

DIEPARIMENI

EQUEIOSI DINIBERINDIA

WIND TUNNEL PRESSURE MEASUREMENTS

ON THE AYLESBURY LOW-RISE HOUSING ESTATE

Part II

Mean, R.M.S. and Extreme Pressures with Frequency Spectra

M. E. Greenway and C. J. Wood

ANGUNE ENING

PATRIKES ELOMADI

9**):(1=(9):**19)

WIND TUNNEL PRESSURE MEASUREMENTS

ON THE AYLESBURY LOW-RISE HOUSING ESTATE

Part II

Mean, R.M.S. and Extreme Pressures with Frequency Spectra

M. E. Greenway and C. J. Wood

OUEL Report No.1271/78

CONTENTS

1	INTRODUCTION		
2	PREDICTION OF EXTREME WIND EFFECTS FROM TUNNEL DATA		
	2.1	The design of a bivariate experiment	3
	2.2	Joint probability analysis	7
	2.3	Extreme values	9
	2.4	Prediction of extreme pressures by joint probability analysis	13
3.	EXPERIMENTAL PROCEDURES		
	3.1	Frequency response	15
	3.2	Measurement of R.M.S. Pressure Coefficients	17
	3.3	Measurement of power spectral density	18
	3.4	Measurement of extreme values	21
	3.5	The variable roof-pitch experiment	23
4	TABU	LATED DATA	25
5	DISC	USSION	78
	5.1	Linear regression analysis for mean and R.M.S. pressures	78
	5.2	Evidence from spectral analysis	82
	5.3	Comparison of extreme pressures	83
6	CONCLUSIONS		
	Acknowledgements		
	References		
Appendix	A Fu	ll extreme value data tables	

Appendix B Techniques of short-term averaging

Page

LIST OF ILLUSTRATIONS

Page	Figure	
4	1	Van der Hoven Spectrum
8	2	Illustration of joint probability integration
12	3	Illustration of Fisher-Tippett distribution
16	4 a-f	Transfer functions for tube connections
24	5	Test of Fisher-Tippett representation of extreme values
25	6a	A38 Layout looking upstream
25	6Ъ	A38 Layout looking downstream
80	7 a-f	Linear regressions for mean pressures (B.R.E./Oxford)
80	8 a-f	" " " (Other tunnel/Oxford)
80	9 a-d	" " R.M.S. " (B.R.E./Oxford)
80	10 a-d	" " " " (Other tunnel/Oxford)
83	11	Spectrum comparisons for hole 5WW3
83	12	Spectrum comparisons for hole WRIE
84	13 a-f	Linear regressions for extreme pressures (B.R.E./Oxford)
84	14 a-d	" " " " (Other tunnel/Oxford)

Page	Table	TABLES
20	1	Index of Pressure Spectra
28	2	Contents list for comparative results tables (chapter 4)
79	3	Index of Linear Regression Results

1. INTRODUCTION

This report continues the account, begun by the authors in Part I (Greenway and Wood 1977), of the wind pressure measurements made in Oxford on a model of the Aylesbury low-rise housing estate. The layout of this site is described fully by Eaton and Mayne (1974), of the Building Research Establishment, whose site plans are reproduced in Part I of this report.

Full-scale records of wind pressure were obtained at this site by the B.R.E. (Eaton and Mayne 1974, Eaton, Mayne and Cook 1976). These tests used pressure transducers installed at a total of 44 points on 7 of the estate houses and also at 74 points on a specially constructed test house with a variable-pitch roof.

A number of different wind directions were experienced during the course of the full-scale investigation and the upstream terrain varied accordingly. It ranged from open farmland for winds with a westerly component, to low-rise urban development for easterly winds.

Attention in the present wind tunnel study has been focused upon those cases, designated A 7, A 32 and A 38 by Eaton and Mayne, for which the most complete full-scale data is available, and which involved winds from the west over rural terrain. Part I includes an account of the wind simulation which was devised to model the structure of these winds at the chosen scale of 1/75 in the 4m x 2m wind tunnel. The tunnel itself is described fully by Wood (1977).

In addition to the wind simulation, Part I includes a discussion and comparison of mean pressures measured on the estate houses and the test house for a wind direction, relative to the estate datum line, of 265°. This corresponds to the full-scale runs A 7 and A 32.

The present report completes the survey for this wind direction by adding R.M.S. and extreme pressure measurements with spectral information where appropriate. It also presents a second complete set of measurements

-] -

on the test house alone corresponding to the varied roof pitch records A38.

These experiments do not represent an exhaustive repetition of all possible cases therefore. Rather, they are chosen to make possible a careful assessment of the comparison between wind tunnel data and fullscale results including, where this is available, data from other wind tunnel experiments.

In this context, the work of Bray (1977) at the University of Bristol provides measurements on the estate houses alone for the A7 wind direction and also for an urban simulation case (A1). Apperley et al. (1978) modelled the test house alone with a variety of wind directions, while Cook at the B.R.E. has also used an isolated test house model, concentrating on the A35 and A38 wind directions.

Some measurements of mean pressures on the isolated test house are reported by Holmes and Best (1977) of James Cook University, North Queensland, and further results from this source are expected. Holmes and Best also refer to mean pressure data obtained by Barnard and Gandemer (1974) at C.S.T.B. (France), but the present authors have not had access to these results.

Up to the time of writing, the Oxford study is unique in that it presents extreme value data, not as single samples but in the form of a Fisher-Tippett type 1 probability function based upon 16 independent trials at each point. Naturally this work was very expensive in terms of tunnel time but it is hoped that the effort will be rewarded by the more enlightening comparisons which can be made.

- 2 -

2. PREDICTION OF EXTREME WIND PRESSURES FROM TUNNEL DATA

As a background to the discussion of the wind tunnel measurements presented in this report, this first chapter is written to draw together and interpret the relevant statistical arguments which are needed as a justification for the measurements which have been made. It may be of value to those who are not familiar with this area of research, and it can safely be ignored by those who are.

There is of course no possibility in the context of the present work on the Aylesbury estate to compare any extreme value prediction with long-term experience as the site layout has already been altered. Nevertheless a discussion of the prediction method is included in order to complete the context for the experimental results.

2.1 The Design of a Bivariate Experiment

It has become conventional to regard the prediction of wind effects as a bivariate problem involving the joint probability of a mean wind speed and of a speed-independent local pressure coefficient or velocity ratio. The justification for this approach is based upon the widely accepted Van der Hoven wind spectrum (Van der Hoven 1957) which consists of two obviously distinct parts separated by a fairly wide frequency band (0.5 to 5 cycles/hour) where there is very little energy (Fig.1).

To isolate the low frequency part, which is caused entirely by meteorological fluctuations, the wind is described in terms of a speed V which is the average over a period T (normally one hour in the U.K.) of the instantaneous wind speed at a specified position, usually 10m above ground level. This averaging process is equivalent to the removal by low-pass filter of all information in the high frequency part of the spectrum.

To retain adequate information when the continuous record of V is replaced by a sequence of discrete samples, it is necessary to sample the filtered signal at intervals approximately equal to T (see Appendix B) and to continue the trial for a period not less than T_1 where T_1 is normally

- 3 -

FIGURE 1

Van der Hoven Wind Spectrum

taken as one year (see Figure 1).

When the wind is strong, the fluctuations in the high frequency section of the spectrum have a purely aerodynamic, rather than a meteorological origin. They arise from the turbulent structure of the terrestrial boundary layer as it flows over the local terrain, including the building or other feature for which the prediction is desired. Although there is no obviously defined upper limit to the frequencies which may occur in this flow, it is usual to restrict attention to those frequencies which are of practical interest in terms of the size or mechanical response characteristics of the structure (or of the measuring instrument of course!). This is done by sampling at such a rate that the signal represented is effectively averaged over a short period T_o (see Appendix B).

To separate this exclusively aerodynamic information from the meteorological component, the convenient properties of the Van der Hoven spectrum may again be invoked, and a high-pass filter specified, with a cut-off designed again to operate within the low-energy spectral gap. The use of a conventional filter has one drawback however, in that the mean value of the aerodynamic component is also eliminated so that essential information on absolute values is destroyed. It is preferable therefore to use an unfiltered signal and simply choose instead a period T, equal to that chosen for the meteorological averaging time, as the total observation period for the aerodynamic experiment.

If T corresponds to a frequency safely within the spectral gap, then the predominant meteorological variations have a period much larger than T. Thus it is to be expected, during the whole aerodynamic trial, that the meteorological wind speed will remain approximately constant. As a result, there is associated with each aerodynamic trial a single value of the meteorological mean wind speed V.

The fact remains however that the reference wind speed will take different values for different aerodynamic trials. Consequently it is necessary to observe the rules of dynamical similarity in order to define

- 4 -

an aerodynamic variate which is independent of these velocity changes.

If such trials involve the measurement of a fluctuating pressure difference $\Delta p(t)$, a fluctuating force F(t) or a fluctuating local velocity v(t) associated with a structure of size D_{str} , then for strong winds, dimensional analysis leads us to expect a relationship of the general form

$$0 = f\left\{C_{p}(t), C_{F}(t), C_{v}(t), Re, \frac{VT_{1}}{D_{str}}, \frac{VT}{D_{str}}, \frac{VT_{2}}{D_{str}}, \phi(Z)\right\}$$
(1)

where the three alternative dimensionless variables are defined by

$$C_{p}(t) = \Delta P(t)/q$$

$$C_{F}(t) = F(t)/q(D_{str})^{2}$$

$$C_{v}(t) = v(t)/V$$

using

$$q = \frac{1}{2} \rho V^2$$

The nominal wind speed V controls the value of the Reynolds number as an independent variable defined by

$$Re = \rho V D_{str}/\mu$$

Fortunately this exerts only a very weak influence in most architectural aerodynamics problems, where the flow is dominated not by boundary layer separation characteristics but by the effect of sharp corners causing fully separated flows. Thus the inevitable inequalities in Reynolds number between trials can be tolerated whilst retaining the expectation that C_p , C_F and C_v will be statistically independent of the meteorological wind speed V.

The function $\phi(Z)$ is inserted in the function parameter list with the definition

$$Z = z/D_{str}$$

to represent the general requirement that the onset wind flow should be

correctly modelled at every vertical level z at the prescribed model scale. Defining $\phi(Z)$ more specifically we might include the more obviously important wind characteristics by writing

$$\phi(Z) = \phi\left\{\frac{\overline{U}(z)}{V}, \frac{\sigma_{u}(z)}{V}, S\left[\frac{n}{V}\right], \frac{x_{L}(z)}{D_{str}}\right\}$$

where $\overline{U}(z)$ represents the mean velocity profile, $\sigma_u(z)$ the turbulence intensity profile and $S\left[\frac{n}{V}\frac{x_L}{V}\right]$, the power spectral density, a function of the frequency n. x_L_u is a representative integral length scale in the turbulence, whose relationship to the structure size must be controlled by matching values of the parameter x_L_u/D_{str} .

Greenway (1978a) has illustrated very clearly the importance of a complete matching of these three parameters between trials if extreme velocity measurements are to yield meaningful results, and Part I of this report (Greenway and Wood 1977) shows the extent to which this matching has been achieved in the present 1/75th scale wind simulation.

Also emphasised by Greenway (1978a) is the importance in extreme value measurements of the correct choice of observation and averaging times T, T_1 and T_2 . These appear as Strouhal numbers in equation (1). For example, if the Strouhal number equality requirement were applied strictly to the full-scale measurements of Eaton and Mayne (1974), it could be objected for example that the 2 second averaging time (T_2) in trial A7, where V = 11.9 m/s does not correspond to the 2 second averaging time in trial A32 where V = 14.3 m/s. Likewise, the present attempt to compare wind tunnel estimates of extreme pressure with both A7 and A32 is strictly invalid since the present wind tunnel observation and averaging times are chosen to give strouhal number equality with record A32 only.

These imperfections of dynamical similarity are mentioned here in order to highlight some of the problems associated with the design of a bivariate experiment in which the meteorological variate V(or q) and the aerodynamic variate C_p , C_F and C_v exist as genuinely independent statistical quantities.

- 6 -

2.2 Joint Probability Analysis

Because they are statistical variates, the assignment of values to any of the quantities discussed above, involves not just a single measurement but many trials leading to a statement of the probability associated with a given value. Thus in general, if the symbol λ stands for any one of the variates F, ΔP , v, V, C_F, C_p, C_v, then we define the probability function $F_{\lambda}(r_{\lambda})$ as the probability that a single sample will not surpass a chosen level r_{λ} . The corresponding probability distribution $f_{\lambda}(r_{\lambda})$ (= $dF_{\lambda}(r_{\lambda})/dr_{\lambda}$) describes the probability $f_{\lambda}(r_{\lambda})dr_{\lambda}$ that a single sample λ will fall within the narrow band $r_{\lambda} < \lambda < r_{\lambda} + dr_{\lambda}$.

The ultimate aim of the analysis is of course to determine the probability functions for F or ΔP or v, recognising that these are affected not only by the aerodynamic variations of the corresponding coefficients, but also by the meteorological variations in the wind speed V. In each case the aerodynamic coefficient, as defined, has been shown to be independent of the meteorological wind speed V or of the associated dynamic pressure q.

By virtue of this independence^{*}, if we consider for example the pressure relationship, which is relevant to the present work,

 $\Delta P = C_p q$

we may describe the joint probability that both $r_c < C_p < r_c + dr_c$ and also $r_q < q < r_q + dr_q$ by the product of the two individual probabilities

$$f_{cq}(r_c, r_q) dr_c dr_q = f_c(r_c) dr_c f_q(r_q) dr_q$$

i.e.

$$f_{cq}(r_c, r_q) = f_c(r_c) f_q(r_q)$$

If these equations are represented on a joint probability diagram as shown in Fig.2 then the joint probability density $f_{cq}(r_c,r_q)$ represents

(2)

- 7 -

^{*} For a justification see for example Newland, D.E., "Random Vibrations and Spectral Analysis" (Longmans 1975).

Diagram of Joint Probability Integration

FICURE 2

the height or volume per unit area at the coordinate position r_c, r_q of a solid figure standing upon the $r_c - r_q$ plane. In these coordinates, each point r_c, r_q also represents a value r_r of the pressure ΔP defined by

$$r_r = r_c r_q$$

Conversely, if a fixed value r_r is chosen, then equation defines a curved line passing through all possible combinations of c_r and q which, if they occur simultaneously will yield the same value r_r for the pressure ΔP .

The probability distribution for ΔP must be defined therefore in terms of the probability $f_p(r_p)dr_p$ that ΔP will fall in the range $r_p < \Delta P < r_p + \underline{d}r_p$ where this range includes all possible combinations of r_c and r_q falling between the lines

$$r_p = r_p/r_q$$

and $r_c + dr_c = (r_p + dr_p)/r_q$

as shown in Fig.2.

The spacing between these lines for any value of r_{a} is given by

$$dr_c = dr_p/r_q$$

so that the required probability, which is represented by the volume under the joint probability surface and bounded by the two lines is given by ∞

$$f_p(r_p)dr_p = \int_{0}^{\infty} f_{cq}(r_p/r_q, r_q) \frac{dr_p}{r_q} dr_q$$

Substituting for f $_{cq}$ from equation (2) thus yields the probability function for the pressure ΔP

$$f_{p}(r_{p}) = \int_{0}^{\infty} f_{c}(r_{p}/r_{q}) f_{q}(r_{p}) \frac{dr_{q}}{r_{q}}$$
 (3)

while the probability function, obtained by a further integration over n, as a dummy variable representing r_{p} , is

$$F_p(r_p) = \int_{-\infty}^{r_p} f_p(n) dn$$

2.3 Extreme Values

The probabilities discussed above define the parent distribution in that they refer to the value of any single sample found during a whole observation period. However the question which is of fundamental importance in determining design criteria is not the probability of values throughout the possible range but rather the probability that a very large positive or negative value will occur. The probability of such extreme values is of course very low. It is defined by the tail of the present distribution but because of the very rare occurrence of samples in the tail region, that part of the distribution is inherently difficult to define accurately.

