastest) in the continous-time 
system. The value of A is usually in the range 0 < A I 0.5. In examining the 
criterion presented in Eq~ation~(9.1) two questions come to mind. First, since an 
unknown system is being identified and the fastest eigenvalue is not a priori 
information, how can an appropriate sampling period be chosen? Second, why not 
sample as fast as possible to ensure that the criterion will be satisfied? The answer to 
both of these questions can be found by examining the transformation of the system 
eigenvalues when mapped from continuous-time to discrete-time. 

Since the flow systems under study must be stable, (no unmeasured tracer is 
injected) all of the eigenvalues are located on the left side of the Im ST axis as shown 
in Figure (14). If it is further assumed that the sampling criterion of Equation (9.1) 
is satisfied, then the eigenvalues of the continuous-time system must lie within the 
shaded regions in the ST-plane. Recall from Equation (3.7) that in going fiom the 
continuous time system to its discrete equivalent, the system matrix becomes 

If p is an eigenvalue of V-1F then o = exp(pT) is an eigenvalue of A. The figure 
also indicates that the consequence of this mapping is that the region in the ST-plane 
containing the eigenvalues of V-IF are compressed into the lens shaped region in the 
z-plane when the system is discretized. 

The z-plane figure reveals a problem which can arise if the sampling interval is 
chosen to be too small. As smaller values of T are chosen, the region in which &l of 
the discrete-time ei envalues are located becomes smaller and moves closer to the 
point 1 + jO (j = ?- -1 ). The eigenvalues found outside of the circle with radius 
r = 1 are unstable. If there is appreciable noise associated with the data then the 
identification algorithm may calculate values of the A matrix which have unstable 
eigenvalues. This will result in poor conditioning of the least-squares identification 
algorithm. 

A number of identification runs were conducted to determine the best value of A 
for an impulse type input. Table 2 shows the results for the one, two, and three-zone 
systems described in Section 6. The table indicates that the sampling interval has a 
significant impact upon the accuracy of the identification algorithm. With no noise in 
the data, it is possible to use very small values of the sampling interval. This results 
in a very accurate estimate of the unknown flows and volumes. However, the 
accuracy appears to deteriorate as the sampling interval is raised past pT = 0.1. 

As noise is added to the data (c2 = 0.002), the behavior of the least-squares 
algorithm changes. Table 2 shows that selection of a sampling interval which is too 
small decreases the accuracy of the identification procedure and can, in some cases, 
result in numerical instability. However, if the 'correct' sampling interval is chosen, 



the accuracy of the identified parameters for the case of noisy data is similar to the 
corresponding case without noise. 

Table 2. Accuracy of Identification Algorithm with Different Sampling Intervals 

Thus, proper selection of the sampling interval is critical for accurate identification 
of system parameters. A criterion for this selection can be established by examining 
the second, third, and fourth columns of Table 2. For very small values of the 
sampling interval, the eigenvalues of the discrete-time system are close to one another 
and to the point 1 + j0. This is a point of potential instability in the algorithm. 
Fortunately, as the sampling interval is increased, the eigenvalues of the discrete-time 
system spread out and shift toward the left. As these eigenvalues change, the 
accuracy of the identified parameters improves up to the point where the smallest 
eigenvalue is in the range 0.88 < o < 0.92. This corresponds to selection of the 



value of pT such that 0.083 < I pT I < 0.13. Therefore, for the simulations shown, 
a value of A = 0.1 should be used when following the criterion for sampling interval 
selection described by Equation (9.1). 

The effective volume that the analysis predicts for each zone also depends upon 
how well the impulse is dispersed between the time that it is injected into the zone 
and the first sampling of the concentration in that zone after the impulse (O'~eill7). 
In an attempt to better understand this relationship, it is useful to determine the 
conditions for which a two-zone system can be adequately represented as a single 
zone as shown in Figure 15. In the two-zone model shown on the left, if the 
interzonal flows (F ') are sufficiently high relative to the external flows a), then an 
impulse of tracer gas into either zone should be quickly dispersed throughout both 
zones and the concentrations in each should approach each other rapidly. 

Figure 15. Twcdone versus One-Zone Model for Least-Squares Analysis 

The response of both zones to a single impulse of tracer gas (gl) to Zone 1 can 
be determined by analytically solving Equation (3.3) for two zones to give an 
expression for the difference in zone concentrations (Ac) as a function of time, 
volume, and airflow rates as shown below. 

