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1. INTRODUCTION 

The experiments described in this final part of the Aylesbury study 

are not concerned with the acquisition of further data. They represent 

simply an opportunity taken in passing, to take a brief look at some of 

the fundamental considerations concerning the nature and validity of the 

measurements themselves. 

The first two chapters relate to the measurement of extreme pressures. 

In making these measurements, two time parameters must be decided. The 

first is the observation time, or the duration of the experiment, while the 

second is the averaging time. The latter specifies the upper frequency 

limit of the signal which is to be accepted. Both these parameters affect 

the numerical values of the extreme pressure data which is produced. 

In the main experiment described in Part II, the choice of these times 

is constrained by the need to match, in dimensionless terms, the choices 

already made by Eaton and Mayne (1974) in connection with the B.R.E. full­

scale experiment. Discarding this constraint, the following paragraphs 

describe some extra experiments designed to assess the effect of varying 

the observation and averaging times. 

The final chapter describes an entirely different experiment. It is 

a brief attempt to assess the importance of the accurate simulation of the 

wind structure by a systematic variation of the statistical parameters one 

at a time. 
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2. EFFECT OF AVERAGING TIME ON EXTREME VALUES 

The authors are not aware of any general analysis of the effect of 

averaging time. However, a helpful qualitative indication may be gained 

by considering a particular case. 

The analysis of Davenport (1964), also discussed by Greenway (1978) 

refers specifically to a Gaussian distribution. It yei1ds convenient 

expressions for the reduced mode u (V,T) and dispersion b (v,T) of the n ~ 

associated extreme value probability function when the observation time 

is T. As in Part II, the 'reduced' parameters arise by considering a 

random variate A(t) which has a mean value 11 and a variance 0A 2. In the 

classical universal formulation of the Gaussian distribution a reduced 

variate net) is defined by 

net) = 

When expressed ~n these terms, Davenport's expressions are 

u (v,T) = I 2 In(vT) 
n 

b (v,T) = 1/1 2 In(vT) 
n 

These expressions show the effect of averaging time through the para-

(1) 

(2) 

(3) 

meter v which i~ the average zero-crossing frequency (one direction) of net). 

This may be expressed in terms of the second and zeroth moments of the power 

= f 
o 

S (n) dn 
n 

spectrum Sn(n). 

(4) 

Examining this equation, it may be seen immediately that if the spectrum 

S (n) is truncated by the application of a low-pass filter, or by the equiva­
n 

lent digital averaging operation (see Part II Appendix B) the effect will be 

to reduce the zero-crossing frequency. This decrease in v in turn reduces 

the mode value of the extreme probability function by equation (2). 

In comparing this conclusion with the present pressure measurements, 

it must be acknowledged that the pressure signals, although random, are not 
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Gaussian. A second discrepancy is that the present experiments deal with 

extreme values of a variate obtained by regular sampling of the continuous 

pressure signal. This is in contrast with the Davenport analysis which 

is defined in terms of turning values (maxima or minima) of the analogue 

signal. Clearly these will always be more extreme than any single sample 

although in the limit, when the sampling frequency is very much higher 

than the Nyquist frequency, the results will be the same. 

Despite these difficulties, it seems not unreasonable to extend the 

qualitative results of the Gaussian analysis to provide a theoretical indi-

cation that increasing the averaging time will reduce the magnitude of 

any measured extreme values. 

In order to make an experimental examination of this effect, four 

representative pressure tappings are selected (5WW3, 3WE3, WRIE, ERIB) on 

the four major surfaces of the test house with the A32 wind direction. 