A single observation period is quite insufficient. To find an adequate number of samples falling in the extreme region a large number of observation periods would be required and the amount of unwanted information collected would be very great. For this reason it is usual to reject most of the sampled data and to record only the single largest (or smallest) value found during each observation period, (e.g., the annual maximum mean hourly wind speed).

If during such a period of length t_0 , independent samples of the random variable λ have been collected at regular intervals t_s , then the extreme value thus defined is the largest (or smallest) of a collection of n independent samples where

 $n = t_0/t_s$

The probability $F_{\lambda}(n,r_{\lambda})$ that this single extreme value of λ does not exceed a given level r_{λ} is identical to the probability that every one of the parent collection of n samples will be less than r_{λ} . Thus provided that the n samples are all independent, the extreme value probability function is related to the (now undetermined) parent probability function by the equation

$$F_{\lambda}(n,r_{\lambda}) = F_{\lambda}(r_{\lambda})^{n}$$
(5)

while the corresponding extreme value probability distribution $f_{\lambda}(r_{\lambda})$ is given by

 $f_{\lambda}(n,r_{\lambda}) = n F_{\lambda}(r_{\lambda})^{n-1} f_{\lambda}(r_{\lambda})$ (6)

In an experimental situation where the aim is to determine the extreme value probabilities, whilst rejecting the large bulk of data required for the parent probabilities, these equations are of no value of course. Instead the extreme probability function $F_{\lambda}(n,r_{\lambda})$ may be estimated by the method of Gumbel (1954) or alternatively by the method of Lieblein (1974). These methods are described in detail and compared in practical application by the authors in another paper (Greenway and Wood 1978).

To illustrate the present discussion as an example, Gumbel uses the equation

$$F_{1}(r_{1}) = J / (M + 1)$$
 (7)

to estimate approximately the probability that, in a size-ordered list of M extreme values from M separate trials, the value r_j of the Jth element will not be surpassed in a single future trial. This estimator, taken together with the experimentally determined extreme values from M trials, defines an estimate of the extreme value probability function in which it is noted that N no longer appears explicitly, although it is still implied so that

 $F_{\lambda}(r_{\gamma}) \simeq F_{\lambda}(n,r_{\lambda})$

When presenting extreme value probability data, it is convenient to observe that many naturally occurring variates have extreme value probability functions which approximate very closely to the form

$$F_{\lambda}(n,r_{\lambda}) = \exp\{-\exp(-Y_{\lambda})\}$$
(8)

where

$$(r_{\lambda} - u_{\lambda}) / b_{\lambda}$$

(9)

Thus, after ascertaining that such a relationship holds for the variate under investigation, it is sufficient merely to determine and present numerical values for the mode u_{λ} and for the dispersion b_{λ} .

In terms of these constants, the associated extreme probability distribution may be written as

$$f_{\lambda}(n,r_{\lambda}) = \exp \{-\exp(-Y_{\lambda})\} \exp(-Y_{\lambda}) / b_{\lambda}$$
(10)

This relationship, illustrated in Fig. 3, is known as the Fisher-Tippett Type 1 distribution (Fisher and Tippett 1928).

Applying this analysis to the present problem of extreme pressure estimation we consider again the pressure relationship

$$\Delta P = C_p q$$

Y,

It is assumed that the dynamic pressure q of the meteorological reference wind speed is sampled n_1 times at intervals T during an observation period T_1 (see Fig. 1) where

$$n_1 = T_1 / T \tag{11}$$

If this sampling rate is continued for a total of n_1 successive observation periods, then there will be sufficient data to define not only the parent probability function $F_q(r_q)$ and distribution $f_q(r_q)$ but also, by selecting the largest value of q from each of the n_1 observation periods, to find the extreme value probabilities $F_q(n_1, r_q)$, $f_q(n_1, r_q)$ where as shown earlier

$$F_{q}(n_{1}, r_{q}) = F_{q}(r_{q})^{n_{1}}$$
 (12)

If an adequately large number n_1 of meteorological trials is to be taken into account, then with a one-year observation period T_1 the meteorological experiment is of necessity a very long one. For all practical purposes therefore it is necessary to rely totally on existing meteorological records and considerable efforts have been and are being made to extract extreme value data in an appropriate form, e.g. E.S.D.U.(1972).

Taking the same steps for the analysis of the pressure coefficient C $_{\rm p}$ we assume that n _2 independent samples are collected at intervals T _2 during an observation period T (see Fig. 1) so that

$$n_2 = T / T_2$$
 (13)

Again, in order to collect sufficient data for an extreme value probability analysis as well as for the parent, we continue the aerodynamic experiment for a total of n_2 observation periods and thus obtain $F_c(r_c)$ and its derivative $f_c(r_c)$ together with $F_c(n_2r_c)$ and $f_c(n_2, r_c)$ where

$$F_{c}(n_{2}, r_{c}) = F_{c}(r_{c})^{n_{2}}$$
 (14)

If conducted at full scale, the duration of the aerodynamic experiment is determined by T, which may be up to one hour and by the necessity to wait for a total of n_2 occurrences of a suitable wind. By contrast, the benefit of small-scale aerodynamic testing using a wind tunnel, and of the bivariate approach which makes this possible, is immediately apparent. In the present experiments the full-scale observation time of 17 minutes is reduced to 0.65 minutes so that a total of 16 aerodynamic trials could be completed in just over ten minutes.

If the bivariate method were not used and the pressure ΔP were sampled directly in an experiment which included both meteorological and aerodynamic effects, then the experiment would have to deal with information covering the whole frequency range from $1/T_1$ to $1/T_2$ shown in Fig. 1. Consequently the pressure would have to be sampled at full scale at intervals T_2 over an observation period T_1 and the number n of samples taken during each trial would be = $n_1 n_2$

parent probability distributions

.

 C_p and q,

equation

may be used to define an extreme value

function

 $F_p(n,r_p)$ for the required pressure ΔP .

An alternative approach, which appears highly attractive, has been suggested by Cook and Mayne (1978). This avoids the use of the parent probability distributions by assuming that a valid approximation to the extreme pressure probability is given by integrating the joint-extreme probability distribution formed from the extreme distributions only for C_p and q.

In the present notation this is equivalent to the assumption that $f_p(n,r_p) \equiv f'_p(n,r_p)$ where

$$f'_{p}(n,r_{p}) = \int_{0}^{\infty} f_{c}(n_{2}, \frac{r_{p}}{r_{q}}) \qquad f_{q}(n_{1},r_{q}) \frac{dr_{q}}{r_{q}}$$
(17)

when $n = n_1 n_2$

A number of analytical counter-examples may be cited (Wood 1978) to show that equation 17 is not generally valid. On a more practical level, a little reflection shows that it ignores possible contributions to the extreme pressure probability distribution by pressures occurring during periods other than the worst hour of wind in any year.

A statement which is precisely correct in relation to equation 17 is that $f'_p(n,r_p)$ describes the probability distribution for the extreme pressure found during the extreme wind period in any year.

This in itself is a more valuable variate than the deterministic pressurecoefficients based upon extreme gust velocities which are currently in use in the Codes of Practice. Also, such is the attractiveness of the simple jointextreme probability analysis that it is to be hoped that further research will lead to improvements in this approximation rather than its abandonment. For this reason, the present extreme pressure coefficient data is described in mode-dispersion notation in order than it may be applied readily to the jointextreme method of prediction.

3. EXPERIMENTAL PROCEDURE

3.1 Frequency Response Check

For the mean pressure measurements described in Part 1, the Disa pressure transducers were connected through a 48 port, type D Scanivalve and approximately 0.3 metres of standard 1.5 mm Scanivalve tubing to the surface pressure tappings on the models. The main problems to be overcome at that time were the zero-drift of the transducers and the effect of unwanted tunnel pressure gradients.

In contrast, these effects are of no importance in relation to fluctuating component measurements because they are removed, with the mean signal, by the use of a high pass filter. Instead, the primary experimental problem becomes the frequency response, not of the pressure transducers which is more than adequate, but primarily of the necessary tube connections linking the transducer to the surface pressure tappings.

Using a cross-spectral analysis programme written for the PDP 11 computer by Greenway (1978 b) a frequency response test was made by computing and plotting the transfer functions of the two tube systems used. This was achieved by comparing the power-spectral density function of the signal from the operating transducer with that from a reference transducer connected directly to an almost coincident pressure tapping.

The frequency range of the transfer functions was limited by the use of a low-pass filter set with a 3 d.B. cut off frequency of 125 Hz. This corresponds to approximately 5 Hz at full-scale for a wind speed of 14 m/s at the present nominal tunnel speed of 5 m/s. It seems unlikely in relation to the known limitations of the full-scale experiments that consideration of frequencies higher than this, would be meaningful and in most of the experiments described below, a filter setting of 100 Hz was used. The implication of this limitation in relation to extreme value analysis is more complicated and is discussed later.

- 15 -

Transfer functions for tube connections.

The results of the transfer function check are shown in Fig. 4 (a) to (f). Diagrams (a) and (b) show the application of the technique to a reference system in which both pressure transducers were connected identically with a minimal tube length of 50 mm. For this case the two signals should be identical and both the magnitude (a) and the phase (b) show only minor deviations from their expected values of unity and zero respectively.

The second tube system tested was approximately the same as that used for the mean pressure and variance measurements and also for extreme value analysis. This comprised 260 mm of tubing between the surface tapping and the Scanivalve, followed by a further 100 mm linking the Scanivalve to the transducer. This short length was for vibration isolation, see part I.

For this case it is clear from (c) and (d) that the tubing amplifies the pressure signal by a factor of approximately 1.4 near the upper limit of the frequency band. This is exaggerated in Fig. 4 by the linear frequency scale. In fact the distortion affects only a small portion of the spectrum where there is very little energy, so that the consequent error in the variance (i.e. in the area under the whole spectrum) will be small.

The information provided by the transfer function makes it possible of course to adjust the values of the variance and also the shape of the power-spectral density plots (e.g. Figures 11 and 12) if desired. This adjustment has not been made. It is not possible to make a quantitative estimate of the effect on extreme pressure measurements but some qualitative indications are discussed.

The form of the transfer function suggests the existence of a tube resonance, damped by the restricted passages of the Scanivalve and having a natural frequency somewhat higher than the upper limit of the present range.

- 16 -

A similar indication of resonance, with less damping is also evident in the third tube system. (Diagrams (e) and (f)). This system was a simple connection using 260 mm of tubing with no Scanivalve. This type of connection was used for the present spectral analysis experiments. In this case the transfer function remains close to unity throughout most of the frequency range and only rises to 1.2 above 110 Hz.

As a consequence of these tests it was considered that the present measurements of R.M.S. pressures, pressure spectra and also extreme values for all but the shortest (0.2 sec) averaging times, could be accepted with reasonable confidence.

3.2 Measurement of R.M.S. Pressure Coefficients

The mean and R.M.S. pressure coefficients were evaluated at the same time by taking the first and second moments respectively of a probability distribution. This was generated and displayed by the computer in on-line mode using 128 intervals on the pressure scale into which 32768 instantaneous sample values were distributed as they were collected. The sampling interval was 3.1 ms and a 100 Hz low-pass filter was used. At 5 m/s nominal tunnel speed, the filter limited the full-scale equivalent frequency to about 4 Hz in the context of B.R.E. run A 32 (14.3 m/s).

For strict similarity between the wind-tunnel, and full-scale experiments the sampling interval and the total sample count should have been chosen to correspond in the same way to the 32 Hz, 17 minute full scale condition. Owing to an error, the correct choice was not made, but fortunately, in the context of a probability analysis in a stationary wind tunnel experiment, this does not matter.

- 17 -

3.3 Measurement of Power Spectral Density

The presentation of spectral information in large quantities was not regarded as an important objective of the present project. Thus, the criterion adopted in selecting pressure tappings for spectral analysis was simply the expectation that a power-spectral density plot might yeild some extra insight into the flow conditions in cases where other measurements had revealed unusual features.

The computational technique for producing pressure spectra was of course the same as that used for the velocity spectra in Part 1. It is based upon a standard Fast Fourier Transform routine modified by Greenway (1978 b) to incorporate an optional number of applications of the Hanning smoothing routine.

At this stage the transformation is not performed on-line. However, the data collection part of the programme is written to run interactively to help the operator to choose correctly the necessary parameters for the subsequent operation of the Fast Fourier Transform.

A fixed number (28 x 2048) of data values is collected for each case and stored on a disc file. The sampling interval for these is selected by the programme to give a sampling frequency of 2.4 times the upper frequency limit specified by the operator. This is 1.2 times the Nyquist frequency. Four alternative options are then offered (2048, 1024, 512 or 256) for the number of consecutive data values to be included in a single Fourier transform into the frequency domain. With the sampling interval already selected, this second choice fixes the lowest frequency covered by the spectrum. It also sets the integer number (28, 56, 112 or 224) for the number of independent repetitions of the transform and the number of individual spectra which will be averaged to yield the final result.

- 18 -

Table 1 lists the holes for which spectra were obtained. Some of these are reproduced to aid the discussion in this report. The remainder are available from the authors on request.

TABLE 1

Complete Index of Wind Tunnel Pressure Spectra

Except where otherwise stated the following conditions apply to all spectra:

$= 265^{\circ}$ (BRE A7/A32)
= 5.0 m/s + 0.1 at 0.133 m (10 m)
= 2048
= 28
= 5
= 0.122 Hz
= 0.244 Hz
= 125 Hz
= 100 Hz

TEST HOUSE		ESTATE HOUSES	
Hole Code	S.P.C. File No.	Hole Code	S.P.C. File No.
- WRIA	. 986	76WW2	022
WR1E	987	76WR2	023
WR 3A	985	76ER2	024
WR3C	988	76EW1	025
WR4A	989	58WW2	031
WR4E	990	58WR2	032
ER1A	999	58ER2	033
11	010	58EW1	034
11.	013	5 11	035
11	014 *	11	036 +
ERIB	992	47WW2	037
	015 *	47WR2	038
ER2A	993	47ER2	039
ER3A	994	47EW1	040
3WW3	995	33WW2	041
11	017	33WR2	042
3WW4	996	33ER2	043
3WW5	997	33EW1	044
5WW3	998	70SR2A	026
5WW7	999	70SR3A	027
3EW1	001	11	030 +
3EW3	002 -	70SR3B	028
11	018	11	029 +
5EW1	003	83SG2	019
3SW I	004	11	020
3SW2	005	82NG1B	021
3SW3	006		
3SW4	007		
3NW I	008		
3NW 1	016 *		
3NW2	009		
	· ·		
Exceptions	* High pass filter fr	requency 0.05 Hz	•
	t Frequency range	0.031 Hz to 31.5	25 Hz.

Т	Frequency range Filter pass band	0.031 Hz to 31.25 Hz.
+	Frequency range Filter pass band	0.244 Hz to 250 Hz. 0.488 Hz to 200 Hz.

3.4 Measurement of Extreme Pressures

As the discussion in section 2 suggests, the approach to extreme value estimation in the present work represents an advance upon the methods previously applied to the Aylesbury site. Other investigators, constrained by limitations on tunnel running time, have felt obliged to be content with a determination of high quantile values from probability distributions which may not be adequately defined for the purpose. Alternatively, they have accepted, as deterministic single-sample extremes, the highest observed values from their experiments, (e.g. Eaton & Mayne 1974, Bray 1977, Apperley 1978).

However, the present authors, sharing the growing conviction of Cook and Mayne (1928) that a more positive approach is required despite despite the cost, have devoted a large amount of tunnel time in the present project to the formally correct assessment of extreme pressure coefficients in terms of their estimated probability functions.

