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1. SYNOPSIS 

Rising moisture from the ground has caused quite a lot of damage on foundations 
of Swedish buildings. It is in some constructions possible to prevent this by me- 
chanical ventilation below the floor or below the concrete slab. 

This paper will present a model for coupled air flow and heat conduction for 
mechanically ventilated foundations. 

The presented model uses analytical expressions for the air flow in an air-permeable 
layer below a rectangular building. Analytical double-periodic functions of elliptic 
type are used. 

The ground temperature is simulated by using a time-dependent finite difference 
method. 

2. LIST OF SYMBOLS 

h=height of air gap under the floor, m 
L=length of building, m 
B=width of building, m 
K+=conductance between the ventilated layer and the indoor air, W/m2 "C 
K-=conductance between the ventilated layer and the ground surface, W/m2 "C 
&= air flow rate, m:/m2s (m:=ms of air) 
Qa= total air flow through a ventilation pipe, mz/s 
r= radius, m 
i= unit vector pointing in the radial direction 
!!?,=air temperature in the foundation, OC 
To=annual average outdoor air temperature, OC 
T+=indoor temperature or temperature above the floor, OC 
T-=ground temperature immediately below the ventilated layer, OC 
x=horizontal coordinate, m 
y=horizontal coordinate, m 
z=complex plane, (x+iy) 
@=potential function for one or more air point sources in an infinite media, m2/s 
@O=basic potential function from an air point source in an infinite media, m2/s 
@,=complex-valued potential function for one or more air point sources in an in- 
finite media, m2/s 
 co complex-valued basic potential function for an air point source in an infinite 
media, m2/s 
X=thermal conductivity of the ground, W/m°C 
paca=volumetric heat capacity of the air, J/m3 "C 
&=Theta function 



INTRODUCTION 

Moisture coming from the ground is a serious problem for some types of Swedish 
foundations, especially slab on the ground built in the 1970th and at  the begin- 
ning of the 80's. These houses were often built with the thermal insulation above 
the concrete slab and without any vapour barrier in the foundation. In another 
type of slab on the ground the thermal insulation layer is made of a lightweight 
expanded clay aggregate, placed below the concrete. Unfortunately this layer did 
not prevent capillary rising water from penetrating into the concrete slab. 

If we can prevent the moisture supply from the ground to penetrate the con- 
crete slab or remove the moisture directly above the concrete, and thereby prevent 
contact between water and organic material in the foundation, the construction 
will dry out and mould growth and odours will diminish. 

One way to remove the moisture supply from the ground is by mechanical ven- 
tilation of the foundation, see Figure 1. By such methods the moisture will be 
transported out from the foundation by the moving air, as long as the air is un- 
saturated. These methods requires that there is an air-permeable layer below the 
concrete slab. In a joist floor construction it is often possible, and cheaper, to 
ventilate above the concrete slab in the floor construction. 

Figure 1: Mechanical ventilation of the foundation 

If these methods are going to be successful, certain general conditions must be 
fulfilled: There has to be a horizontal air gap or an air permeable layer in the 
construction. The air that is sucked, or pumped into the layer, has to be relatively 
dry and have a high temperature in order to reduce the risk for condensation. All 
unventilated connections between the ground and other parts of the building must 
be as air tight as possible in order to prevent unwanted air leakage. 

Because of the condensation risk, it is of great importance to know the temper- 
atures in the ventilated layer, so that condensation can be avoided by using an 
appropriate air flow intensity. 



With the model presented in this paper it is possible to study foundations with 
twedimensional air flow coupled to a three-dimensional temperature field below 
and around the building. The air flow is given by elliptic, complex-valued, double- 
periodic functions. The three-dimensional temperature field and the energy bal- 
ance for the air channels are solved by a computer program for time-variable 
heat conduction based on an explicit finite forward difference method. With this 
coupled model between air flow and temperature we obtain the temperature distri- 
bution below a rectangular building at  different depths. The model makes it also 
possible to  investigate how thickness of the thermal insulation, extra insulation 
outside the outer wall corners, air flow intensity, climate and size of the building 
influences the temperature distribution in the foundation and in the ground. It 
is also possible to investigate how positions of the air inlet and air outlet to the 
vertical rectangular area below a building influence the temperature distribution 
in the foundation. Figure 2 illustrates two different solutions for a quadratic build- 
ing. Air inlets, i.e. points where the air are going down into the foundation, are 
marked *, while air outlets, i.e. points with air leaving from the foundation are 
marked e. In the first case three of the walls are open to air flow. At the middle 
of the fourth wall, which is closed (air tight), there is an air outlet. In the second 
case we have a centrally placed air outlet in the building with air inlets near each 
corner. 