The term, Ac(O), is the difference between the zone concentrations immediately after 
Zone 1 is pulsed. This equation shows that the concentration difference decays 
exponentially with time as the two zones mix. If the definitions, E = Ac(t)/Ac(O) and 
t* = t/(V/F,), are made, Equation (9.3) can be rewritten as 

F ' lne - = -0.25 (- -1) 
Fo 

The term, E ,  indicates the difference in zone concentrations relative to the pulse 
disturbance and the term, t*, is a nondimensional time based on the external air 
exchange rate of the zones. A criteria for uniform mixing can be def~ned by requiring 
that the concentration difference due to an impulse input ( E )  must decay to certain 
value within a prescribed period of time (t*). By specifying values for E and t*, 
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Equation (9.4) can be used to determine the required relative interzonal airflow rate 
(F'/Fo) to assure uniform mixing. Figure 16 graphically relates the relationship 
given by Equation (9.4). 

This figure indicates, for example, that a flow ratio of F'&= 5 is required to 
reduce E to 0.1 within time t* = 0.1. The simulation model was applied to a case 
where V=1000, Fo= 0.1, and F'= 0.5 (F'/F,= 5) with an impulse of tracer gas 
injected into Zone 1. Figure 17 shows how the concentration varies within the two 
zones as a function of t* = t/(10000) for a single impulse in Zone 1. The figure 
shows that, as expected, the difference in concentrations between the two zones 
decays to within 10% of the maximum value at t* = 0.1. 

Figure 16. Ratio of F'/Fo as a Function of t* and E 
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Figure 17. Tracer Concentration versus t* For a Two-Zone System 

The two-zone simulation model was used to generate data for several additional 
cases where Zone 1 is pulsed with a tracer gas and the recursive least-squares 
identification algorithm was used to determine the total effective volume, V, and 
external airflow rate, Fo, for a corresponding single zone system based on the 
concentration data for Zone 1. The results are shown in Table 3 for various airflow 
rates and sampling intervals, T* = T/(V&). For FIFO less than 5, a single zone 



approximation is unsatisfactory. However, as F/F, is increased to 5, a single zone 
approximation produces a flow and volume within 20% of the correct values of 0.1 
and 1000 provided the appropriate sampling interval is chosen (T* = 0.1). 
Numerous tests of the algorithm have indicated an approximate relationship between 
T*, t*, and E. Using Equation (94 ,  for a given F/Fo, if one assumes t*= E, the 
sampling period, T* should be in the interval 0.1 c T* 5 0.2. 

Table 3. Single Zone Predictions for a Simulated Two-Zone System 

Once it has been established that a single zone approximation of an actual two-zone 
system is possible under appropriate flow conditions, it is natural to wonder whether 
an extension to a three-zone system is possible. Here, the question considered is 
when can an actual three-zone system be modeled by a simplified two-zone 
approximation. In this case, the interzonal flows between zone 2 and 3 are varied 
relative to the outdoor flows (Figure 1). In the simulated three-zone system, F02 = 
F03 = F20 = F30 = F21 = F31 = F12 = F13 = 0.5Fo (Fo = 0.1), F01 = F10 = 0.1, V1 = 
2V2 = 2V3 = 500, and F' = F23=F32. The results of various simulations are 
summarized in Table 4. If the three-zone system is perfectly modeled as a two-zone 
system with Zones 2 and 3 behaving as a single zone (2), the following parameters 
would be predicted: V1= V2 = 500 and F12 = F21 = F01 = F10 = F02 = F20 = 0.10. 
The table indicates that a two-zone approximation is valid provided the interzonal 
flows F23 and F32 are approximately ten times larger than F,. The simulations also 
indicate that the guidelines for sampling period described above have changed 
slightly. For the two-zone case, the sampling period should be based upon the 
characteristic time of the faster of the two zones. Then, using Equation (9.4), for a 
given F'&, if one assumes t*= E, then the sampling period, T*, should be in the 
interval 0.1 c T* 5 0.2. 

Table 4. Two-Zone Modeling of an Actual Three-Zone System 



At first glance, it may appear that we have developed two separate criteria for 
determination of sampling interval which may not be compatible. However, it turns 
out that satisfying the criterion established in Section 9.1 usually results in an 
acceptable 'mixing interval' for the input between the impulse and the first sample 
following it. For example, the continuous-time eigenvalue of interest for the two- 
zone system (with high interzonal airflows) described in Table 3 is p = -(FO/V) = - 
0.0001. Satisfying the criterion established in Equation (9.1) requires that the 
sampling interval be T = 1000 (I pT I = 0.1). This results in a value of T* = 0.1. 
For the purpose of system identification, Section 9.2 indicates that these two zones 
will be adequately described by a single zone if the concentration ratio between them 
is reduced to 0.1 within t* = 0.1 (t = 1000). 