The method, advocated by Gumbel (1954) has been subsequently refined as an efficient numerical procedure by Lieblein (1974, 1975) for cases involving Fisher-Tippett Type 1 distributions. A fairly detailed and elementary examination of the two methods was carried out (Greenway & Wood 1978) and as a result it was decided to incorporate the Lieblein algorithm into an extreme value analysis programme designed to estimate the mode and the dispersion (see Fig. 3) of the extreme value probability functions associated with each surface pressure tapping.

In order to satisfy the similarity requirements (eq. 1) in respect of the B.R.E. full scale data, the extreme value analysis programme incorporated a routine to sample first the pitot and static holes of a pitot-static tube set at the anemometer mast site. By means of a simple summation averaging procedure, a nominal value was obtained for the mean dynamic pressure and

- 21 -

ence of the nominal mean velocity V. This value was then used by the rogramme to select a suitable sampling interval and observation time to prrespond to the 1/32 second interval and 17 minute period of the associated ull scale trial.

The calculation of equivalent times or frequencies involves a knowledge of the full scale nominal wind speed for each case* and also the assumption that not only the ratio of the physical length scales, but also the ratio of the turbulence length scales was 1/75. (See eq. 1).

The results of this procedure may be seen in the data tables of Appendix A. In both the full scale (B.R.E.) experiments and the present wind tunnel tests, the pressures used were not instantaneous but short-term averages over 16, 4, 2 and sometimes 0.2 seconds. This was achieved by averaging a finite number of data samples. This technique, and its relationship to the equivalent use of an analogue filter is discussed in detail by Greenway in Appendix B.

Having determined the necessary operating parameters, the programme was left to control the remainder of the experiment automatically. After selecting each new pressure tapping through the Scanivalve, the programme caused sixteen repetitions of the basic trial, producing sixteen highest values and sixteen lowest values for the pressure coefficient for each averaging time. The short term averages were calculated on a running basis which produced a new average value for each new data sample. Thus each extreme value finally selected was the largest (or smallest) of a set of values almost equal in number to the total number of samples in the trial.

The final data reduction, and the tabulations assembled in Appendix A were carried out after the completion of the experiment by a separate programme, using the Lieblein (1975) algorithm whose choice has been discussed above.

- 22 -

^{*} In one case, two full scale trials (A7 and A32) having different wind speeds, both contribute to the same data set. The model equivalence in this case was chosen arbitrarily and based upon the A32 wind speed.

After rearranging the 16 samples in descending order of magnitude (ascending order for lowest extremes) Lieblein's estimator is used to assign to each sample a probability that the value of that sample will not be surpassed in a single future trial.

By plotting these sample values with their estimated probabilities, it is possible to test whether the data is a good fit to the Fisher-Tippett Type 1 form (equations 8 and 9). Figure 5 shows such a test plot taken from Greenway and Wood (1978) which also compares the results of the Lieblein method used here with the older, approximate method of Gumbel.

Not all the data was tested in this way. Instead the tabulated values for the mode and dispersion were simply accepted. They are listed in full in Appendix A.

3.5 Variable Roof-Pitch Experiment

The measurements described above were first carried out on the test house and on the estate houses for the A7/A32 wind direction $(\Theta=265^{\circ})$. This was to complete the set of experiments which began with the mean pressure measurement of Part 1.

Following the completion of the A7/A32 tests, a new model of the test house was constructed. This included the roof overhang extension added by Eaton and Mayne (1974) and provided for four interchangeable roofs with pitch angles of 5° , 10° , 15° and $22\frac{1}{2}^{\circ}$.

Using this model, a further complete set of measurements was made for wind directions of 233° (and in one case 248°) corresponding to the full-scale conditions found in runs A38-C (5° Pitch), A38-B (10°), A38-A (15°) and A38-G ($22\frac{1}{2}^{\circ}$). The original layout of the estate model, described in Part 1, placed the test house rather close to the edge of the turntable. Consequently, on turning to the A38 wind direction it was found to approach the tunnel wall.

- 23 -

Figure 5

Comparison of Gumbel and B.L.U.E. extreme probability distributions for 16 sample values relating to hole 5WW5 A

To avoid any wall proximity problems, the whole model was remounted for these tests in order to place the test house near the turntable centre. This left room for the simulated hedges and

Figure 6a LAYOUT OF VARIABLE ROOF PITCH MODEL LOOKING UPSTREAM.

Figure 6b LAYOUT OF VARIABLE ROOF PITCH MODEL LOOKING DOWNSTREAM.

4. TABULATED DATA

The data presented in this chapter is arranged as far as possible to facilitate direct comparisons not only with the B.R.E. full scale data, but also with the published results of other wind tunnel studies. Listings of mean pressure coefficients are included for completeness although these have been presented and discussed already for the A7/A32 case in Part 1. The amount of material is large. Therefore an index table is provided below in an attempt to simplify the task of searching for particular results.

The basis of comparison of the mean pressure coefficient data has already been discussed in Part 1 and reference should be made to chapter 7 of that report. The Oxford data listed here differs from that in Part 1 Tables 2 and 3 in that the estimated pressure gradient corrections for Part 1 Table 5 have been applied.

The R.M.S. pressure coefficient data is compared directly without adjustment.

In order to compare extreme value data it has to be recognised that the currently published B.R.E. data and also the data from the University of Western Ontario (U.W.O.) contains single sample extremes only. The B.R.E. data relates to a 17 minute observation period, while the U.W.O. data was sampled over a longer equivalent time. A comparison with the present mode values is possible of course, but it was felt that a more obviously cautious comparison is made by quoting the Oxford data in the form of upper and lower bounds deferred by u + 4.60 b and u - 1.527 b respectively. A description using both the mode and the dispersion in this way gives the 0.99 and 0.01 quantiles of the <u>extreme value probability function</u>. Thus it is to be expected (with 98% probability) that any single sample extreme recorded under

- 25 -

statistically similar conditions (which the U.W.O. data is not), should fall between the two bounds.

The range of values permitted by this approach is wide and serves to emphasise that any conclusions drawn from a comparison of extreme values must be highly tentative.

Bearing in mind that extreme pressures, like mean pressures, are datum-dependant, and recognising that great difficulty has already been experienced (see Part I) in assessing and eliminating correctly the various datum errors, absolute values of extreme pressure coefficients have not Instead the difference between the extreme and the mean been compared. has been used in every case, thus eliminating datum error problems. The B.R.E. data had to be adjusted here because of the different dynamic pressure values used in forming the two coefficients. (Eaton and Mayne 1974). Also, since an extreme value is merely part of the general description of a probability function, it was decided to harmonise the present presentation with the classical dimensionless description of probability functions (e.g. Gaussian) and scale the values in relation to the standard deviation. Thus the use is justified of a peak pressure factor described in terms of a reduced mode u' and a reduced dispersion b' defined on the tabulation sheets by

 $u' = (u - \mu) / \sigma$ $b' = b / \sigma$

This reduced coefficient formulation corresponds exactly with that used by Bray (1977) to produce the Bristol single sample extreme data so that his tabulations could be used directly. The corresponding reduced values for the U.W.O. extremes were computed by the present values from the data published by Apperley et al (1978). In this context it should be mentioned that the
U.W.O. pressure tappings did not correspond to the B.R.E. transducer positions and some rough interpolation 'by eye' has been carried out.

Extreme values are presented and compared only for 2-second averaged pressures. Unreduced mode and dispersion values for averaging times of 0.2, 4 and 16 seconds are included in Appendix A. The effect of averaging time and also of observation time is discussed further in Part III of this report.

Page	CONTENTS	SOURCE OF DATA INCLUDED							
rage	CONTENTS	B.R.E.	OXFORD	BRISTOL	U.W.O.	J.C.U.N.Q			
	ESTATE HOUSES $\Theta = 265^{\circ}$				(Estimated Interpolation)				
30 31 32	Mean and R.M.S. Lowest extremes Highest extremes	Α7	x x x	x					
33	Peak pressure factors	A7	x	x					
	TEST HOUSE WALLS $\Theta = 265^{\circ}$, Pitch $22\frac{1}{2}^{\circ}$								
34 35	Mean and R.M.S. Lowest extremes	A32	x x		x	x			
36 37	Highest extremes Peak pressure factors	A32	x x		x				
	TEST HOUSE ROOF $\Theta = 265^{\circ}$, Pitch $22\frac{1}{2}^{\circ}$								
38 39	Mean and R.M.S. Lowest extremes	A32	x x		x				
40 41	Highest extremes Peak pressure factors	A32	x x		x				
	TEST HOUSE WALLS 0=233 ⁰ , Variable Pitch								
42 43 44	Mean and R.M.S. 5° """ 10° """ 15°	A38-C A38-B A38-A	x x x		x				
45	$22\frac{1}{2}$ (248°)	A38-G	x		x				
46 47	Lowest extremes 5°		x x						
48 49	15° $22\frac{1}{2}^{\circ}$ (248°)		x x						
50	" $22\frac{1}{2}^{\circ}$ (238°)		x						

CONTENTS LIST FOR COMPARATIVE RESULTS TABLES - TABLE 2

/continued

- 28

1

1

Table 2 (cont'd.)

Decomposition	SOURCE OF DATA INCLUDED					
Page CONTENTS	B.R.E.	OXFORD	BRISTOL	U.W.O.	J.C.U.N.Q.	
TEST HOUSE WALLS 0=233 [°] , Variable Pitch						
51Highest extremes 5° 52""53""54" $22\frac{1}{2}^{\circ}$ 55""		x x x x x x				
56Peak pressure factors 5° 57""58""59""22 $\frac{1}{2}^{\circ}$ (248°)	A38-C A38-B A38-A A38-G	x x x		x		
TEST HOUSE ROOF 0=233°, Variable Pitch						
60Mean and R.M.S. 5° 61""" 10° 62""" 15° 63""" $22\frac{1}{2}^{\circ}$ (248°)	A38-C A38-B A38-A A38-G	x x x x		x x		
64 Lowest extremes 5° 65 "" 66 "" 67 " $22\frac{1}{2}^{\circ}$ 68 "" $22\frac{1}{2}^{\circ}$ (248°) 68 "		x x x x x x				
69Highest extremes 5° 70""71" 10° 71" 15° 72""22 $\frac{1}{2}^{\circ}$ (248°)73"		x x x x x x				
74Peak pressure factors 5° 75""76""77""22 $\frac{1}{2}^{\circ}$ (248°)	A38-C A38-B A38-A A38-G	x x x x	•	x x		

- 29 -

QUANTITY RECORDED

WIND ANELE O 265 ° BRE. EQUIVALENT RUN A7

		EMN PRESSU	RE COEFFIC	IENTS	<u>R.M.S.</u>	PRESSURE	COEFFICIL	ENT.
•	B.R.E	, OXFOR D	BRISTOL		B.R.E.	OXFORD	BRISTOL	İ
•	A7	(corrected for pressure pressure	Srom Parr I Table 2A		A7			
33EW1	-0.12	-0.34	-0.33		0.10	0.11	0.13	
33ERI	+0.13	-0.54	-0.43		0.21	0.18	0.17	
33ER 2	-0.03	-0.56	-0.45	1	0.26	0.20	0.19	
33WR 2	-0.07	-0.15	-0.35		0.14	0.18	0.14	
33WRI	+0.24	-0.12	+0.05		0.20	0.24	0.18	
33WW2	+0.21	-0.02	0.00		0.20	0.22	0.23	
33441	+0.24	-0.03	-0.05		0.17	0.21	0.21	.
47 EW I	-0.10	-0.32	-0.30		0.08	0.11	0.13	
47 ER 1	-0.13	-0.49	-0.45		0.12	0.17	0.16	
47 ER2	-0.12	-0.50	-0.45		0.12	0.17	0.16	1
47 WR2	+0.07	-0.19	-0.35		0.00	015	0.14	
47 WRI	+0.08	-0.21	-0.15		0.03	0.75	0.17	1
47 WW2	+0.15	+0.02	.0.00	r.	6.14	0.21	0.11	
47 1111	+0.00	-0.02	-0.05	:		0.22		1
	+0.09		-0.03	•	0.14	. 0.18	0.19	
58 EW1	+ 0.09	-0.25	-0-30		0.10	0.10	0.14	
58500	-0.00	-0.4.5	-0.40		0.13	0.17	0.16	
50 LA/174	10.14	-0.22	-0.45		0.16	0.19	0.18	
J8 WAL	+0.13	-0.22	-0.15		0.17	0.17	0.19	
30 WK1	+0.10	-0.23	-0.35		0.17	0.23	0.20	
raini	-0.01	-0.33	-0.43		0.03	0.23	0.20	
22 001	+0.15	-0.54	-0.40	•	0.17	0.17	0.18	
70 SR 2 A	-0.36	-0.76	-0.75		0.28	0.27	0.26	
70 NIR I	-0.23	-0.84	-0.71		0.27	0.26	0.26	
70 SRIA	-0.50	-1.26	-0.9.7		0.29	0.42	0.30	
70 S R 3 A	-0.54	-1.10	-1.01		0.42	0.31	0.30	
70 N R 2A		-1.05			х.	0.27		
70 S R 2 B	+0.43	-0.34	-0.63		0.15	0.11	0.18	[
70 SRIB	-0.23	-0.44	-0.67		0.16	0.16	0.18	
70 SR 3 B	+0.07	-0.46	-0.15		0.07	0.18	0.30	
70 N R 2 B		-0.55				0.19	0.28	
70 WG I	+0.80	+0.45	+0.13		0.36	0.35	0.15	
76 EW I	-0.13	-0.45	-0.50		0.14	0.13	0.13	
76 ER 1	-0.07	-0.56	-0.50		0.17	0.16	0.15	
76 ER 2	+0.02	-0.55	-0.23		0.16	0.14	0.16	
76 WR 2	-0.06	-0.27	-0.33		0.10	0.13	0.16	
76 WRI		-0.49				0.26	0.10	
76 WU2	+0.54	10.23	+0.05		0 26	0.27	0.25	
76 W W I		+0.15	10 00		0.20	1	0.23	
82 NG IA	-0.05	-0.54	-0.55		013	0.13	0.13	
82 NG 2	-0.03	-0.58	-0.60		0.15	0.14	0.12	
82 NG 15	+0.07	-0.74	-0.75		0.37	0.29	0.24	
83 SEIR	-0.17	-0.61	-0.65		A 14			
81 (2.1	0.71	-0.61	-0.65		0.12	0.14	0.12	
83 SGIA	-0.59	-0.89	-0.95		D.19 0.26	0.19	0.15	
MANHOLE	DATUM	DATUM	DATUM		DATUM	DATUM		
CII IIVI INM (TATIA	ł		Sau Part 1					
ion siaik ion pitot								,

- 31 -

(2 sac Avarage - 17 min. observation)