Figure 2: Two different cases for mechanical ventilation of the foundation of a 
building 

These two cases and a third reference case without ventilation of the foundation 
will be discussed further in Section 6. 

Further information about mechanical ventilation of concrete slabs on the ground 
damaged by moisture, is going to be published in a thesis later this year, by 
Harderup. General information about repairing methods for concrete slabs on the 
ground damaged by moisture can be found in Harderup214 and ~ o b i n ~ .  

4. CALCULATION OF THE AIR FLOW PATTERN 

For the considered foundations we will assume that we have an air gap,or a porous 
layer, of constant height h and constant permeability for flow resistance. The width 
of the ventilation pipes are assumed to be much smaller than the dimensions of 
the building. Air inlets to the foundation will be approximated by point sources. 



4.1 Radial air flow in an infinite medium 

The air flow rate induced by a single air point source in a layer of infinite extension 
will be studied first. This will give a basic solution that will be used below. 
Consider an air source located at the origin of coordinates and with the total air 
flow rate Q. (mz/s). At the distance r (m) from the center of the air source we 
get the following air flow rate: 

Using the relation 

we can write (1) as: 

The function in the bracket can be treated as a potential. We introduce the 
potential of a single air point source in an infinite region: 

The air flow & must satisfy the mass balance equation. Using (3) we have: 

Here V- denotes the divergence operator and V2 denotes the Laplace operator. 
This Laplace equation for @ is the same as for steady-state heat transfer prob- 
lems and electrostatic problems. All results from potential theory are thereby 
applicable. 

4.2 Superpositions of air point sources 

For the case with a number of air point sources and sinks located a t  different 
places, superposition can be used. 

Consider an air point source located a t  the position (x,, yn). The air flow rate a t  
the point (x, y) due to this source becomes: 

Here r, is the distance between the air source and the point (x, y), and gal, is the 
heat flow rate a t  the point due to air source number n. 

The total air flow rate fa becomes: 



The foundations we are interested in are of course of finite extension. However, 
by the use of superposition and the method of images, it is possible to obtain 
solutions for our cases. 

Figure 3 shows the simple case with the superposition of two air point sources 
of the same air flow rate. Due to  the symmetry around the vertical line we obtain 
a boundary of zero air flow rate. 

Figure 3: Superposition of two air point sources in order to create a vertical 
boundary line of zero air flow rate. 

To obtain the same result for a rectangular boundary we have to superimpose an 
infinite number of air point source images of equal air flow rate. Consider the case 
with a source at the coordinates (xo,yo) inside a rectangle with the length L and 
width B, see Figure 4. 

The total potential for the rectangular case with air tight boundaries become: 

For this case we have used sources only. For the cases of physical interest we must 
have a balanced ventilation, that is the net air flow rate into the foundation must 
be equal to zero. It should be noted that expression (8) is divergent. 



Figure 4: Superposition of an infinite array of point sources in order to obtain zero 
air flow rate at the rectangular boundary. 

The sum of (8) and a corresponding expression for balancing sinks will together 
converge properly. 

Cases with open boundaries, that is boundaries with a constant potential, may 
also be treated by superposition technique. For these cases it is not necessary to 
have balanced ventilation, since the net positive air flow rate will flow out through 
the boundaries. However, the theory for cases with open boundaries will not be 
dealt with in this paper. 

4.3 Complex-valued formulation of the potential functions. 

Introduction of the theta function 

The basic potential function @O (4) can be expressed as the real part of a complex- 
valued analytical function: 

Here we have used the notation c to mark that the function is complex-valued. 
Formula (8) then becomes: 



Here we have used the notation @, for the total complex-valued potential function. 