Extreme pressure modes uL and ~ are extracted from Part II Appendix A for 

these holes with averaging times of 0.2, 2, 4 and 16 seconds (full scale 

equivalent). To produce the reduced modes in a form compatible with equations 

(1) and (2) values of the mean pressure coefficient (Part II Chapter 4) and 

of the RMS pressure coefficient, were also recorded. Because the RMS value 

is also a function of the averaging time, new values were measured for this 

experiment with low-pass filter settings calculated to correspond to each 

of the chosen averaging times by the equation (Greenway 1978). 

n = 0.44/T cut-off av 

The reduced modes uL and ~ for the lowest and highest extremes res­

pectively were then calculated according to the equation (also used in 

Part II) 

u' = (u - ~)/cr 

The values thus obtained are assembled in Table I. Also shown in this 

(5) 

(6) 

table are measured values of the zero crossing rate v and of the corresponding 
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Gaussian equivalent mode calculated from equation (1) 

The zero-crossing rate was measured directly in these experiments, 

rather than by integrating the power-spectrum. A specially designed signal 

conditioning unit was used, which incorporated a Schmitt trigger circuit to 

detect either upward or downward zero-crossings after the mean had been 

removed by a high pass filter. Pulses from the. Schmitt trigger were counted 

in the computer over a suitable time interval in order to determine a value 

for v. 

Table 1 shows that these zero-crossing rates and the corresponding 

theoretical mode estimates (equation 2) do not vary greatly over the four 

selected pressure tappings. They simply display the expected tendency to 

increase as the averaging time is shortened. 

The measured extreme values also display this trend quite distinctly, 

but in a far less orderly manner. Because the Gaussian probability dis­

tribution is symmetrical, a single extreme value mode is sufficient to des­

cribe both the highest and lowest extremes. The pairs of experimental values 

however, are obviously not symmetrical but reveal a skewness in the distri­

bution which is different for each of the four faces of the building. 

An attempt is made in Figure to correlate the experimental extreme 

values with the parameter /2 In(vT) suggested by the Gaussian theory. 

The number of pressure tappings is of course far too small to support a 

generalisation at this stage, but there is in Figure 1 some indication of 

two distinct correlations. The signs, which are irrelevant 6f course in the 

context of the symmetrical Gaussian distribution, have been omitted from 

the experimental values also for the purpose of this comparison, and it is 

seen that each pressure tapping yields one extreme value on one curve and 

the other on the alternative curve. The higher of the two curves departs 

significantly from the Gaussian prediction and also appears to contain the 

more relevant data, namely the highest extreme on the windward wall and the 

lowest extremes for the roof panels and the leeward wall. 



HOLE CODE SWW3 

MEAN Cp "'ll 0.527 

AVERAGING RMS EXTREME 

C 
C TIME P 

P 

(SECS) (] uL uR 

0.2 0.302 -0.294 2.444 

2 0.270 -0.106 1.708 

4 0.241 -0.040 1.476 

16 0.159 +0.177 1.041 

5WW3 

U I L uH I v u(vT) 

0.2 -2.72 6.35 7.788 4.24 

2 -2.34 4.37 2.158 3.92 

4 -2.35 3.94 1.306 3.79 

16 -2.20 3.23 0.418 3.48 

TABLE 1 

EFFECT OF AVERAGING TIME UPON EXTREME PRESSURES 
FOR FOUR SELECTED PRESSURE TAPPINGS 

(OBSERVATION TIME T = 1020 sees) 

SEW3 WRIE 

-0.321 -0.672 

RMS EXTREME RMS EXTREME 

C C C C 
P P 

P P 

(] uL uR (] uL uR 

0.143 -1.083 0.091 0.287 -2.614 0.584 

0.135 -0.922 -0.005 0.232 -0.695 0.005 

0.120 -0.871 -0.045 0.205 -1 .564 -0.132 

0.084 -0.611 -0.150 0.141 -1.125 -0.368 

REDUCED EXTREMES 

5EW3 WRIE 

uL I uH I \) U (vT) uL I URI v u(vT) 