WUNTITY RECORDED & LOWEST EXTREME WIND ANGLE 265° BRE. EQUIVALENT RUN A7

·	FROM PART I	CURRENT	DATA FROM	TABLES :-	REDUCE	O MODE	RANGE OF	EXTREME
	Mean Cr	Cr Variance	Mode	Disnersion	AND DIS	PERSION	$\frac{DISTRIR}{U'+4}$ (con d'	UTION ULLEDTAL
	<u></u>				$u' = \frac{u - u}{c}$	$d' = \frac{d}{d}$	u + 7.000 a	u -1.527 a
	μ	6	<u> </u>	d	6		(F = 0.99)	(F=0.01)
33EW1	-0.470 * 4	·· 0.110	~0.888	-0.057	-3.79	-0.518	-6.17	-3.00
1 3 3 ERI	-0.666 ()	0.182	-1.411	-0.109	-4.09	-0.599	-6.85	-3.18
33ER2	-0.683	0.197	-1.570	-0.109	-4.51	-0.553	-7.06	-3.67
33682	-0.280	0.178	-0.754	-0.181	-2.67	-1.017	-7.35	-1.12
33WW2	-0.149	0.241	-0.641	-0.050	-2.66	-0.352	-4.19	-2.15.
[33441	-0.160	0.208	-0.685	-0.101	-2.52	-0.486	-4.75	-1.78
[· ·		. –		, - , - ,	2.02			
47 EW 1	-0.423	0.109	-0.866	-0.080	-4.07	-0.734	-7.45	-2.95
47 ER1	-0.594	0.169	-1.376	-0.118	-4.64	-0.698	-7.85	-3.57
47 ER2	-0.596	0.172	-1.344	-0.153	-4.35	-0.890	-8.44	-2.99
47 WRZ	-0.291	0.152	-0.774	-0.049	-3.18	-0.322	-4.66	-2.69
A71/1/2	-0.309	0.213	-0.965	-0.10B	-3.08	-0.507	-5.41	-2.31
47 4111	-0.082	0.219	-0.502	-0.046	-1.92	-0.210	-2.89	-1.60
FT WW	-0.723	0.778	-0.013	-0.039	-2.21	-0.219	-3.22	-1.88 -
[58 EW1	-0.305	0.099	-0.607	-0:04-9	-3.07	- 0.495'	-5.35	-2.31
58 ER I	-0.441	0.166	-1.115	-0.187	-4.06	- 1.127	-9.24	-2.34
_58 ER 2	-0.501	0.195	-1.288	-0.148	-4.04	-0.759	-7.53	-2.88
58 WR2	-0.278	0.172	-0.702	-0.044	-2.47	-0.256	-3.65	-2.08
58 WR1	-0.288	0.232	-0.764	-0.074	-2.05	-0.319	-3.52	-1.56 _
- 28 WWZ	-0:387	0.228	-0.953	-0.089	-2.48	-0.390	-4.73	-1.88 _
58 001	-0. 395	0.169	-0.855	-0.080	-2.72	-0.473	-4.90	-2.00
[70 SR 2 A	-0.785	0.270	-1.812	-0.186	-3.81	-0.689	-6.98	-2.76
70 NR 1	-0.867	0.260	-1.756	-0.158	-3.42	-0.608	-6.22	-2.49
70 SRIA	-1.283	0.423	-2.693	-0.308	-3.33	-0.728	-6.68	-2.22
70 S R 3 A	-1.12.7	0.312	-2.590	-0.297	-4.69	-0.952	-9.07	-3.22
70 NR 2A	-1.080	0.270					1	-
70 S R 2 B	-0.371	0.112	-0.855	-0.084	-4.31	-0.750	-7.76	-3.17
70 5 1 7 0	-0.462	0.155	-1.242	-0.191	-5.03	-1.232	-10.70	-3.15
70 3 8 3 8	-0.489	0.180	-1.154	0.168	-3.69	-0.933	-7.98	-2.26 -
70 461	-0.5//	0.181	-0.200	-0.057	1.01	- 1 <i>6</i> 2	267	1 / 7
	+1.715		7.250	0.037	-1,92	-0.165	-2.07	-1.07
[76 EW 1	-0.479	0.128	e e		-	·		-
76 ER 1	-0.584	0.164	-1:234	'-0.139''	-3.97	-0.848	-7.87	-2.68
- 76 ER 2	-0.580	0.139	-1.188	-0.154	-4.36	- 1.108	-9.46	-2.67
76 WR 2	-0.301	0.131	-0.744	-0.077	-3.39	-0.588	-6.09	-2.49
_76 W K I	-0.517	0.260			:			
	+0.200	0.272	-0.299	-0.039	-1.83	-0.143	-2.49	-1.61
	+0.124	0.133		,				-
82 NG IA	-0.569	0.133	-1.041	-0.069	-3.54	-0.519	-5.93	-2.75 -
82 NG 2	-0.607	0.163	-1.181	-0.120	-3.53	-0.736	-6.92	-2.41
82 NG 115	-0.771	0.286	-1.570	-0.090	-2.79	-0.315	-4.24	-2.31
siccia	-0670	0.140	1074			0 70 1		•
81 54 2	- 0.038	0.140	-1.2/5	-0.101	-4.55	-0.121	-1.8/	-2.42
81 SG IA	-0.042	0715	-1.402	-0.098	-3.74	-0.308	-0.68	-3.11
	-0.010	2.212	-1.807	-0.087	-3.02	-0.25/	-4.00	-2.03
MANHOLE	DATUM	DATUM	DATUM	DATUM				•
10 n PITOT			· · ·				· · ·	
UOM STATK								
30 M PITOT					,			
SUM STATIC	; ;			·				
	F :	1	Ę	l ,	1	l ¹	l	

WUANTITY RECORDED - HIGHEST EXTREME C. WIND ANGLE 265° BRE. EQUIVALENT RUN A7.

	FROM PARTI	CURRENT	DATA FROM	TABLES:-	REDUCED AND DISP	MODE	RANGE OF	EXTREME
	Mean Cr	Co Variance	Mode	Disporsion	"- U-M	, d	u'+4.600 d'	u'-1.527 d'
	M	6	u	d	u= 6	$d = \frac{1}{6}$	(F =0.99)	(F=0.01)
33EWI	-0.470	0.110	-0.127	0.050	3.11	0.455	5.20	2.42
33ERI	-0.666	0.182	-0.261	0.026	2.22	0.143	2.88	2.00
33ER2	-0.683	0.197	-0.279	0.042	2.06	0.213	3.04	1.73
33WR2	-0.280	0.178	+0.440	0.080	4.05	0.449	6.12	3.36
JJWRI	-0.244	0.241	+0.728	0.152	4.04	0.631	6.94	3.08
33002	-0.149	0.226	+0.905	0.121	4.67	0.535	7.13	3.85
	-0.160	0.208	+0.798	0.080	4.60	0.385	6.37	4.01
47 EW 1	-0.423	0.109	-0.095	0.030	3.01	D.275	4.28	2.59
47ERI	-0.594	0.169	-0.228	0.035	2.17	0.207	3.12	1.85
47 ER2	-0.596	0.172	-0.220	0.025	2.18	0.145	2.85	1.96
47.WR2	-0.291	0.152	+0.2.56	0.116	3.61	0.763	7.12	2.45
47 WR1	-0.309	0.213	+0.475	0.101	3.68	0.474	5.86	2.96
47 WW2	-0.082	0.219	+0.981	0.195	4.86	0.890	8.96	3.50
47 WWI	-0.123	0.178	+0.674	0.135	4.49	·D.758	7.98	3.33
58 EW 1	-0.305	0.099	-0.023	0.072	2.86	0.323	4 3.5	237
58 ER 1	-0.441	0.166	-0.096	0.016	2.08	0.095	2.52	1.93
58 ER 2	-0.501	0.195	-0.199	0.033	1.55	0.169	2.33	1.29
58 WR2	-0.278	0.172	+0.327	0.070	3.52	0.407	5.39	2.90
58 WRI	-0.288	0.232	+0.465	0.141	3.24	0.608	6.04	2.31
_58 W W 2	-0.387	0.228	+0.350	0.147	3.23	0.645	6.20	2.25
58 W V I	-0.395	0.169	+0.150	0.115	3.22	0.680	6.35	2.18
70 SR 2 A	-0.785	0.270	-0.174	0.047	2.26	0 174	3.06	199 -
[70 NIR]	-0.867	0.260	-0.314	0.054	2.13	0.208	3.08	1.81
70 SRIA	-1.283	0.423	-0.346	0.080	2.21	0.189	3.08	1.92
70 S R 3 A	-1.127	0.312	-0.533	0.042	1.91	0.135	2.53	1.70
70 NR 2A	-1.080	0.270						
70 S R 2 B	-0.371	0.112	-0.071	0.026	2.67	0.232	3.74	2.3 <u>2</u>
TOSRIB	-0.462	0.155	-0.114	0.023	2.24	0.148	2.92	2.01
70 SR 3 B	-0.489	0.180	+0.004	. 0.055	2.73	0.306	4.14	2.26
10 N K 2 IS	-0.577	0.187			-			
10 0 4 1	+0.419	0.349	+1.734	0.187	3.77	0.536	6.24	2.95
[76 EW 1	-0.479	0.128						-
76 ER 1	-0.584	0.164	-0.268	0.018	1.93	0.110	2.44	1.76
76 ER 2	-0.580	0.139	-0.253	0.032	2.35	0.230	3.41	2.00
76 WR 2	-0.301	0.131	+0.051	0.042	2.70	0.321	4.18	2.21
-76 WRI	-0.517	0.260				•		-
76 WU2	+0.200	0.272	+1.110	0.204	3.34	0.750	6.79	2.20
10 001	+0.124	0.195				ł		-
82 NG IA	-0.569	0./33	-0.244	0.027	2.44	0.203	3.37	2.13
82 NG 2	-0.607	0.163	-0.251	0.036	2.19	0.221	3.21	1.85
82 NG 13	-0.771	0.286	+0.042	0.141	2.84	0.493	5.11	2.09
83 SEIR	-0120	0.120	-0 10 0	0.074	211	0 24 2	7 7 7 7	
83 56 2	-0 (1)	0.140	-0.150	0.034	2.11	0.245	3.23	1.14
83 SGIA	-0.0+1	0115	-0.239	0.04/	1.39	0 1/7	2.11	1.62.
	9.918	0.010	2.11.2	U.U.E T	2.00	U.267	۵./۵	2.14
MANHOLE	DATUM	DATUM	DATUM	DATUM				
ION PITOT					а.		· · ·	
JON STATE								
SOM PITOT								
SOM STATIC								• • • • •
]	l	1	1

رر .

QUANTITY RECORDED PEAK PRESSURE FACTORS WIND ANELE @ 265 0 (2 sec. Average . IT min of servation)

BRE. EQUIVALENT RUN A7.

5	LOWE	ST EXT	REMES		н	IGHIEST	EXTREME.	<u>ſ</u>
	DXF	DRD	B.R.E	BRISTOL	<u>ÓKFO</u>	RD	B.R.E	BRISTOL
	F = 0.99	1==0.01	Single Sample	Single Sample	F=0.01	F=0.99	single Samola	Single Sample
33EW 33ER 33ER2 33WR2 33WR1 33WW2 33WW1	-6.17 -6.85 -7.06	-3.00 -3.18 -3.67	-0.5 -5.4 -5.0	-2.7 -3.6 -5.1 -3.4	6.12 6.94 7.13 6.37	3.36 3.08 3.85 4.01	2.1 4.0 4.1 3.5	4 · 2 4 · 4 4 · 1
47 EW1 47 ER1 47 ER2 47 WR2 47 WR1 47 WW2 47 WW1	-7.45 -7.85 -8.44	-2.95 -3.57 -2.99	-4.5 -2.7 -2.5	-2.7 -3.6 -4.2 -2.7_	7.12 5.86 8.96 7.98	2.45 2.96 3.50 .3.33	3.2 2.8 3.6. 4.6	3.0 3.7 4.5
58 EW 1 58 ER 1 58 ER 2 58 WR 2 58 WR 1 58 WW 2 58 WW 2 58 WW 1	-9.24 -7.53	-2.34 -2.88	- 3. 8 - 3. 5	-2:3 -3.5 -4.2 -3.0 -2.8 -3.4 -2.6	4.35 5.39 6.04 6.20 6.35	2.37 2.90 2.31 2.25 2.18	2.6 3.2 3.8 3.8 3.9	-
70 SR 2A 70 NR 1 70 SR 1A 70 SR 1A 70 SR 3A 70 NR 2A	-6.98 -6.22 -6.68 -9.07	-2.76 -2.49 -2.22 -3.22	-4.1 -2.2 -3.3 -3.4	-3.3 -2.6 -2.4 -3.1				-
70 S R 2 B 70 S R 1 B 70 S R 3 B 70 S R 3 B 70 N R 2 B 70 W G 1	- 10.70 -7.98	-3.15 -2.26	-3.2. -2.4	-3.2 -3.0* -2.6	3.74 6.42	2.32 2.95	[2.0 ⁻⁷ 3.0	2.8
76 EW 1 76 ER 1 76 ER 2 76 WR 2 76 WR 1 76 W 2	-7.87 -6.09	-2.68 -2.49	-2.7 -3.4 -2.2	-2.5 -3.5 -3.2 -2.3	3.41 6.79	2.00	[4.5] 4.0	3.8
76 W W I 82 NG IA 82 NG 2 82 NG 1B	-5.93 -4.24	-2.75 -2.31	-2.7 - 5 -3.2	-2.5 -2.7 -2.3	3.21	, 1.85	[3.7]	
83 SG IB 83 SG 2 83 SG 1A	-7.87 -6.28 -4.20	-3.45 -3.17 -2.63	-2.7 -4.4 -3.6	-2.7 -3.1 -2.2			Auoroye of 14 point; U-0.75d	
MANHOLE ION PITOT ION STATIC 30N PITOT 30N STATIC			Aue of 21 noint, U - 0.50 d					

QUANTITY RECORDED

1

MEAN & R.MS CA COMPARISON

WIND ANGLE 265 . ROOF PITCH 222 BRE. RUN A32

	MEAN	PRESSURE C	OEFFICIENT.	<u>s_</u>	<u>R.M.</u>	S. PRESSU	RE COEFFIC	IENTS
	B.R.E	OXFORD	U.W.Q	J.C. U. N. Q	B.R.E	OXFORD	U. W. O	• •
	A7 /A 32	(corrected) ser reas. grad.	h/3. = 3200 1/500	50 100	A7 / A 32		h/1 = 3200	
3WW 1 2 3 4 5 6	0.09 0.21 0.24 0.29 0.26 0.29 0.21 0.29 0.21 0.19 0.06	0.16 0.33 0.38 0.38 0.40 0.33	0:20 0:40 0:42 0:47 0:47 0:38	0.40 - 0.52 - 0.57 0.53 0.61 0.58 0.60 0.66 0.46 -	0.28 0.26 0.28 0.28	0.28 0.28 0.29 0.28 0.28 0.30 0.31	0.10 0.30 0.30 0.30 0.30 0.30 0.30	` .
5 WW 1 2 3 4 5 6 7	09 0.34 0.51 27 0.50 0.54 0.51 0.46 12 0.25	0.18 0.30 0.43 0.46 0.47 0.48 0.48 0.48	0.21 0.32 0.45 0.47 0.47 0.47 0.47 0.47	 0.36 - 0.64 - 0.68 0.61 0.69 0.66 0.71 0.73 0.70 0.70	0.23	0.33 0.34 0.33 0.34 0.35 0.36	0.30 0.30 0.32 0.30 0.32 0.34 0.34	
3EW 1 2 3 4 5	- 48 - 43 - 48 - 43 - 46 - 47 - 54 - 53	-0.39 -0.43 -0.39 -0.39 -0.39	- 0 . 42 - 0 . 38 - 0 . 42	$\begin{array}{c cccc} -0.57 & 0.57 \\ -0.31 & - \\ -0.32 & - \\ -0.31 & - \\ -0.38 & - \end{array}$	0.29 0.22 0.19 0.19 0.19	0.16 0.17 0.15 0.15 0.18	0.30 0.17 0.13 0.17	-
5 E W 1 2 3 4 5	51 137 139 1-42 1-47 1-52	-0.40 -0.42 -0.40 -0.42 -0.46	-0.42 -0.42 -0.42 -0.45 -0.47	-0.31 -0.36 -0.33 -0.39 -0.30 -0.34 -0.39 -0.32 -	0.21 0.15 0.15 0.16 - 0.16 0.19	0.17 0.16 0.15 0.16 0.17	0.17 0.17 0.15 0.17 0.17	-
35 W 1 2 3 4	5849 7073 6051 4928	-0.82 -0.70 -0.45 -0.34	-0.85 -0.34 -0.47	-0.67 -0.73 -0.67 - -0.35 -0.41 -0.22 -0.38	0.27 0.33 0.30 0.37 0.24 0.27 0.23 0.16	0.38 0.37 0.31 0.18	0.38 0.30 0.17	-
5 S W 1 2 3 4	78 74 	-0·72 -0·73 -0·41 -0·33	-0.68 -0.47 -0.51	-0.76 -0.74 -0.86 -0.28 -0.19	0.43 0.45	0.33 0.41 0.31 0.20	0.34 0.38 0.21	
3 NW 1 2	0.0666	-0.63 -0.68	-0.64 -1.02	-0.61 -0.55	0.24 10.26 0.37 10.30	0.26 0.28	0.30 0.30	
5 NW 1 2		-0.64 -0.73	-0.76 +0.72	-0.62 -0.80		0.27 0.31	0.30 0.25	
MAN HOLE WA PITOT	DATUM	DATUM			DATUM	PATUM		
30m PITOT 30m STATIC		•						