Before a successful tracer gas experiment can be undertaken, one of the most 
important parameters which must be determined is the total number of zones. Often, 
the physical characteristics of a building aid in this process. For example, individual 
rooms separated by doorways or corridors are often obvious choices for separate 
zones. However, there are other situations in which determining the number of 
zones is not as easy. For example, deciding whether a very large room is best 
modeled as one, two, or even three zones is often not a simple matter. Another 
difficulty might be in determining whether to combine a series of small well 
connected rooms into a fewer number of larger zones. 

Thus, a method for determining the number of zones in a system would be useful 
to the analyst conducting tracer gas studies. Such information would be of particular 
interest in determining whether to break a larger zone up into smaller zones or 
combine a series of smaller zones into fewer larger ones. This would greatly 
increase the accuracy of the identification process which is, the goal of most tracer 
gas studies. 

Consider again the system of discrete-time difference equations represented by 
Equation (3.6) 

If an output equation is defined as 

then the system of equations can be transformed from the state-space system of 
equations to an input-output formulation ( ~ ~ 0 9 ) .  Taking the z-transforms of 
Equations (10.1) and (10.2) and combining them produces 

assuming D, A, and B are constant. The matrix W(z) is known as the transfer 
function matrix and is the complex frequency matrix which 'filters' the inputs as they 
travel through the system. If D is assumed to be the identity matrix-that is, each 
output, yi(k) is simply equal to the concentration of tracer in that zone at time step k, 



then Equation (10.3) can be inverted back into the discrete-time domain. This results 
in the formation of n discrete-time input-output equations 

If a single input is applied to the zones, the double summation drops out and 
Equation (10.4) takes the form of the well known auto-regressive moving-average 
system (ARMA). ARMA systems appear often in control system theory and signal 
processing. A great deal of study has gone into methods for determining the order of 
an ARMA process by simply observin the input-output sequence (Akaikelg, f Bhansali20, Soderstrom21, and Chen2 ). Many of these methods rely upon a 
statistical test of the residuals of the least-squares fit of the parameters to the data. 

A method known as the AIC criterion (Information Criterion-A), first introduced 
by Akaikelg, has been found to produce consistent estimates of the order of 
multizone airflow systems using a single impulse input into one of the zones as the 
excitation. Let S[n] be the sum of the squared error between the actual output and the 
output predicted by an A model of order n 

The AIC criterion for selection of model 'order is based upon maximizing the 
following function 

AIC = 2 In ( L(S[n]) ) - 2p ( n = l... max. order) (10.6) 

where p is the number of parameters associated with the chosen model order (p=2n). 
The term L(S[n]) is the maximum likelihood function. For the case where the noise 
superimposed upon the data is white the first term in Equation (10.6) is given by 

Thus, the appropriate order of the system is given by the n which maximizes the AIC 
function. 

Before describing the results of a number of computer simulations to verify the 
performance of the AIC criterion, it is necessary to describe the fundamental concepts 
of controllability and observability of a system from a prescribed input-output pair. 
In simplified terms, a multizone system which is completely controllable from an 
input gi(k) is one in which the concentration of tracer in any-zone can be raised or 
lowered to any prescribed level by a judicious choice of gi(k) within a finite time 
interval. In a similar manner, a multizone system which is completely observable 
from an output yi(k) is one in which a change in tracer concentration in any of the 
zones will have some effect upon the value of the output, yi(k). Figure 18 illustrates 
the concepts of controllability and observability for a simple two-zone system. A 
number of tests exist for determining controllability and observability of a system 
from an input-output pair. However, these tests require a priori knowledge of the A 
matrix which is not available in the identification procedure. 



The results of simulations conducted to test the AIC criterion are shown in Table 5. 
Simulations of actual one, two, and three-zone systems were run. In each case, the 
input was applied to Zone 1 a few time steps into the simulation and the output was 
the tracer concentration of Zone 1. and The data were then fit to Equation (10.4) for 
models up to fourth order and the resulting sums of the squared error were computed 
for each. Equation (10.6) was then used to calculate the AIC. For the two-zone 
case, the flows were varied to determine the effect that interzonal flows have upon 
the predicted model order. The results shown indicate that decreasing the flows 
between the two zones relative to the total flow reduces the likelihood of correctly 
predicting the order of the system. 