-5.33 2.88 6.163 4.18 -6.77 4.38 12.979 4.36 

-4.45 2.34 2.329 3.94 -4.41 2.92 2.329 3.94 

-4.58 2.30 1.167 3.76 -4.35 2.63 1.708 3.86 

-3.45 2.04 0.508 3.54 -3.21 2.16 . 0.578 3.57 

ERIB 

-0.449 

RMS EXTREME 

C C 
P p 

(] uL uH 

0.191 -2.061 0.059 

0.163 -1.180 -0.066 

0.143 -1.082 -0.143 

0.103 -0.847 -0.261 

ERIB 

uL I URI \) u(vT) 

-8.44 2.66 10. 187 4.30 

-4.48 2.35 2.058 3.91 

-4.43 2.14 1.144 3.76 

-3.86 1.83 0.515 3.54 
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The form of the pressure coefficient probability distribution has been 

discussed by previous authors, e.g. Everett and Lawson (1977) who quote 

Peterka and C~rmak (1975) and suggest that the distribution is Gaussian 

if the mean pressure coefficient is positive and that it has an exponential 

tail (beyond 3 standard deviations) when the mean pressure coefficient is 

less than -0.25. 

The present results are not in conflict with the suggestion that a 

change in the character of the probability distribution occurs when the 

mean pressure is positive. However, the nature of that change seems here 

to be in the form of an inversion of the skewness rather than a change 

between two symmetrical distribution shapes. 

Clearly there is room for further investigation of the best way to 

correlate this data. 
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3. EFFECT OF OBSERVATION TIME ON EXTREME VALUES 

The Fisher-Tippett Type 1 extreme value probability distribution dis-

cussed in 1.3 describes the probability FX(n,rX) that in a single trial 

involving a random variate X sampled n times (where n is large), the single 

extreme (largest of n or smallest of n) sample will not surpass the value r X• 

The particular form of the Type 1 distribution is 

= (7) 

This probability refers to a single future trial. If m whole future 

trials are considered, then the non-exceedence probability is reduced since 

it now becomes the probability that everyone of m extreme values (or alter-

natively the extreme of ron samples) will not surpass r X' This probability 

is given by FX(ron,rX) where, if the trials are statistically independent 

= 

Applying this prediction to the Fisher-Tippett type 1 distribution we may 

write. 

= { 
~ r - (U

bA
, + bAln(m)~l} 

exp -exPL- --X----~-A--------J 

(8) 

(9) 

Thus it is suggested that an increase in the observation period of an extreme 

value experiment will not change the dispersion b X of the resulting distri­

bution but will merely increase the mode value from Ux to uA + bA In(m). 

The equation is valid for modes and dispersions either in dimensional or in 

reduced form. 

In support of this general statement it may be observed that the 

Gaussian example, already used in the previous chapter, yields a similar 

result. When the observation period is extended from T to mT in equation (2), 

the mode changes to u (v,mT) where 
11 
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{I + InCm)}! u (v,mT) = Izln(vT) 
n In(vT) 

::. Izln(vT) {I + 
In(m2 

+ .... } 2In(vT) 

::. u (v,T) + b (vT)ln(m) m « vT ( 10) 
n n . 

Treating the dispersion in the same way, equation (3) may be used to obtain 

the approximation 

b (v,mT) = b (v,T) - b 3(v,T) In(m) 
n n n 

which, when vT is large so that 

b (v,mT) ::. b (v,T) 
n n 

b (vT) « 1, reduces to 
n 

Set against this theoretical prediction it is of interest to examine 

some of the present experimental data for extreme pressure coefficients. 

Using the same four holes previously selected on the test house, and 

( 11 ) 

repeating the A32 wind condition, the present extreme value experiments were 

repeated for observation times which were increased by factors of 2, 5 and 

10, both for 0.2 second and 2 second averaging times. The results are 

recorded in table EXP 019 in. Appendix A of Part II. Values from this table 

together with the basic results for the four holes in question from tables 

EXP 004, 010 and 012, are recorded in Table 2 below. 

There is scatter but no observable trend in the dispersion results. 