QUANTITY RECORDED - LOWEST EXTREME CP WIND ANGLE 265 . ROOF PITCH 22.5 . BRE. RUN. A32 (2. Sac. Avaroya - 17 Min observation)

	FROM PART I	CURRENT	DATA FROM	TABLES :-	REDUCED	MODE	RANGE OF	EXTREME
	Mean Cr	Cr Varianco	Mode	Dismersion	L-M	u d	u'+ 4.600 d'	11'-1.527 d'
	M	6	u	d	$u = \frac{1}{6}$	$a = \frac{1}{6}$	(I== 0.99)	'(F=0.01)
3WW 1 2 3 4 5 6 7	+0.224 +0.397 +0.444 +0.450 +0.470 +0.401 +0.247	0.285 0.283 0.287 0.282 0.301 0.308	-0.283 -0.164 -0.098 -0.102 -0.111 -0.214 -0.537	-0.054 -0.050 -0.047 -0.048 -0.063 -0.087 -0.088	-1.78 -1.98 -1.89 -1.96 -1.93 -1.93	-0.189 -0.177 -0.164 -0.170 -0.209 -0.282	-2.65 -2.79 -2.64 -2.74 -2.89 -3.29	-1.49 -1.71 -1.64 -1.70 -1.61 -1.56
5 WW 1 2 3 4 5 6 7	+0.367 +0.496 +0.527 +0.542 +0.551 +0.551 +0.306	0.33/ 0.344 0.327 0.339 0.353 0.363	-0.230 -0.128 -0.106 -0.089 -0.101 -0.133 -0.397	-0.072 -0.068 -0.075 -0.061 -0.063 -0.060 -0.078	-1.80 -1.82 -1.94 -1.86 -1.85 -1.89	-0.218 -0.198 -0.229 -0.180 -0.178 -0.165	-2.80 -2.73 -3.00 -2.69 -2.67 -2.65	-1.47 -1.52 -1.59 -1.59 -1.58 -1.64
3EW 1 2 3 4 5	-0.325 -0.357 -0.321 -0.325 -0.365	0.163 0.167 0.153 0.149 0.177	- 0.949 -1.001 -0.922 -0.944 -0.972	-0.103 -6.171 -0.104 -0.068 -0.077	- 3.84 - 3.86 - 3.93 -4.17 -3.43	-0.632 -1.024 -0.680 -0.456 -0.435	-6.75 -8.57 -7.06 -6.27 -5.43	-2.88 -2.30 -2.89 -3.47 -2.77
5 E W 1 2 3 4 5	-0.336 -0.352 -0.330 -0.353 -0.387	0.166 0.165 0.151 0.162 0.174	-0.918 -0.916 !	-0.115 -0.096	-3.51 -3.42	-0.693 -0.582	-6.70 -6.10	-2.4 5 -2.5 3
3 S W 1 2 3 4	-0.751 -0.629 -0.386 -0.272	0.381 0.370 0.305 0.183	-1.657 -1.756 -1.440 -0.989	-0.251 -0.165 -0.153 -0.124	-2.38 -3.04 -3.46 -3.92	-0.659 -0.446 -0.502 -0.678	-5.41 -5.09 -5.77 -7.04	-1.37 -2.36 -2.69 -2.89
55W 1 2 3 4	-0.651 -0.659 -0.342 -0.266	0.334 0.409 0.313 0.200			• •			
3 NW 1 2	-0.565 -0.612	0.261 0.278	-1.483 -1.655	-0.167 -0.232	-3.52 -3.75	-0.640 -0.835	-6.46 -7.59	-2.54 -2.4 9
5 NU 1 2	-0.576 -0.658	0.274 0.306	4	·				
								-
MANHOLE ION PITOT ION STATIC 30M PITOT 30M STATIC			1				;	-

.

.

QUANTITY RECORDED-HIGHEST EXTREME CO WIND ANGLE 265" ROOF PITCH 22.5" BRE. RUN A32 (2 'sec Avarage - 17 Min Observation)

	FROM PANT 1	CURRIENT	DATA FROM	M TANLOS	REDUCE	D MODE	RANGE OF	EXTREME
	Mana Ca	Ca Variance	Mada	0	AND DISI	FRSION	DISTRIC	UTION .
	1132 arr CF	ar varianca	1100.2	101 10 10 10 10 10 10 10 10 10 10 10 10	$\mu' = \frac{\mu - \mu}{\mu}$	$d' = \frac{d}{d}$	u +4.600 d	a'-1.527d'
	Ju .	6	u	d	. 6	6	(F= 0.99)	(F=0.01)
3WW 1	+0.224	0.285	+1.129	0.242	3.18	0.849	7.09	1.88 .
- 2	+0.397	0.283	+ 1. 30 3	0.112	3.20	0.396	5.02	2.60
L. 3	+0.444	0.287	+1.500	0.170	3.67	0.592	6.40	2.77
4	+0.450	0.282	+1.654	0.224	4.27	0.794	7.92	3.06
	+0.470	0.301	+1.718	0.176	4.14	0.585	6.56	3.25
	+0.401	0.308	+ 1.659	0.154	4.08	0.500	6.12	3.32
\mathbf{F}	+0.247		+ 1.247	0.135				
5 4 4 1	10 717	0 2 2 1						
2	+0.387	0.331	+ 1.467	0.176	5.32	0.532	5.77	2.51
3	+0.527	0327	+1.708	0.161	3.41	0.468	5.56	2.70
4	+0.542	0.339	+1.700	0.130	3.01	0.477	5.80	2.88
5	+0.551	0 753	+1.830	0.147	3.80	0.434	5.80	3.14
[-6	+0.551	0.363	+ 1.837	0.162	2.05	0.395	6.57	2.72
. 7	+0.306		+ 1.447	0.232	2.00	0.140	5.80	2.87
-					۰	1]	4
JEW 1	-0.325	0.163	+0.031	0.025	2.19	0.153	2.90	1.96
. 2	-0.357	0.167	-0.023	0.035	2.00	0.210	2.96	1.68
	-0.321	0.153	-0.005	0.027	2.06	0.176	2.87	1.79
+ +	-0.325	0.149	+0.004	0.033	2.21	0.221	3.23	1.87
} 3	-0.365	0.177	-0.018	0.033	1.96	0.186	2.81	1.68
56W1	-0.336	0.166	+0.004	0.075	205		2.00	
2	-0.352	0.165	+0.008	0.033	2.03	0.211	3.02	1.73
3	-0.330	0.151	10.000	0.032	2.15	0.194	3.08	1.89
[4	-0.353	0.162						
5	-0.387	0.174	E. A		•			-
			1		t			-
SSWI	-0.751	0.381	+ 0.327	0.224	2.83	0.588	5.53	1.93
	-0.629	0.370	+0.348	0.135	2.64	0.365	4.32	2.08
	-0.386	0.305	+0.219	0.068	1.98	0.223	3.01	1.64
	-0.272	0.183	+0.086	0.039	1.96	0.213	2.94	1.64 .
55W 1	-0651	0 330	· · ·					
2	-0.659	0.409						
3	-0.342	0317						
	-0.266	0.200			•			, -
								-
3 NW 1	-0.565	0.261	-0.032	0.059	2.05	0.776	309	1-71 -
2	-0.612	0.278	-0.092	0.057	1.87	0.205	2.82	1.56
-			4	• •				
5 NV 1	-0.576	0.274	1					
- 2	-0.658	0.306	د	÷				
-	· ·							
-								-
-								-
[.				· ·				
						· ·		
MANHOLE	DATUM	DATUM	DATUM	DATUM				-
ION PITOT			-		. /	1	;	-
10 A STATIC			ļ			1		-
30m PITOT								•
30 M STATIC				•				
						11 · · · ·	ł	

COMPARATIVE DATA FOR 1

,

QUANTITY RECORDED - PEAK PRESSURE FACTORS WIND ANGLE 265 • ROOF PITCH 22 = BRE. RUN. A32 (2 Sec Average 17 Min Observation)

	LOWEST EXTREMES				HIGHEST EXTREMES			
	OXF	CRD	B.R.E	U. W. O	DXF	ORD	B.R.E	<u>U.W.O</u>
	F= 0.99	F=0.01	Sing Le Sample		F=0.01	. F=0.99	single sammle	
3WW 1 2 3 4 5 6 7					7.09 5.02 6.40 7.92 6.56	1.88 2.60 2.77 3.06 3.25	3.62 3.72 4.68 4.03 4.18	5.7 5.5 6.1 5.6 6.8
5 WW 1 2 3 4 5 6 7					5.77 5.56 5.80 5.80 6.37 5.60	2.51 2.70 2.88 3.14 2.72 2.87	3.38 3.93 3.51 4.01 4.67 4.12 3.42	5.9 5.9 6.0 5.4 5.1 6.4 6.8
3EW 1 2 3 4 5	-6.75 -8.57 -7.06 -6.27 -5.43	-2.88 -2.30 -2.89 -3.47 -2.77	-5.9 -4.2 -4.5 -3.2 -3.1	-4.9 -5.5 -6.1				
5 E W 1 2 3 4 5	-6.70 -6.10	-2.45 -2.53	-4.7 -4.7 -4.5 -3.4 -3.0	- 5.3 -6.1 -5.1 -5.0 -5.9				
3 S W 1 2 3 4	-5.41 -5.09 -5.77 -7.04	-1.37 -2.36 -2.69 -2.89	-3.5 -3.9 -3.6 -3.7	-4.8 -6.2 -5.2				
5 S W 1 2 3 4			-3.9 -3.8	-4.7				
3 NW 1 2	-6.46 -7.59	-2.54 -2.48	-3.3 -3.0	-6.6 -4.5				
5 NW 1 2 MANHOLE ION PITOT ION STATIC 300 PITOT								

4

OF

COMPARIS ON QUANTITY RECORDED MEAN & AMS

Co, WIND ANGLE & 265 . ROUF PITCH 22.5° BRE. RUN A32

[MEAN P	RESSURE CO	DEFFICIEN	<u>75</u>	<u>R.M.S</u>	PRESSURE	COEFFICIENTS
	B.R.E	OXFORD	<u>U.W.O</u>	<u>J.C.U.N.Q</u>	<u>B. R. E</u>	OXFORD	<u>U.W.0</u>
	AT 1A32	Corracted for pressure gradiant)	h/z. = 3200 1/500	50 100	AT / A32		
WRIA		-0.67 -0.73	-0.55 -0.55	-0.87 -	0.21 0.21	0.36	0.30 0.30
c c	120	-0.73	-0.55	-0.71 -0.55	0.24	0.34	0.30
E	1926	-0.72	-0.59	-0.74 -0.50	0.23	0.33	0.30
, F	42	-0.74	-0.55	-0.76 -	0.25	0.34	0.27
WR2A		-0.25				0.29	
B		-0.30			1	0.36	
		-0.49			1	0.38	
E		-0.53				0.38	
F		-0.44				0.32	
WR 3 A	0.21 10	-0.19	-0.21	-0.11	0.29 0.07	0.20	0.17
	0.2803	-0.18	-0.27	-0.04 -0.04	0.23 0.06	0.18	0.19
F D	08	-0.24	-0.34	-0.11 1-0.09	0.09	0.20	0.25
	0.46	-0.23	-0.34	-0.12	0.24	0.20	0.21
G		-0.28	-0.30	-0.15		0.19	0.21
WRA D		0.24					
B	0.0205	-0.34	-0.23	-0.23	0.01 0.01	0.17	0.17
L C		-0.37	-0.30	-0.21		0.16	0.13
	0.01 -12	-0.37 -0.38	-0.30	-0.24		0.15	0.13
F		-0.39	-0.32	-0.28		0.16	0.15
ERIA	0.1956	-0.4-8	-0.55	-0.38	0.08 0.21	0.20	0.21
B	5063	-0.52	-0.57	-0.46 -0.35	0.24 0.25	0.22	0.17
		-0.34	-0.59	0.47		0.22	0.19
ER2 A	0616	-0.49	-0.55	-0.38 1-0.34	0.20 0.24	0.20	0.21
	38	-0.48	-0.55	-0.35 -0.40	1.0.16	0.19	0.17
		-0.48	-0.55			0.18	0.17
E		-0.51	-0.55			0.19	0.19
ER3 A	0616	-0.47	-0.55	-0.41	0.21	0.19	0.17
		-0.45	-0.51	-0.37		0.16	0.17
						0.15	
тон - О Гон - Г				1 -			i î
							i
ł							
MONTONE					1		
LINAN HULE	DATUM	DATUM	:				
IOM STATIC							
JON PITOT							
				1			

(2 Sac. Avaropa , 17 min observation)

QUANTITY RECORDED - LOWEST EXTREME C. WIND ANGLE & 265 ROOF PITCH 22.5° BRE. RUN A 32

	FROM PART I	CURRENT	OATA FROM	TABLES:-	REDUCED AND DI	MODE	LANGE OF DISTRI	EXTREME
	Maan Cn	Cn Variance	Mode	distarsion	$u' = u - \mu$	d'-d	u'+4.600 d'	u'-1.527d'
	м	6	u	d	6	6	(F=0.99)	(F=0.01)
WRIA B C E F	-0.602 -0.663 -0.660 -0.648 -0.672 -0.670	0.363 0.364 0.339 0.330 0.338 0.343	-1.770 -1.695	-0.175	-3.22 -3.0 3	-0.482 -0.521	-5.44 -5.43	-2.23
WR2A B C D E F	-0.178 -0.231 -0.396 -0.425 -0.466 -0.372	0.287 0.359 0.376 0.365 0.376 0.323						-
WR 3 A B C U E F G	-0.124 -0.114 -0.128 -0.170 -0.163 -0.187 -0.219	0.196 0.182 0.192 0.199 0.197 0.191 0.191	-0.752 -0.640 -0.677	-0.095 -0.092 -0.074	- 3.21 - 2.89 - 2.86	-0.486 -0.505 -0.386	-5.44 -5.22 -4.63	-2.4-7 -2.12 -2.27 -
WR4 A B C D	-0.267	0.167	-0.889	-0.087	-3.72	-0.520	-6.11	-2.93
E F	-0.315	0.149	- Ö. 838	-0. 17	-3.50	-0.784	-7.11	-2.30
ERIA B C	-0.413 -0.449 -0.473	0.204 0.215 0.218	- 1.203 - 1; 180 	-0.156 -0.129	-3.87 -3.39	-0.764 -0.599	-7.38 -6.15	-2.70 -2.48
ER2 A B C D E	-0.426 -0.407 -0.404 -0.407 -0.444	0.202 0.192 0.177 0.178 0.19 4	-1.185	-0.210	-3.76	-1.040	- 8.55	-2.172 -
ER3 A B C	-0.406 -0.377 -0.438	0.193 0.161 0.193	- 1.559	-0. 370	-5.97	-1.916	- 14.78	-3.04
он - U он - L								
MANHOLE ION PITOT ION STATIC SON PITOT JON STATIC	DATUM	DATUM	DATUM	DATUM				-