For the three-zone case, the effective volumes of the zones were varied. Table 5 
indicates that if all interzonal flows are equal, the effective volumes of all three zones 
must be substantially different before the AIC criterion is able to discern the presence 
of three different zones. It should also be noted that changing some or all of the 
interzonal airflows and/or initial tracer concentrations can have a similar effect. 

Both zones Controllable and Observable Zone 2 Not Controllable 

Zone 2 Not Observable Zone 2 Not Controllable or Observable 

Figure 18. Examples Showing Conditions Under Which a Two-Zone is Controllable 
and Observable from Input-Output Pair [gl(k) yl(k)] 

Table 5. Determination of W e 1  Order Using AIC Criterion 

all = 0.1 unless 

Table 5 shows that under certain conditions, the AIC criterion will result in a 
correct prediction of the number of zones, n, in a multizone flow system. However, 
this number should be interpreted as only the minimum possible number of zones 



which are required to adequately model the system. There may be more zones within 
the system which the procedure was not able to identify. There are two possible 
reasons for this. First, some of the zones may not be controllable or observable (or 
only weakly controllable and observable) from the input-output pair selected. In 
such a case, the dynamics of the system will not be completely captured using that 
choice of input-output pair. Second, as the number of actual zones is increased past 
2, symmetries within the system make it difficult to separate the effect that different 
zones have upon the output. Thus, the more asymmetric a system is, with respect to 
effective volumes and interzonal flows, the more likely that 'the AIC criterion will 
identify a larger number of zones. If it is suspected that more zones may exist, it 
may be advisable to change locations of the input (impulse) and/or output (sensor), 
and repeat the test. 

The AIC criterion is also sensitive to the sampling rate. As the sampling interval is 
decreased, the number of data points increases. This results in a larger sum of the 
squared error. When the number of data points becomes large, even with low noise, 
increasing the order of the model has only a slight effect upon the sum of the squared 
error and the AIC criterion predicts a lower number of zones. In the case of an 
extremely small sampling interval, increasing the model order will have little or no 
effect upon the sum of the squared error. 

Conversely, using only a small number of data points (a large sampling interval) in 
conjunction with the AIC criterion will also produce erroneous results. In this case, 
increasing the order of the system will have a disproportionate effect upon the sum of 
the squared error. The AIC criterion will predict a larger number of zones than exist 
in the actual system. In the extreme case where the number of data points equals the 
number of model parameters, the sum of the squared error will be zero and the AIC 
criterion blows up. 

Simulations have shown that the AIC criterion performs most accurately when a 
sampling interval of T = 0.1% is used. The time constant, = (t2 - ti), is the time it 
takes for the zone tracer concentration to decay from the initial concentration 
following the impulse input, c(tl), to a concentration c(t2) = c(tl)e-1. The total test 
time, tbt should be approximately 22. 

Once again, a guideline has been established for selection of the proper sampling 
interval. While this criterion may seem new, it is closely related to that established in 
Section 9.1 where the discrete-time eigenvalues were used to select an appropriate 
sampling interval. Unfortunately, when the system is transformed to an input-output 
representation, the eigenvalues become less accessible. In this case, it becomes 
necessary to look at the actual tracer decay curve to obtain an indication of the system 
eigenvalues and thus, obtain the sampling interval. 

The recursive least-squares identification algorithm presented in this paper 
provides a method for accurate prediction all of the interzonal airflow rates and 
effective volumes of a multizone system. The algorithm requires that an input of 
tracer gas be applied to each zone of interest and uses the concentration data for each 
to calculate the unknown system parameters. In addition, this method shows 
potential for tracking flows and effective volumes in time varying systems. 



The sampling period has also been shown to greatly affect the accuracy of the 
results. Careful selection of the sampling period is important both to the stability of 
the identification algorithm and to ensure proper mixing of the inputs between 
samples. 

A method has also been introduced for determining the order of the system to be 
identified. This method, which uses the residuals of least-squares parameter fits of 
various model orders, can accurately predict the true system order under the 
appropriate conditions. 

Work is underway on the construction of an experimental facility to verify some of 
these results. It should be noted that the conclusions and results reported above are 
limited to the specific cases examined in this paper and are not necessarily general. 
More work is needed to prove their applicability to more general cases and make 
refinements as necessary. 
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Discussion 
Paper 7 

Mike Nolmes (Ove Arup, London UK) 

Can the method be used to look at the general mixing in a single zone? For example the distribution of 
pollutants? 
Patrick O'Neil, Roy R. Crawfod (University of Illinois, USA) 
Yes, we believe that a zone's response to the im&g type input is closely related to the internal miwing char- 
acteristics of that zone. An integralpart of our ongoing research effort is to analyze systems in which it 
takes a significant amount of time for the inputs to mix within the wne(s). By simply analyzing the im- 
pulse response of a zone, we hope to be able to characterize, in some sense, the miwing characteristics of 
that zone. 