Therefore for each case the average dispersion was used to produce values 

of the mode/dispersion ratio. These are then compared in Figure 2 with the 

theoretical prediction 

u(m) 
b 

= u(l) + In(m) 
b 

The agreement found in these results is good and gives a measure of 

confidence in the present measurements of extreme values. It also confirms 

(12) 
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that the equations 

= 

may be used with the present results to give a prediction of the extreme 

value probability function corresponding to an observation period other 

than the 17 minute period and for the present experiments. 

(13) 

(14) 



TABLE 2 

EFFECT OF OBSERVATION TIME ON EXTREME MODES AND DISPERSIONS FOR FOUR SELECTED PRESSURE TAPPINGS 

HOLE EXTREME PARAMETER 0.2 SEC. AVERAGES 2 SEC. AVERAGES 

CODE HIGHER/LOWER RECORDED 17 min 34 min 85 min 170 min b 17 min 34 min 85 min 170 min b 

5WW3 HIGHER u 2.444 2.543 2.940 2.928 1.708 1.803 1.953 2.270 
b 0.251 0.253 0.266 0.251 0.255 0.156 0.129 0.199 0.156 0.160 

u/b 9.584 9.973 11.529 11.482 10.675 11 .269 12.206 14.188 

LOWER u -0.295 -0.328 -0.417 -0.470 -0.106 -0. 179 -0.224 -0.301 
b -0.085 -0.072 -0.063 -0.086 -0.077 -0.075 -0.070 -0.052 -0.065 -0.066 

u/b 3.818 4.260 5.416 6.104 1.606 2.712 3.394 4.561 

3EW3 HIGHER u 0.091 O. 118 O. 161 0.192 -0.005 0.043 0.060 0.105 
b 0.035 0.041 0.039 0.034 0.037 0.027 0.036 0.032 0.028 0.031 

u/b 2.459 3.189 4.351 5.189 -0.161 1.387 1.935 3.387 ..... 
o 

LOWER u -1.083 -1.197 - 1.334 -1.408 -0.922 -0.981 -1.074 -1.202 
b -0.150 . -0.176 -0.131 -0.178 -0.159 -0.104 -0.089 -0.104 -0. 1 15 -0.103 

u/b 6.811 7.528 8.390 8.855 8.951 9.524 10.427 11.670 

WR1E HIGHER u 0.584 0.717 0.982 1 .018 0.005 0.139 0.261 0.381 
b 0.210 0.235 0.202 0.142 0.197 0.162 0.117 0.112 0.093 O. 121 

u/i; 2.964 3.640 4.985 5.168 0.041 1.149 2.157 3.149 

LOWER u -2.614 -2.613 -3.008 -3.168 -] .695 -1.779 -1 .832 -2.116 
b -0.293 -0.262 -0.278 -0.266 -0.275 -0.176 -0.141 -0.189 -0.162 -0.167 

u/b 9.505 9.502 10.938 11 .520 10.150 10.653 10.970 12.671 

ERIB HIGHER u 0.059 0.060 0.138 0.162 -0.066 -0.024 -0.003 0.162 
b 0.052 0.053 0.053 0.043 0.045 0.049 0.028 0.027 0.021 0.031 

u/b 1 .311 1.333 3.067 3.600 -2.129 -0.774 -0.097 0.419 

LOWER u -2.061 -2.151 -2.658 -2.690 -1.180 -1.203 -1.257 -1 .489 
b -0.286 -0.280 -0.329 -0.346 -0.310 -0.129 -0.103 -0.122 -0.090 -0. 1 I 1 

u/b 6.648 6.939 8.574 8.677 10.631 10.838 11 .324 13.414 
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APPLICATION 

An immediate application of equations (13) and (14) arises in connection 

with one of the data comparisons of Part II Chapter 5. In discussing the 

comparison between the Oxford extreme pressure coefficient data and the cor­

responding data from the University of Western Ontario (Apperley et al. 1978) 

it was noted that the U.W.O. data was collected with an observation period 

equivalent to 150 minutes at full scale, whereas the Oxford experiments had 

been designed to correspond to the actual full-scale observation period of 

17 minutes. 