QUANTITY RECORDED - HIGHEST EXTREME Cr WIND ANGLE @ 265 ROOF PITCH 22.5° BRE. RUN. A32 (2 Sac. Avarant, 17 Min observation)

	FROM PART I	CURRENT DATA FROM TABLES :-		REDUCED MODE AND		RANGE OF EXTREME DISTRIBUTION		
	Mean Cr	Cr Variance	mode	dispersion	DISFIERS		$\frac{DISTRIE}{11^{\prime}+4.60001^{\prime}}$	IUTION II'I CIT d'
	pe	6	u	d	$u' = \frac{u + n}{6}$	$d' = \frac{a}{5}$	(F'=0.00)	$\left(F_{-0,0}\right)$
WRIA	-0.602 -0.663	0.363 0.364	+0.137	0.096	2.03	0.264	3.24	.1.63
. D . E . F	-0.648 -0.672 -0.670	0.339 0.330 0.33 8 0.34 3	+0.005	0.162	2.01	0.480	4.22	1.28
WR2A B C D F	-0.178 -0.231 -0.396 -0.425 -0.466 -0.372	0.287 0.359 0.376 0.365 0.376 0.323						
WR 3 A B C U E F G	-0.124 -0.114 -0.128 -0.170 -0.163 -0.187 -0.219	0.196 0.182 0.192 0.199 0.197 0.197 0.191 0.190	+0.373 +0.378 +0.325	0.061 0.067 0.065	2.54 2.70 2.36	0-312 0.368 ^{3.50} 0.339210	3.98 4:39 3.92	2.06 -
WR4 A B C D	-0.267	0.167	+0.086	0.034	2.11	0.203	3.05	1.80
_ E _ F	-0.315	0.149	+0.018	0.032	2.23	0.214	3.22	1.90
ERIA B C	-0.413 -0.449 -0.473	0.204 0.215, 0.218	-0.040 -0.066	0.024 0.049	1.83 1.78	0.117 0.227	2.37 2.83	1.65 ⁻ 1.43 ⁻
ER2 A B C D E	-0.426 -0.407 -0.404 -0.407 -0.444	0.202 0.192 6.177 0.178 0.194	-0.033	0.029	1.95	0:144	2.61	1.73 -
ER3A B C	-0.406 -0.377 -0.438	0.193 0.161 0.193	-0.016	0.035	2.0 <u>2</u>	0.181-	2.85	1.74 _
он - U _0.н - L 								
MANHOLE ION PITOT ION STATIC SON PITOT SON STATIC	DATUM	DATUM	04TVm	datum				

QUANTITY RECORDED PEAK PRESSURE FACTORS WIND ANGLE @ 265 * ROOF PITCH 222 BRE. RUN A 32 (2 Sac Avera 1 - 17 Min Observation)

	<u>L0</u>	WEST I	EXTREMES		HIGHEST EXTREMES			
	DXFO	RD	B.R.E	U.W.O	OXFO	RD	<u>B. R. E</u>	0.0.0
	F = 0.99	F=0 01	sample		F=0.01	F=0.99	single sample	
WRIA B C E F	-5.44	-2.48	-3.4 -3.1 -3.2 -4.2 -3.2 -2.3	-5.7 -5.3 -5.0 -4.4 -5.3 5.2				-
WR2A B C D E F								-
WR 3 A	-5.44	-2.47	-5.1	-5.2	4 79	211	3 61	1 12 3
C ジ F 			-2.2	-4.8	3.92	1.84	2.80	4.24 2.1
WR4 A B C	-6.11	-2.93	-4. 7	-4.3				-
. D . E . F	-7.11	-2.30	-2.8	-4.8				-
ERIA B C	-7.38 -6.15	-2.70 -2.48	-3.9 -3.2 -3.9	-5.0 -5.4 -5.4				-
ER2 A B C D E			-4.5	- 5.5	2.61	1.73	3.78	2.62
ER3A	-14.78	-3.04	-7.5					
· · ·								
PITOT IOM STATIC SOM PITOT JON STATIC								-

WIND ANGLE 233 . ROOF PITCH 5 . BRE. RUN A38-C

	MEAN PRESSURE COEFFICIENTS				R.M.S. PRESSIURE COEFFICIENTS			
	<u></u>	OXFORD	U.W.O		B.R.E.	OXFORD	U.W.O	í
		Corrected for pressure grad.			<u></u> .		<u></u>	
3WW 1 2 3 4 5 6 7	0.15 0.22 0.29 0.37 0.40 0.53 0.40	0.02 0.20 0.31 0.37 0.43 0.48 0.46	0.21 0.36 0.45 0.52 0.55 0.61 0.65		0.28 0.25 0.27 0.30 0.29 0.44 0.34	0.19 0.24 0.26 0.28 0.28 0.31 0.35	0.17 0.19 0.19 0.23 0.25 0.27 0.27	-
5 WW 1 2 3 4 5 6 7	0.49 0.60 0.69 0.74 0.81 0.78 0.75	0.06 0.17 0.31 0.40 0.42 0.48 0.50	0 - 25 0 + 34 0 - 38 0 - 44 0 - 47 0 - 57 0 - 65		0.33 0.34 0.36 0.38 0.42 0.42 0.44	0.22 0.26 0.26 0.29 0.31 0.32 0.37	0.17 0.19 0.19 0.23 0.23 0.23 0.27 0.31	
3EW 1 2 3 4 5	- 0.49 - 0.56 - 0.52 - 0.44 - 0.41	- 0.56 - 0.59 - 0.57 - 0.52 - 0.49	- 0.44 - 0.28 - 0.21 - 0.15		0.20 0.23 0.21 0.17 0.17	0.17 0.17 0.16 0.16 0.16	0 · 19 0 · 15 0 · 15 0 · 15	
5 EW 1 2 3 4 5	-0.36 -0.45 -0.45 -0.41 -0.38	-0.56 -0.59 -0.56 -0.51 -0.49	-0.42 -0.42 -0.25 -0.19 -0.15		0.16 0.17 0.19 0.19 0.19	0.17 0.17 0.16 0.16 0.16	0.]9 0. 17 0. 15 0. 15 0. 13	-
234	-0.00 -0.21 -0.11	0.14 0.09 -0.19	0.38 0 .27 0.00		0.48 0.17 0.16	0.48 0.25 0.16	0.31 0.34 0.23	
5 S W 1 2 3 4	-0.04 0.22	0.05 0.10	0.34 0.31 -0.08		0.61 0.49	0.55 0.49	0.31 91.0 91.0	-
3 NW 1 2	-0.34 -0.44	-0.49 -0.43	-0.23 0.00		0.15 0.20	0.15 0.14	0.15 0.19	
5 NY 1 2			-0.19 ±0.19				0.15 0.15	
MANHOLE IUA PITOT IOA STATIC 30A PITOT 30A STATIC	DATUM	DATUM			OATUM	DATVM		

WIND ANGLE 233 " ROOF PITCH 10 " BRE. RUN A 38-6

······	r								
	MEAN	MEAN PRESSURE COEFFICIENTS				R.M.S PRESSURE COEFFICIENTS			
	B.R.E	OXFORD	U.W.D		B.R.E	OXFORD	1 U.W.A	i	
		Correction d for pressure grad			<u>10.11.0</u>		<u>0. w. D</u>		
3WW 1	0.10	0.02			0.26	0.20			
2	0.17	0.18			0.23	0.23			
3	0.24	0.30			0.24	0.25			
4	0.29	0.36.			0.27	0.27			
5	0.36	0.44			0.27	0.29			
7	0.52	0.48			0.40	0.30			
	0.39	0.47			0.35	0.35			
5 WW 1	0.43	0.06			0.28	0.23			
2	0.55	0.15			0.32	0.25			
3	0.62	0.33			0.33	0.27			
4	0.71	0.41.			0.36	0.28			
- 5	0.80	0.43			0.40	0.31			
6	0.78	0.47			0.41	0.33			
.7	0.74	0.49			0.43	0.38			
7					l `				
SEW 1	-0.51	- 0.56			0.22	0.16			
2	-0.56	- 0.59			0.24	0.16			
3	-0.52	-0.57			0.22	0.17			
4	-0.45	-0.52			0.18	0.15			
	-0.45	- 0.49			0.18	0.16			
TEW1	-0.36	- 0.56			0.17	0.17			
2	-0.43	= 0.50			0.17	0.17			
3	-0.45	-0.55			0.10	0.17			
4	-0.19	-0.50			0.19	0.15			
5	-0.37	-0.51			0.12	0.13			
					0.12				
3 S W 1	0.01	0.05			0.51	0.53			
2	0.08	0.11			0.46	0.46			
3	-0.18	0.09			0.17	0.25		}	
4	-0.11	-0.18			0.15	0.17			
5541	0.06	0.00							
2	0.00	0.08			0.64	0.58			
2	0.31	0.15			0.50	0.48			
4									
•									
3 N W 1	-0.34	-0.48			0.14	0.15			
2	-0.43	-0.45			0.17	0.15			
					0.12	0.75			
5 NW 1									
2									
]				
MANHOLE	DATIM	DANINA			0	0.444			
ION PITOT	NN IVE	VHIUM			UHJUM	UNTUM			
IOM STATIC]		l	
30m PITOT							1		
30 m STATIC				l	1	ļ			
				1		1]	
		1		F		1			

WIND ANGLE 233 . ROOF PITCH 15 . BRE. RUN A38-A

	MEAN PRESSURE COEFFICIENTS				R.M. PRESSURE COEFFICIENTS			
	<u>B.R E</u>	DXFORD Corrected Sor press. grad.	<u>U.W. 0</u>		<u>.B. R.F</u>	<u>Dxfor</u> p	<u>U.W.O</u>	
3WW 1 2 3 4 5 6 7	0.06 0.16 0.24 0.28 0.24 0.24 0.49 0.34	0.01 0.20 0.29 0.37 0.46 0.49 0.46			0.29 0.25 0.27 0.29 0.29 0.41 0.33	0.20 0.23 0.25 0.27 0.30 0.31 0.35		
5 WW 1 2 3 4 5 6 7	0.50 0.54 0.63 0.69 0.76 0.73 0.67	0.06 0.14 0.33 0.40 0.40 0.52 0.52			0.34 0.36 0.37 0.38 0.40 0.40 0.40	0.23 0.25 0.27 0.29 0.30 0.35 0.39		
3EW 1 2 3 4 5	- 0.53 - 0.57 - 0.52 - 0.47 -0.47	- &.57 - 0.62 - 0.61 - 0.58 - 0.53			0.19 0.21 0.18 0.16 0.17	0 • 16 0 • 17 0 • 17 0 • 17 0 • 17		
5 E W 1 2 3 4 5	-0.3'8 -0.43 -0.51 -0.42 -0.40	- 0.59 - 0.62 - 0.59 - 0.56 - 0.54			0.15 0.16 0.19 0.15 0.17	0.16 0.17 0.18 0.18 0.18		
35W1 2 3 4	-0.16 -0.47 -0.24 -0.17	0.05 0.12 0.10 - 0.19			0.50 0.47 0.19 0.15	0.53 0.47 0.26 0.17		
5 S W 1 2 3 4	-0.01 0.13	0.07 0.14			0.58 0.47	0.55 0.50		-
3 NW 1 2 5 NW 1 2	-0.38 -0.46	-0.49 -0.45			0.15 0.20	0.15 0.15		
MAN HOLE IVA PITOT IVA STATIC 30M PITOT 30M STATIC	DATUM	ΦΑτυμ			DATUM	DATUM		

WIND ANGLE 248 . ROOF PITCH 22.5° BRE. RUN A38-G

	MEAN	PRESSURE	COEFFICI	ENTS	R.M. S	. PRESSUR	RE COEFFIC	IENTS
	<u>B. R. E</u>	OXFORD	U.W.0		<u>B.R. I</u>	OXFORD	<u>V.W.O</u>	
		Corracted for pressure grad.						
3WW 1 2 3 4 5 6 7	0.24 0.33 0.43 0.45 0.55 0.62 0.38	0 • 10 0 · 29 0 · 39 0 · 44 · 0 · 48 0 · 48	0.05 0.28 0.35 0.39 0.42 0.44		0.40 0.33 0.33 0.38 0.38 0.52	0.23 0.25 0.27 0.28 0.29 0.31	0.20 0.22 0.24 0.26 0.26 0.26 0.26	-
5 WW 1 2 3 4 5 6 7	0.62 0.98 0.91 0.38 0.36 0.86 0.79	0.19 0.30 0.44 0.50 0.50 0.53 0.45	0.16 0.30 0.33 0.37 0.42 0.44 0.44		0.45 0.47 0.47 0.47 0.50 0.47 0.43	0.27 0.28 0.29 0.32 0.32 0.33 0.33	0.22 0.26 0.26 0.26 0.26 0.28 0.30 0.30	
3EW 1 2 3 4 5	- 0.50 - 0.53 - 0.55 - 0.48 - 0.55	- 0.45 - 0.47 - 0.50 - 0.48 - 0.48	- 0 48 - 0 42 - 0 39 - 0 33		0.21 0.22 0.21 0.18 0.21	D - 17 0 - 17 0 - 17 0 - 16 0 - 17	0.19 0.15 0.15 0.15	
5 E W 1 2 3 4 5	-0.36 -0.48 -0.53 -0.53 -0.57	- 0.46 - 0.49 - 0.60 - 0.58 -0.54	- \$.48 -0.48 -0.46 -0.42 -0.37		0.18 0.17 0.21 0.18 0.21	0.17 0.17 0.18 0.18 0.18	0.15 0.15 0.17 0.15 0.15	
3 S W 1 2 3 4	-0.74 -0.69 -0.36 -0.26	0.06 0.10 0.08 -0.21	-0.30 0.04 -0.37		0.45 0.47 0.31 0.17	0.51 0.47 0.24 0.17	0.41 0.30 0.19	
55W 1 2 3 4	0.45	0.11 0.18	-0.26 0.00 -0.37		0. <i>52</i>	0.56 0.47	0.41 0.22 0. <u>15</u>	-
3 NW 1 2	-0.67 -0.84	-0.50 -0.44	-0.44 -0.59		0.24 0.33	0.17 0.16	0.22 0.22	
5 NW 1 2			-0.55 ÷0.44				0.19 0.19	-
MAN HOLE ION PITOT ION STATIC 30M PITOT 30M STATIC	ΰΑτυΜ	ратим			DATU M	ØATUM		-

QUANTITY RECORDED LOWEST EXTREME CO (2 Sec Average, 17 min Ofservation)