Double-periodic arrays of sinks and sources, and the associated Theta functions 
are studied in 0berhettinger,Magnus5 and ~hit taker,~atson' .  These analytical 
quasi double-periodic functions of z have very interesting properties. The Theta 
function 81 is defined by the series: 

As we can see, the convergence of the series are very rapid. The function has 
zeroes at the points: 

Zzero =: n + m . T rn, n integers (12) 

A Taylor series of the logarithm of 101 around any of these points shows that it 
tends to zero as: 

In(zPl(z, 7 ) )  -, In(% - zzero) + constant z 4 zzer0 (13) 

The real part of the logarithm of the Theta function satisfies the potential equation 
(5) at all points in the plane, since dl is an analytical function of z. At the zeroes 
of the Theta function, the logarithm ln(&) has the same behaviour as the basic 
complex-valued potential @: around z = 0. Thus the real part of the logarithmic 
expression gives air sources at all zeroes of in the plane. It is therefore possible 
to give a closed expression for @, by using the Theta function. 

Figure 5 shows the case with a source and a sink inside a rectangular boarder. 
The source is located at  xo + iyo and the sink at XI + iyl. The total potential 
function becomes: 



Figure 5: One air point source and one air point sink inside a rectangular boundary 
of zero air flow rate. 

5. COUPLED AIR FLOW AND HEAT TRANSFER FROM THE GROUND 

5.1 Balance equation for the air along a stream line 

The air flow pattern from the air sources to the sinks is given in Section 4. The 
air flows in a number of well-defined stream tubes with height h and delimited in 
the horizontal plane by two stream lines. 

Figure 6 shows an air stream tube. The length coordinate along one stream line is 
denoted by s (m). The width of the stream tube a t  s is denoted by b(s) (m). The 
product qa b is constant along a stream tube. It gives the air flow rate m:/s in the 
stream tube. The air temperature is denoted by Ta(s, t). The convective-diffusive 
heat balance for the air between s and s + ds is: 

Here K+ (W/m2 "C) is the conductance per unit area, between the indoor temper- 
ature T+ and the air, and K- the conductance to the center of the first cell in the 
ground with the temperature T-. These conductance may be variable along the 
stream tube. We neglect horizontal heat conduction in the air and the capacity 
term (paca - hb - ds . dTa/dt). 

The temperature field in the ground is calculated for time-step after time-step. 
At each step, equation (15) is solved analytically for every stream tube in the 
following way. We introduce the average temperature T, and the length 1 for the 
considered section of the stream tube: 



Equation (15) becomes: 

For each stream tube we get the same equation as (4) in Harderup,Claesson,- 
Hagentoft3. The stream tube is divided into a number of cells. Cell number i is 
defined by the area in the stream tube between s = si and s = si+l. The quantities 
I and T, are piece-wise constant for each cell, si 5 s < si+l. The temperature 
along the stream tube cell becomes: 

The air temperature a t  the air source is given. The outlet temperature becomes 
the inlet temperature to the next cell, and so on. 

When the air temperatures in all air stream tubes are calculated, these will become 
boundary temperatures for the ground temperature at the next time-step. 

Figure 6: Air stream tube between two stream lines. 

In the general case, the stream tube cell is coupled with more than one computa- 
tional cell in the ground with its rectangular mesh. For this case K- is the mean 
conductance between the air and the cells below, and T- is a weighted ground 
temperature. 

A more detailed treatment of general convective heat flow problems is given in 
~laesson,~ennetl .  

, 

6. EXAMPLES 

The three-dimensional computer program handles time-dependent boundary tem- 
peratures and air flows. However, for simplicity we will only show some results 
from steady-state calculations. All calculations have been performed on an IBM 
PSI2 386125 with *87 math co-processer. For the ground we have used a rectan- 
gular mesh with 9240 cells. The minimum cell is a cube with the side length 0.2 
m. The quadratic building in Figure 2 is used in the calculations. 

We have the following data: 



During the calculations we have constant indoor temperature T+. The temper- 
ature of the air entering into the foundation, T,(O, t), has the same value as the 
indoor air. Outside the building the temperature is To, which is the annual average 
outdoor temperature in Stockholm. The dimensions of the building is L x B, and 
Q, is the total air flow sucked out from the foundation. Below the outer walls there 
are thermally insulated foundation walls, with a depth of 0.6 m. The corresponding 
conductance is denoted Kw. The thermal conductivity for the soil is denoted by A. 

In the example to the right in Figure 7, (A), three of the outer walls are open 
to air flow from the inside of the building. At the middle of the fourth wall, which 
is airtight, the air outlet is an exhaust air fan connected to the floor. 