Because the U.W.O. results are in the form of single sample extremes, 

it is not possible of course to correct for this discrepancy. However for 

the purpose of achieving a time comparison it is possible to adjust the 

Oxford mode values to the U.W.O. observation period. 

When applied to the reduced modes tabulated in Part II Chapter 4, 

equation (13) may be written 

u'(150) = u'(17) + b'ln(150/17) (13a) 

In order to display this calculation, extreme value data for Part II Chapter 4 

is reproduced in Table 3 below. Linear regressions are then plotted in 

Figures 3 for the original data (see also Part II Figures 14a, b, c) and 

in Figure 4 for the adjusted data. 

It was argued in Part II that although agreement cannot be expected 

between one single sample extreme value and any particular point in the 

extreme value probability distribution, a comparison involving many single 

point extremes is most logical if it is related to the mode of the distribution. 

Applying this reasoning to the large number of one-to-one comparisons 

which make up a linear regression analysis, it is to be expected therefore 

that a regression slope of unity would indicate good agreement on average 

between the U.W.O. single samples and the Oxford Modes. 

This comparison reveals the effect of the observation period adjust-

ment in a most striking way. For the three unadjusted comparisons in 
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Unadjusted comparison between 
U.W.O.(150 min) and Oxford (17 min) 

extreme pressure coefficients 

Case A38-C Regression Slope 1.379 

2 
OXFORD 

4 6 



6 

4 

o 

--2 

--4 

.\'" 

-6 

-6 

.'0 

-4 

I 

I I 
'j 

-2 o 

-~~,. jl ,A.;{ 
•• to I 

t·,· 

Figure 3b 

Unadjusted comparison between 
U.W.O.(150 min) and Oxford (17 min) 

extreme pressure coefficients 

Case A38-G Regression Slope 1.430 

2 4 6 
OXFORD 



6 

4 

0 

3 
:::i 2 / 

/ 

/ 
I 

/ 
! 

0 

--2 

-.4 -
I 

.. '. ./ 
.'. I 

I /, 
~ . / .. 

.;.- 'I J. A 
.'>. 

/ 
-6 

-6 -4 -.:: o 

/ 

/ 1·\ 

, 

I 
I 

1 .1. 

I/l..f .,' / 
A 

~ IA 
/l. 

/ 

/ 

I 
I 

Figure 3c 

Unadjusted comparison between 
U.W.O.(IS0 min) and Oxford (17 min) 

extreme pressure coefficients 

Case A32 Regression Slope 1.488 

2 
OXFORD 

4 6 



o 
:;: 

6 

I 
Lt 

::) 2 

o 

--2 

--4 

-6 

--8 

-10 

--12 

/ 

-12 -10 -8 -6 -4 -.~ o 

Figure 4a 

Adjusted comparison between 
U.W.O.(150 min) and Oxford (150 min) 

extreme pressure coefficients. 

Case A38-C Regression Slope 1.010 

2 4 
OXFORD 

6 



o 
3: 

6 

4 

:::> 2 

o 

-·2 -

--4 

-6 

·-8 

b. ... II 

.', 

-6 -4 

.'. 

-2 o 

Figure 4b 

Adjusted comparison between 
U.W.O. (150 min) and Oxford (150 min) 

extreme pressure coefficients. 

Case A38-G Regression Slope 1.046 

2 4 6 
OXFORD 



6 

4 

o 
:s: 
::> 2 

o 

-.? 

--4 

-6 

--8 

/ 
-10 

-10 -8 I 

-If -6 

/ 

/ 
/ 

/ 

/ 

-? 

/ 

/ 

o 

Figure 4c 

Adjusted comparison between 
U.W.0.(150 min) and Oxford (150 min) 

extreme pressure coefficients. 