QUANTITY RECORDED LOWEST EXTREME CA WIND ANGLE 237° - ROOF PITCH 5 BRE. RUN A38-C

		cu	RRENT M	ASIC DAT	A	REDUCED	MODE	RANGE OF	EXTREME
		Mean Cr	R.M.S CP	Mode	Disnersion		<u>LE ILS ION</u>	U'-4 600 b'	LUES
		M	6	u	b	$\alpha' = \frac{\alpha - \gamma}{s}$	$b' = \frac{b}{s}$	(F=0.99)	(F=0.01)
300 1	1	0.075	0.194	-0.389	-0.050	-2.392	-0.258	-3.577	-1.998
- 2	2	0.259	0.237	-0.252	-0.062	-2.156	-0.262	-3.359	-1.757
	3	0.371	0.261	-0.155	-0.067	-2.015	-0.257	-3.196	-1.623
		D.433	0.278	-0.164	-0.060	-2.147	-0.216	-3.140	-1.818
	5	0.434	0.283	-0.095	-0.070	-2.081	-0.247	-3.210	-1.704
	7	0.521	0140	-0.307	~0.257	-2.148	-0.812	-6.484	-1.507
t '		0.021	0.340	-0.585	-0.213	-3.163	-0.610	-5.977	-2.237 -
[5WW]	1	D.116	0.224	-0.344	-0.046	-2.054	-0.205	-7.008	-1740-
	2	0.226	0.259	-0.286	-0.036	-1.977	-0.139	-2.616	-1.765
	3	0.373	0.261	-0.191	-0.090	-2.161	-0.345	-3.747	-1.634
4	f	0.450	0.291	-0.108	-0.044	-1.938	-0.151	-2.634	-1.707
5	5	0.484	0.312	-6.124	-0.078	-1.949	-0.250	-3.099	-1.567
L 6	5	0.542	0.324	-p.256	-0.187	-2.463	-0.577	-5.188	-2.104
Ļ 7	7	0.562	0.368	-0.634.	-0.212	-3.250	-0.576	-5.900	-2.370
		•		· ·				ł	
SEW 1		-0.499	0.169	-1.053	-0.155	-3.278	-0.917	-7.497	-1.878
- 2	-	-0.532	0.166	-1.128	-0.133	-3.590	-0.801	۰-7.276	-2.367
		-0.507	0.162	-1.027	-0.067	-3.210	-0.414	-5.112	-2.578
		-0.452	D.153	-0.971	-0.077	-3.348	-0.497	-5.634	-2.590
	'	-0.420	861.0	40.940	-0.139	-3.259	-0.880	-7.306	-1.916 -
5EW 1		-0.497	0.165	-1.033	-0.087	-3.248	-0.527	-5.674	-2.443
2	2	-0.527	0.170	1.074	-0.114	-3.218	-0.671	-6 302	-2 104
	3	-0.495	0.162	· -1.035	-0.092	-3.333	-0.568	-5.946	-2 466
4	F	-0.449	0.155	-0.942	-0.092	-3.1.81	-0.594	-5.911	-2.2.74
	5	-0.430	0.162	-0. <i>9</i> 67	-0.088	-3.315	-0.543	-5.814	-2.485
[35 6 1		0.118	0.531	-1.315	-0.147	-2.690	-777	-7 972	
[2	2	0.197	0.476	-1.280	-0.157	-3.103	-0.330	-4.670	-1.529
	3	0.148	0.250	-0.776	-0.218	-3.696	-0.872	-7.707	-7.361
4	7	-0.127	0.164	-0.582	-0.085	-2.774	-0.518	-5.159	-1.983
55W 2	1	0.110	0.548	-1.576	-0.213	-3.077	-0.389	-4.865	-1.492 -
	2	0.158	0.485	-1.625	-0.226	-3.676	-0.466	-5.820	-2.965
	3								
F_					}				
13 NW 1		-0.426	0.151	-1.004	-0.155	-3.828	-1.026	-8.550	-2.260
f 2	2	-0.372	0.143	-0.914	-0.103	-3.790	-0.720	-7.103	-2.690
FENIL 1									
LONG 1			ļ		1]		
- ·	-						1		
F						[1		
F									
ŀ									
ſ						1	1	ļ	
Ŧ									
[1			1	}
[MAN HOL	E	DATUM	DATUM	DATUM	OPTUM				
[IUM PITO	7				1	l		1	
[IOH STA	тіс		Ì						
30m PIT	тот		1		1	}		1	}
30m STA	TIC						1		
1					1	1	1		

QUANTITY RECORDED LOWEST EXTREME (P (2 Sec Average , 17 min Observation)

REINE CA WIND ANGLE 233 * ROOF PITCH 10 * BRE. RUN A38-1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		CU	RRENT (RASIC DA	TA	REDUCED AND DIS	MODE	IZANGE O	F EXTREME
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mean Cr	R.M.S. CP	Mode	Disnorsion	1 U-M		U'+4.600 D'	u'-1.5276'
3WW 1 0.077 0.197 -0.157 -0.019 -2.201 -0.216 -3.198 -1.901 3 0.363 0.249 -0.174 -0.668 -2.201 -0.214 -1.901 4 0.419 0.265 -0.125 -0.058 -2.037 -0.214 -1.417 -1.749 5 0.496 0.200 -0.114 -0.668 -2.037 -0.213 -3.620 -1.719 7 0.524 0.194 -0.524 -0.199 -0.555 -5.502 -2.041 7 0.524 0.194 -0.524 -0.199 -0.057 -2.202 -3.128 -1.797 2 0.110 0.248 -0.345 -0.057 -2.242 -0.221 -1.901 3 0.312 -0.149 -0.037 -2.254 -0.244 -1.921 -1.921 4 0.467 0.231 -0.171 -0.122 -0.124 -1.921 -1.629 5 0.477 0.261 -0.101		M	6	u	Ь	$\alpha = \frac{1}{6}$	0'=	(F-=0.99)	(F=0.01)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3WW 1	0.077	0.197	-0.357	-0.039	-2.203	-0.198	-3.114	-1.901
3 0.163 0.245 -0.174 -0.068 -2.157 -0.271 -1.179 5 0.496 0.245 -0.125 -0.056 -2.031 -3.160 -1.179 5 0.496 0.230 -0.171 -0.056 -2.031 -0.321 -3.160 -1.179 7 0.526 0.314 -0.524 -0.179 -3.017 -0.514 -5.302 -2.241 7 0.526 0.314 -0.357 -2.168 -0.221 -1.162 -1.293 3 0.394 0.242 -0.179 -0.051 -2.242 -0.121 -1.161 -1.925 4 0.467 0.233 -0.171 -0.103 -2.244 -0.221 -1.182 -1.182 5 0.477 0.684 -0.121 -0.174 -0.175 -1.182 -1.182 6 0.528 0.377 -0.684 -0.121 -3.174 -0.617 -2.219 35 0.167 -1.129 -0.067 <th< td=""><th>- 2</th><td>0.250</td><td>0.231</td><td>-0.259</td><td>-0.050</td><td>-2.203</td><td>-0.216</td><td>-3.199</td><td>-1.873</td></th<>	- 2	0.250	0.231	-0.259	-0.050	-2.203	-0.216	-3.199	-1.873
* 0.499 0.290 -0.144 -0.058 -2.051 -0.219 -1.660 -1.719 6 0.573 0.301 -0.311 -0.170 -2.304 -0.555 -5.502 -2.041 7 0.526 0.348 -0.524 -0.170 -2.304 -0.551 -5.502 -2.041 5 WU 1 0.120 0.224 -0.170 -2.304 -0.551 -5.502 -2.041 2 0.211 0.242 -0.149 -0.055 -2.242 -0.241 -1.293 3 0.394 0.264 -0.199 -0.051 -2.254 -0.264 -3.299 -1.657 5 0.487 0.312 -0.101 -2.254 -0.264 -3.291 -1.657 5 0.487 0.317 -0.684 -0.257 -3.260 -6.611 -2.071 3 0.461 -1.088 -0.211 -3.174 -0.752 -6.611 -2.279 3 0.161 -1.089 </td <th></th> <td>0.363</td> <td>0.249</td> <td>-0.174</td> <td>-0.068</td> <td>-2.157</td> <td>-0.273</td> <td>-3.413</td> <td>-1.740</td>		0.363	0.249	-0.174	-0.068	-2.157	-0.273	-3.413	-1.740
5 0.730 0.730 -0.731	4	0.419	0.265	-0.125	-0.058	-2.053	-0.219	-3.060	-1.719
0 0.526 0.537 -0.524 -0.524 -0.525 -5.382 -2.212 SWW 1 0.526 0.524 -0.524 -0.555 -2.168 -0.243 -3.288 -2.212 SWW 1 0.120 0.226 -0.376 -0.055 -2.168 -0.243 -3.288 -1.797 2 0.211 0.248 -0.312 -0.053 -2.242 -0.243 -1.1935 4 0.447 0.232 -0.119 -0.031 -2.254 -0.344 -1.925 5 0.489 0.312 -0.149 -0.031 -2.254 -0.324 -2.711 -1.893 7 0.645 0.317 -0.642 -0.223 -2.722 -6.613 -2.211 -1.893 3 -0.512 0.161 -1.068 -0.100 -3.11 -0.663 -6.267 -2.247 3 -0.550 0.163 -1.029 -0.010 -3.131 -0.663 -6.267 -2.2478 4 -0.437		0.496	0.290	-0.114	-0.096	-2.103	-0.331	-3.626	-1.598
SWW 1 0.120 0.226 -0.374 -0.327 -0.159 -2.168 -0.243 -3.289 -1.797 2 0.211 0.248 -0.345 -0.252 -2.242 -0.221 -1.161 -1.995 3 0.334 0.226 -0.139 -0.055 -2.242 -0.122 -1.161 -1.995 4 0.467 0.283 -0.171 -0.103 -2.254 -0.161 -2.511 -1.885 5 0.489 0.312 -0.171 -0.103 -2.212 -0.697 -5.929 -1.657 6 0.529 0.327 -0.362 -0.267 -3.260 -0.682 -6.394 -2.219 3 -0.513 -1.068 -0.109 -3.411 -0.613 -2.474 -0.525 0.167 -1.129 -0.093 -0.655 -0.625 -2.242 3 -0.464 0.154 -1.040 -0.117 -3.411 -0.612 -2.512 3 -0.451 0.166 -1.049 -0.111 -3.271 -0.649 -2.120 5		0.575	0.301	-0.337	-0.170	-2.904	-0.565	-5.502	-2.041
5 WW 1 0.120 0.126 -0.376 -0.055 -2.168 -0.243 -3.288 -1.797 2 0.211 0.249 -0.376 -0.053 -2.242 -0.221 -1.261 -1.903 4 0.467 0.263 -0.171 -0.033 -2.254 -0.324 -1.995 -1.469 5 0.487 0.312 -0.149 -0.031 -2.254 -0.101 -2.511 -1.897 6 0.528 0.327 -0.362 -0.021 -2.722 -0.697 -5.929 -1.657 7 0.6455 0.137 -0.682 -0.237 -3.260 -0.687 -5.929 -1.657 2 -0.512 0.167 -1.029 -0.100 -3.11 -0.611 -2.219 3 -0.512 0.167 -1.129 -0.031 -5.663 -5.77 -6.256 -2.860 5 E W 1 -0.506 0.164 -1.049 -0.111 -3.174 -0.663 -6.175 -2.256 3 0.160 -1.059 -0.093 -0.164 -5.722	t í	0.520	0.348	-0.52+	-0.179	-3.015	-0.5/4	-5.383	-2.232 -
2 0:21/1 0.249 -0.35 -2.242 -0.212 -1.221 -1.201 3 0.394 0.266 -0.199 -0.055 -2.229 -0.199 -1.146 -1.925 4 0.467 0.283 -0.171 -0.103 -2.224 -0.244 -3.929 -1.485 5 0.489 0.312 -0.169 -0.211 -2.042 -0.103 -2.913 -1.485 6 0.528 0.327 -0.684 -0.227 -3.260 -0.682 -6.396 -2.219 3 0.545 0.377 -0.684 -0.257 -3.260 -0.617 -2.017 -2.447 4 -0.497 0.161 -1.008 -0.121 -3.171 -0.617 -2.212 -2.212 3 -0.512 0.167 -1.129 -0.033 -3.645 -0.717 -2.643 -2.212 -2.2120 5 -0.437 0.164 -1.049 -0.111 -3.740 -0.643 -2.2120 5 -0.437 0.164 -1.049 -0.111 -3.764 -0.649	5WW 1	0.120	0.226	-0.370	-0.055	-2168	-0.242	-2 288	-1707
3 0.394 0.266 -0.199 -0.053 -2.229 -0.199 -1.466 -1.225 4 0.467 0.283 -0.171 -0.103 -2.224 -0.103 -2.231 -1.285 6 0.528 0.327 -0.362 -0.221 -2.722 -0.697 -5.929 -1.657 7 0.545 0.377 -0.684 -0.257 -3.260 -0.682 -6.396 -2.219 2 -0.530 0.161 -1.008 -0.121 -3.174 -0.752 -6.631 -2.279 2 -0.530 0.167 -1.129 -0.003 -3.165 -0.575 -2.254 -0.572 -2.643 -2.279 4 -0.497 0.167 -1.129 -0.003 -3.11 -0.617 -2.219 -2.250 5 -0.437 0.166 -1.049 -0.111 -3.271 -0.669 -6.347 -2.250 2 -0.525 0.165 -1.157 -0.098 -3.356 -0.579 -5.792 -2.923 3 -0.493 0.161 -1.099	[2	0.211	0.248	-0.345	-0.055	-2.242	-0.222	-3.262	-1.903
4 0.467 0.283 -0.171 -0.103 -2.254 -0.164 -3.999 -1.639 5 0.467 0.312 -0.149 -0.021 -2.042 -0.103 -2.511 -1.835 6 0.528 0.327 -0.687 -2.722 -0.697 -5.529 -1.657 7 0.5645 0.377 -0.688 -0.257 -3.260 -0.682 -6.396 -2.212 2 -0.530 0.161 -1.086 -0.100 -3.411 -0.613 -2.244 4 -0.464 0.154 -1.040 -0.117 -3.140 -0.752 -6.631 -2.256 5 -0.437 0.166 -1.049 -0.117 -3.40 -0.760 -7.215 -2.580 5 -0.437 0.166 -1.049 -0.117 -3.740 -0.643 -6.177 -2.250 5 FU1 -0.506 0.166 -1.049 -0.111 -3.271 -0.663 -6.177 -2.250 5 -0.451 0.172 -1.157 -0.093 -3.135 -0.557	3	0.394	0.266	-0.199	-0.053	-2.229	-0.199	-3.146	-1.925
5 0.489 0.312 -0.149 -0.031 -2.042 -0.032 -2.513 -1.885 6 0.528 0.327 -0.362 -0.221 -2.722 -0.697 -5.929 -1.657 7 0.645 0.377 -0.682 -0.257 -2.260 -0.692 -5.929 -1.657 3EW 1 -0.497 0.161 -1.008 -0.121 -3.174 -0.752 -6.611 -2.247 2 -0.530 0.161 -1.026 -0.100 -3.411 -0.611 -4.233 -2.474 4 -0.443 -1.129 -0.093 -3.695 -0.557 -6.266 -2.484 4 -0.443 0.167 -1.129 -0.093 -3.695 -6.563 -6.179 -2.120 5 EV1 -0.566 0.164 -1.049 -0.111 -3.247 -0.649 -6.347 -2.250 2 -0.566 0.165 -1.157 -0.098 -3.355 -0.579 -5.292 -2.517 3 -0.431 0.152 -0.931 -0.092 <t< td=""><th>4</th><td>0.467</td><td>0.283</td><td>-0.171</td><td>-0.103</td><td>-2.254</td><td>-0.264</td><td>-3.929</td><td>-1.6.99</td></t<>	4	0.467	0.283	-0.171	-0.103	-2.254	-0.264	-3.929	-1.6.99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.488	0.312	-0.149	-0.032	-2.042	-0.103	-2.513	-1.885
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0.528	0.327	-0.362	-0.228	-2.722	-0.697	-5.929	-1.657
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	0.545	0.377	-0.684	-0.257	-3.260	-0.682	-6.396	-2.219
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3EW 1	-0.497	0.161	-1.008	-0.121	-3.174	-0.752	-6.631	-2.026
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-0.530	0.163	-1.086	-0.100	-3.411	-0.613	-6.233	-2.474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	-0.512	0.167	-1.129	-0.093	-3.695	-0.557	-6.256	-2.844
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ $+$	-0.464	0.154	-1.040	-0.117	-3.740	-0.760	-7.235	-2.580
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	-0-437	0.160	-0.938	-0.106	-3.131	-0.663	-6.179	-2.120
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SEW1	-0.506	0.166	-1.049	-0.111	-3.271	-0.669	-6.347	-7250
3 -0.493 0.161 -1.099 -0.104 -3.764 -0.646 -6.735 -2.778 4 -0.443 0.152 -0.953 -0.025 -3.355 -0.559 -5.928 -2.701 5 -0.451 0.172 -1.035 -0.098 -3.3295 -0.570 -6.016 -2.525 35 W 1 0.108 0.525 -1.280 -0.197 -2.644 -0.356 -4.282 -2.100 3 0.150 0.243 -0.702 -0.203 -3.179 -0.438 -5.196 -2.516 3 0.150 0.243 -0.702 -0.218 -3.435 -0.979 -7.479 -2.093 4 -0.122 0.171 -0.584 -0.053 -2.491 -0.310 -3.917 -2.018 5 S W 1 0.141 0.577 -1.526 -0.261 -2.889 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.198 3 W 1 -0.422 0.160 -0.930 -0.121 </td <th>2</th> <td>-0.525</td> <td>0.165</td> <td>-1.157</td> <td>-0.098</td> <td>-3.830</td> <td>-0.594</td> <td>-6-567</td> <td>-7 072</td>	2	-0.525	0.165	-1.157	-0.098	-3.830	-0.594	-6-567	-7 072
4 -0.443 0.152 -0.953 -0.025 -3.355 -0.559 -5.928 -2.501 35 1 0.108 0.525 -1.035 -0.098 -3.1295 -0.570 -6.016 -2.525 35 1 0.108 0.525 -1.280 -0.187 -2.644 -0.356 -4.282 -2.100 2 0.165 0.463 -1.307 -0.201 -3.179 -0.438 -5.196 -2.516 3 0.150 0.248 -0.702 -0.218 -3.435 -0.979 -7.479 -2.093 4 -0.122 0.171 -0.548 -0.053 -2.491 -0.310 -3.917 -2.018 55 V 1 0.141 0.577 -1.526 -0.261 -2.899 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.198 3 NW 1 -0.422 0.150 -0.932 -0.124 -3.400 -0.823 -7.203 -2.138 5 <t< td=""><th>3</th><td>-0.493</td><td>0.161</td><td>· -1.099</td><td>-0.104</td><td>-3.764</td><td>-0.646</td><td>-6.735</td><td>-2.778</td></t<>	3	-0.493	0.161	· -1.099	-0.104	-3.764	-0.646	-6.735	-2.778
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	-0.443	0.152	-0.953	-0.085	-3.355	-0.559	-5.928	-2.501
3 S W 1 0.108 0.525 -1.280 -0.187 -2.644 -0.356 -4.282 -2.100 3 0.155 0.463 -1.307 -0.201 -3.17 9 -0.438 -5.196 -2.510 4 -0.122 0.171 -0.548 -0.021 -3.17 9 -0.438 -5.196 -2.510 5 S W 1 0.141 0.577 -1.526 -0.218 -3.435 -0.310 -3.917 -2.093 2 0.206 0.476 -1.547 -0.533 -2.491 -0.356 -4.282 -2.108 5 S W 1 0.141 0.577 -1.526 -0.261 -2.889 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.995 4 -0.385 0.147 -0.932 -0.124 -3.400 -0.827 -7.203 -2.138 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.215 5 NU 1 2 -3.717 0.870 -0.823 <t< td=""><th>5</th><td>-0.451</td><td>0.172</td><td>-1.035</td><td>-0.098</td><td>-3.395</td><td>-0.570</td><td>-6.016</td><td>-2.525</td></t<>	5	-0.451	0.172	-1.035	-0.098	-3.395	-0.570	-6.016	-2.525
1 0.108 0.108 0.108 -1.100 -0.107 -2.178 -3.178 -0.138 -4.282 -2.100 2 0.165 0.248 -0.702 -0.203 -3.178 -0.438 -5.196 -2.510 3 0.150 0.248 -0.702 -0.218 -3.435 -0.979 -7.479 -2.093 4 -0.122 0.171 -0.548 -0.053 -2.491 -0.310 -3.917 -2.098 5 V 1 0.141 0.577 -1.526 -0.261 -2.889 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.198 4 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.198 2 -0.335 0.147 -0.932 -0.124 -3.400 -0.827 -7.203 -2.118 2 -0.335 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 2	751/1	0.108	0,-70	-1 200	. 107				
3 0.150 0.4248 -0.702 -0.201 -3.435 -0.438 -5.198 -2.510 4 -0.122 0.171 -0.548 -0.053 -2.491 -0.310 -3.917 -2.018 55 W 1 0.141 0.577 -1.526 -0.261 -2.889 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.945 3 4 - -0.385 0.167 -0.932 -0.124 -3.400 -0.827 -7.203 -2.118 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 2 0.4704 0ATUM 0ATUM 0ATUM 0ATUM 0ATUM -3.571 -0.823 -7.358 -2.315 5 NU 1 2 0.147 0ATUM 0	2	0.108	0.525	-1.280	-0.187	-2.644	-0.356	-4.282	-2.100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.150	0.248	-0 702	-0.203	-3.119	-0.438	-5.196	-2.510
55 W 1 0.141 0.577 -1.526 -0.261 -2.889 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.945 3 4 -0.422 0.150 -0.932 -0.124 -3.400 -0.827 -7.203 -2.138 2 -0.385 0.147 -0.910 -0.121 -1.571 -0.823 -7.358 -2.315 5 NU 1 2 0.150 -0.910 -0.121 -1.571 -0.823 -7.358 -2.315 5 NU 1 2 0.147 0.0101 0.0101 -0.121 -1.571 -0.823 -7.358 -2.315 5 NU 1 2 0.150 -0.910 -0.121 -1.571 -0.823 -7.358 -2.315 5 NU 1 2 0.470M 0.470M 0.470M 0.470M -1.571 -0.823 -1.571 -0.823 -7.358 -2.315 5 NU 1 2 0.570M 0.470M 0.470M 0.470M 0.470M -1.571 -0.823 -1.515 -1.	i ă	-0.122	0.171	-0.548	-0.053	-1 101	-0.819	-1 917	-2.093
55 W 1 0.141 0.577 -1.526 -0.261 -2.889 -0.452 -4.970 -2.198 2 0.206 0.476 -1.547 -0.230 -3.683 -0.452 -4.970 -2.198 3 4 -0.422 0.150 -0.932 -0.124 -3.683 -0.483 -5.905 -2.198 2 -0.385 0.147 -0.910 -0.124 -3.400 -0.827 -7.201 -2.118 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 2 -0.7107 0ATUM 0ATUM DATUM -0.823 -7.358 -2.315 5 NU 1 2 -0.7107 0ATUM 0ATUM DATUM -0.823 -7.358 -2.315 5 NU 1 2 -0.7107 0ATUM DATUM DATUM -0.823 -7.358 -2.315 5 NU 1 1 -0.7107 -0.7107 -2.7108 -2.315 -2.315 10n 5TATIC 0ATUM DATUM DATUM DATUM -0.823			• • • • •		0,000	2.451	-0.510	5.917	-2.076
2 0.206 0.476 -1.547 -0.230 -3.683 -0.483 -5.905 -2.945 3 4 -0.422 0.150 -0.932 -0.124 -3.400 -0.827 -7.203 -2.118 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.203 -2.118 5 NU 1 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -0.710 -0.710 -0.710 -0.823 -7.358 -2.315 10n Patum -0.710 -0.710 -0.710 -0.710 -0.710 -0.710 -0.710 -0.710 -0.710 -0.710 -0.71	55W 1	0.]41	0.57.7	-1.526	-0.261	-2.889	-0.452	-4.970	-2.198
3 -0.422 0.150 -0.932 -0.124 -3.400 -0.827 -7.203 -2.118 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU<1	2	0.2 <i>0</i> 6	0.476	-1.547	-0.230	-3.683	-0.483	-5.905	-1.945
4 -0.422 0.150 -0.932 -0.124 -3.400 -0.827 -7.203 -2.138 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 2 -0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 2 -0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 -2.910 -9.910	3								
3 NW 1 -0.422 0.150 -0.932 -0.124 -3.400 -0.827 -7.203 -2.138 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NW 1 2 -0.470 0.470M 0.470M 0.470M -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NW 1 2 -0.470M 0.470M 0.470M 0.470M -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NW 1 2 -0.470M 0.470M 0.470M 0.470M -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NW 1 2 -0.470M 0.470M 0.470M 0.470M -0.910 </td <th>4</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. •</td>	4								. •
3 NU I -0.422 0.150 -0.932 -0.124 -3.400 -0.827 -7.203 -2.138 2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.215 5 NU 1 2				- - -					
2 -0.385 0.147 -0.910 -0.121 -3.571 -0.823 -7.358 -2.315 5 NU 1 2 MANHOLE DATUM DATUM DATUM DATUM ION PITOT ION STATIC 3 ON PITOT 30 N STATIC	I JNN I	-0.422	0.150	-0.932	-0.124	-3.400	-0.827	-7.203	-2.138
5 NU 1 2 MANHOLE DATUM DATUM DATUM DATUM ION PITOT ION STATIK 3 ON PITOT 30 N STATIK	- 2	-0.385	0.147	-0.910	-0.121	-3.571	-0-823	~7.358	-2.315
MANHOLE DATUM DATUM DATUM NANHOLE DATUM DATUM DATUM NON PITOT ION STATIC 30 M PITOT 30 M STATIC	Toma 1								
MANHOLE DATUM DATUM DATUM DATUM IOA PITOT IOA STATIC 30A PITOT 30A STATIC	5 NW 1								
MANHOLE DATUM DATUM DATUM DATUM IOA PITOT IOA STATIC 30A PITOT 30A STATIC	- 2						1		
MANHOLE DATUM DATUM DATUM DATUM NOA PITOT IOA STATIC 30A PITOT 30A STATIC	·►								
MANHOLE DATUM DATUM DATUM DATUM ION PITOT ION STATIC 30M PITOT 30M STATIC									
MANHOLE DATUM DATUM DATUM DATUM IOA PITOT IOA STATIC 30A STATIC						1	l	[{
MANHOLE DATUM DATUM DATUM DATUM NON PITOT ION STATIC 30M PITOT 30M STATIC	[
MANHOLE DATUM DATUM DATUM DATUM ION PITOT ION STATIC 30M PITOT 30M STATIC					ľ	l		[l .
MANHOLE DATUM DATUM DATUM DATUM ION PITOT ION STATIC 30M PITOT 30M STATIC	L					· · ·	1		
ION PITOT ION STATIC 30N PITOT 30N STATIC	MANHOLE	DATUM	DATUM	OATUM	DATUM]	
JON STATIC JON PITOT JON STATIC	ION PITOT				Ì]	
30m PITOT 30m STATIC	ION STATIC					1	1	l	·
30 m STATIC	30m PITOT		1		1	1)
	30 m STATIC								