In the example to the left, (B), we have a centrally placed exhaust air fan combined 
with air supply devices (air inlets) at the outer corners. The inlet to the exhaust 
air fan tube is placed in the ventilated layer below or above the concrete slab. 
The air supply devices are in direct contact with the indoor air. All connections 
between the walls and the floor is assumed to be airtight. 

A third case, (C), has also been calculated, as a reference. In this case there 
is no mechanical ventilation of the foundation. 

In Figure 7, the streamlines to the exhaust air fan are shown. In the first case, 
with three open boundaries, the ventilation intensity is poor at the two corners 
opposite to the airtight wall. For the second case, with air supply devices only a t  
the outer corners, the mid regions near the outer walls are poorly ventilated. 

Figure 7: Air stream lines for two types of ventilated foundations. The first 
building (A), left, has open boundaries a t  three sides and an exhaust air fan in 
the middle of the fourth side. The second one (B), right, has air supply devices at 
the corners and an exhaust air fan in the middle. 



1 Point I Surface temperatures OC I 
I Case 

A l B l C  

Table 1: Surface temperatures in six discrete points from steady-state calculations 

The influence of the air flow, on the steady state temperature a t  some discrete 
points (1-6) is shown in Table 1. These points are marked in Figure 8. The pre- 
sented values are the temperatures a t  the surface of a layer immediately below the 
ventilated horizontal layer. 

Low ventilation intensity, near the outer walls, results in small temperature differ- 
ences between the unventilated case and a ventilated case. From Table 1 i t  can be 
seen that the surface temperatures near the outer walls are strongly dependent on 
how the system is designed. In the undisturbed case (C) without ventilation, the 
temperature is lowest near the corners. With a ventilation system of type (B), the 
annual average temperature increased by 8 OC in the corners, points 2 and 4. From 
the studied cases it can also be seen that the temperature increase, a t  the middle 
of the outer walls, is greatest for case (A). It should be noted that temperatures 
below the center of the building is very stable, see point 6. 

Figure 8: Locations of calculated temperatures given in Table 1. 

For a certain building with a certain air flow pattern the surface temperatures can 
be raised by higher air flow intensity or by thermal insulation in the ground, near 
the outer walls outside the building. 

Before an installation of such a mechanical ventilation system is made, the pro- 
gram can be used to investigate how different locations of the supply air devices 
and exhaust air devices will influence the temperature at a certain point in the 
foundation, or immediately outside the building. 
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Discussion 
Paper 11 

Frank D. Heidt (University of Siegen, FRG) 

a) Did you consider the effect of evaporating water on air and surface temperatures? 
b) There should be an influence due to latent heat transfer. 
Carl-Eric Hagentoji (Building Technology, Lund, Sweden) 
In the presented model with a two-dimensional air-flow coupled to a three-dimensional temperature field 
we do not take the efSects of evaporating water and latent heat into account. In a similar model with one- 
dimensional air-flow coupled to a two-dimensional temperature field the eflect of evaporating water and la- 
tent heat are taken into account. In this model the vapour concentration in the outdoor air, the moisture 
supply from the ground and the moisture supply to the inside air are accounted for. m t h  this model we 
can calculate the relative humidity and the temperature along the ventilated layer. All facilities in the 
model with one-dimensional airflow are going to be incorporated in the other model too. 

Mike Holmes (Ove Arup, London, UK) 

Temperature predictions require knowledge of heat transfer coefficient. Could you say what values 
were used for the surface convection coefficient, and if radiant exchange within the cavity was con- 
sidered to be important? 
Carl-Eric Hagentoji (Building Technology, Lund, Sweden) 
We assume a constant temperature within the stream tubes and thereby neglect the radiation. The suface 
resistarlces are usually small compared with the overall resistance between the air in the stream tube and 
tlte groundlindoor temperature. So we have just used standard values if I remember it right. 
I la  in the tube is around 0.1 m2ulm for the examples I have shown. 

Alfred Moser (ETH, Switzerland) 

For potential flow in a cavity potential lines are not lines of constant pressure in general. (They are in 
special cases such as radial flow from a single source in infinite space). 
Carl-Eric Hagentoji (Building Technology, Lund, Sweden) 
In forced convection we neglect the temperature influence on the airflowpattern. We have the following as- 
sumption: 

4a- VP 
qa = airflow rate 
p = pressure 
This is tlte same definition as for ourpotential discussed in the paper. This means that the pressure will 
become proportional to the potential function: p - @. 