Bjorn Hedin (Lund Institute of Technology, Sweden) 

There are some advantages of using the PRBS input: by theory, the discrete time description (3.6) re- 
quires that the input is constant during the sample period. The PRBS fulfii this demand, but a short 
impulse injection doesn't, i.e. such impulses will violate the sampling theorem. This can lead to extra 
estimation errors. The PRBS input will neither violate the assumption of ideal mixing as obviously as 
the short impulse. Do you want to comment on these things? 
Patrick O'Neil, Roy R. Crawfod (University of Illinois, USA) 
Certainly. As you mentioned the impulse type input, as described in this paper, may not satis& the crite- 
rion of constant inputs between sample periods. However, the simulations which we have run indicate that 
this should not be a significantproblem. Ifnecessay, you could assume that the impulse was evenly dis- 
tributed over a single sample interval. In addition to the fact that an impulse input is easier to apply to a 
zone, we also believe that it gives you additional information on the mixing characteristics of the zone. 

Bjorn Hedin (Lund Institute of Technology, Sweden) 

Why do you use the recursive least-square (LS) method? You don't have use of the advantage which is 
a short execution time, but suffer from the disadvantage of higher sensitivity to noise (or even break- 
down at higher noise levels). The common or batch LS method can never be unstable, it's fast enough, 
and it's easy to use "forgetting factors" in this method as well. 
Patrick O'Neil, Roy R. Crawfod (University of Illinois, USA) 
If the recursive method causes difficulty during the data analysis, then one can certainly fall back upon the 
batch method which I have described. However, depending upon the computingpower available, there 
may be utility in using the recursive method when analyzing very 'Ifast" systems. 

Bjorn Wedin (Lund Institute of Technology, Sweden) 

The volume matrix V is calculated as V = B"R (eg. 5.6,page 9). 
But the chance to receive a diagonal volume matrix from multiplication of two filled matrices doesn't 
seem to be very big, especially not when the estimations of B and R are disturbed by noise. How do 
you interpret the non-zero off-diagonal elements in V = B-'R? Can they be ignored? 
Patrick 0 'Neil, Roy R. Crawford (University of Illinois, USA) 
In most of the simulations, the off-diagonal elements have been 1 or 2 orders of magnitude smaller than 
the diagonal elements. Consequently, these elements were ignored. However, ifnoise andfor miwingprob- 
lems result in volume matices with significant off-diagonal elements, then using methods which constrain 
them may become necessary. 

Max Sherman (LBL, California, USA) 

The linear least squares technique used - which is a standard control theory approach - has some 
severe limitations as presented. You have linearized the exponential solution which requires a short 
time step in the analysis, however, at a small time step the concentration is highly autocorrelated and 
cannot be simply regressed. You must take into account the (non-diagonal) covariance matrix. Since 
this is a physical system (cf a control system), a chi-squared analysis system with the real covariance ma- 
trix is a more appropriate approach. 



Patrick O'Neil, Roy R. Crawford (University of Illinois, USA) 
Our n& step is to validate the proposed method using a three-zone qerimental facility which we are de- 
veloping. We will look at these types of issues as they arise. 

Max Sherman (LBL, California, USA) 

The multizone, single gas technique you propose is biased unless one has a constant flow rate over the 
analysis. Thus it is not well suited for time vary systems unless you use a series of pulses and analyze dif- 
ferent sets of pulses separately. The relaxation model you propose is not appropriate for this kind of 
system. 
Patrick O'Neil, Roy R. Crword (University of Illinois, USA) 
No indirect method (as all tracer techniques are) for analyzingflows within buildings is well suited for 
tracking rapidly varyingflows. However, if theflows are varying slowly, we believe this method is as appro- 
priate as any. 

Max Sherman (LBL, California, USA) 

When using real data (as opposed to simulated) you will find that the noise in the concentration is far 
from "white". One's analysis technique must be quite robust to handle this. Furthermore, all of the par- 
ameters are intrinsically and experimentally correlated. It is, therefore, quite important to do a com- 
plete error analysis. I look forward to seeing this next year with measured data. 
Patrick O'Neil, Roy R. Crawfod (University of Illinois, USA) 
Again, as we collect experimental data, we will look more closely at these issues. 