Case A32 

2 
OXFORD 

4 

Regression Slopel.056 

6 



12 

Figure 3 the average regression slope is 1.43, indicating that the D.W.O. 

extremes are considerably higher than the Oxford values. After adjustment 

of the Oxford modes to the 150 minute observation time however, the agree­

ment becomes very good indeed, with an average regression slope in Figure 4 

of 1.04. 

It is often argued that the present method of estimating extreme 

values, which involves at least sixteen repetitions of each data sampling 

experiment, is too costly in terms of tunnel time to be an acceptable tech­

nique. However, the success of the observation time adjustment procedure 

illustrated above suggests that the method need not be as time consuming 

as would appear at first sight. There is surely a case to be made for an 

investigation of an optimum procedure involving mUltiple repetitions, not 

of the full observation period but of a shorter period which can then be 

extended analytically by means of equations (13) and (14) to yield a pre­

diction of the required extreme value mode and dispersion values. 

A disadvantage of such a procedure is that it requires the use of the 

dispersion as well as the ,mode (Equation (13». This introduces greater 

uncertainty because neither the Gumbel method nor the Lieblein method are 

capable of predicting dispersion values as accurately as they predict modes. 

For the 16 point scheme used here, it is shown by Greenway and Wood (1978) 

that while the standard error for the mode is only 3%, that for the dispersion 

is 21%. 
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4. EFFECTS OF DISTORTED WIND SIMULATION 

The dependence of wind tunnel measurements upon the correct simulation 

of the wind structure is acknowledged formally by the insertion of the 

generalized descriptor ~(Z) in equation (1) of Part II. The strength of 

the dependence is now generally recognised, so that most investigators 

devote considerable effort to the development of a tunnel flow whose measure-

able statistical characteristics match as closely as possible the character is-

tics of the full scale wind over the given site, insofar as these are known. 

Such is the importance attached to establishing the right simulation, 

and so tedious are the experimental adjustments required to approach it 

closely, that few investigators*, having produced an acceptable flow, can 

summon the enthusiasm to experiment further to discover how their results 

would be affected if their simulations were not quite right. 

The present authors experienced the same disinclination. Nevertheless 

a small amount of time was devoted to an attempt to produce, and assess the 

effect of, a systematic distortion of the wind flow described in Part I. 

The aim was to vary one only of the measured parameters, whilst retaining 

unchanged the values of the others. After some experimentation it was found 

that by varying·the width of the lower bar of the turbulence grid, the tur-

bulence intensity profile could be spoiled with very little change in the 

mean velocity profile or the power spectral density distribution of the 

longitudinal turbulence. Figure 5 shows the details of two distorted simu-

lations, one having a turbulence intensity increased by 20-25 per cent and 

the other with similarly reduced turbulence. These are compared with the 

original simulation described in Part I. 

Having achieved this distortion involving the turbulence intensity 

alone, pressures were re-measured at selected points on the model. Mean 

pressures showed no significant change but, as expected the RMS and extreme 

pressure coefficients (relative to the mean but not normalised with respect 

* An exception in this respect occurs in the work of Apperley et al. (1978) 
who show results for more than one simulation. 
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to the RMS) both showed a consistent increase with the turbulence intensity 

of the onset flow. This is illustrated in Figure 6 by the RMS pressure pro­

files for house 58 and also in Figure 7 by the well correlated linear reg­

ression comparisons for the test house. 

Typically, the changes in RMS pressure appear to be similar in magni­

tude to the charges in onset turbulence intensity although there is no 

indication of a linear relationship. Indeed, it is to be expected that 

finite RMS pressures will occur even in a non-turbulent onset flow, since 

an architectural model produces its own turbulence. 

The changes in the extreme pressures are less pronounced, suggesting 

that the fundamental shape of the probability distribution is not merely 

scaled but is also distorted by the changed onset turbulence. 

Attempts to extend the experiment by producing isolated changes in 

either the spectrum or the mean velocity profile were not successful in the 

limited time allocated to this part of the programme. 
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