- 48 -

QUANTITY RECORDED LOUEST EXTREME CA WIND ANGLE 233 " ROOF PITCH 15" BRE. RUN A38-A. (2 Sac Average 17min Observation):

	<u> </u>	RRENT BA	ISIC DAT	<u>n</u>	<u>REDUCED MODE</u> AND DISPERSION		RANGE OF EXTREME VALUES	
	Mean Cr	R.M.S Cr	node	Pisnersion	, (1 - M	, ь	4'+4.600 b'	u'-1.527 b'
	m	6	u	b	$u' = \frac{u'}{6}$	b' =	(1==0.99)	(F=0.01)
3WW 1	0.069	0.202	-0.347	-0.056	-2.059	-0.277	-3, 375	-1.676
2	0.260	0.229	-0.254	-0.056	-2.245	-0.245	-3.369	-1.871
. 3	0.350	0.249	-0.196	-0.060	-2.193	-0.241	-3.301	-1.825
. 4	0.428	0.272	-p.172	-0.083	-2.206	-0.305	-3.610	-1.740
- 5	0.516	0.304	-0.124	-0.128	-2.105	-0.421	-4.042	-1.462
- 6	0.546	D.308	-0.301	-0.194	-2.750	-0.630	-5.647	-1.788
. 7	0.519	0.350	-0.646	-0.268	-3.329	-0.766	-6.851	-2.159
5WW 1	0.119	0.233	-0 200	-0.007	-2 210	~ 777	2 2 2 4 5	
2	0.203	0.2.57	-0 716	-0.052	-2.219	-0.225	-5.245	-1.8/8
[3	0.392	0.266	-0.164	-0.066	-2.000	-0.238	-3,135	
[4	0.462	0.286	-0 170	-0.075	-2 2 10	-0.248	-3.232	-1.777
5	0.457	0.300	-0.171	-0.075	2.270	-0.262	-5.410	-1.803
[6	0.576	0.347	-0.306	-0.232	-2.093	-0.237	-5.182	-1.732
7	0.578	0.392	-0.5810	-0.252	-2.042	-0.000	-3.017	-1.5 21
				-0.785	-2.351	-0.472	-5.120	-2.236
3EW 1	-0.514	0.163	-1.033	-0.058	-3.184	-0.356	-4.821	-2.641
2	-0.557	0.172	-1.110	-0.133	-3.215	-0.773	-6.772	-2.034
- 3	- 0.546	0.167	-1.162	-0.054	-3.68.9	-0.323	-5.176	-3.195
4	-0.516	0.166	-1.040	-0.111	-3.157	-0.669	-6.233	-2.136
5	-0.473	0.165	-1.000	-0.084	-3.194	-0.509	-5.536	-2.417
SEW 1	-0.530	0161	-1000	0.002				1
2	- 0.5 30	0.181	-1.080	-0.092	-3.329	-0.571	-5.958	-2.457
7	-0.538	0.174	1.12/	-0.089	-3.270	-0.511	-5.625	-2.489
	-0.526	0.182	• +1 . 141	-0.089	-3.379	-0.489	-5.629	-2.632
	-0.303	0.184	-1.106	-0.110	-3.277	-0.598	-6.027	-2.364
t J	-0.484	0.182	-1.091	-0.115	-5.335	-0.632	-6.242	-2.370
35W1	U.113	0.532	-1.308	-0.213	-2.671	-6.400	-4.513	-2.060
2	0.179	0.467	-1.326	-0.164	-3.223	-0.351	-4.838	-2.686
. 3	0.159	0.258	-0.668	-0.157	-3.205	-0.609	-6.005	-2.276
4	0.132	0.167	-0.572	-0.057	-2.635	-0.341	-4.205	-2.114
55W 1	0.128	0.553	-1.616	-0.195	-7 154	-0 151	-4 771	-2 (15 -
2	0.196	0.496	-1.586	-0.741	-3.597	50 486	-5.878	-2 05)
3			1.000	0.241	2.023	-008	3.020	-2.037
4				l				· •
				1				-
3 NW 1	-0.426	0.149	-1.002	-0.123	-3.866	-0.8.2.6	-7.663	-7.605
2	- 0.390	0.151	-0.97 <i>9</i>	-0.167	-3.901	-1.106	-8.988	-2.212
· ·								
5 NW 1								
- 2				1				•
4				1				•
k .								
ŀ								1
ŀ								
ŀ								
[ł		
[MAN HOLE	DATUN	DATUM	DATUM	DATUM				
IUN PITOT	1							
[IOA STATIC]]	
30m PITOT	1			})	
30 m STATIC]		{		
				l		ł	i .	

- 49 -

QUANTITY RECORDED LOWEST EXTREME CP WIND ANGLE 248 ROOF PITCH 222 BRE RUNAISEG

	<u></u>	RRENT D	ASIC DAT	<u>A</u>	REDUCED MODE AND DISPERSION		MANGE OF EXTREME VALUES	
	Mean Cr	R.M.S. Cr	Mode	DISMOTSION	u u-m	u b	u'+4.600 b'	u'-1.527 b'
	M	6	a	Ь	u = <u>-</u>	6	(F=0.99)	(F=001)
3WW 1	0.156	0.230	-0.372	-0.049	-2.2.96	-0.213	-3.276	-1.970
- 2	0.352	0.249	-0.199	-0.067	-2.213	-0.269	-3.451	-1.802
	0.452	0.267	-0.113	-0.051	-2.116	-0.191	-2.995	-1.824
	0.498	0.281	-0.087	-0.072	-2.082	-0.256	-3.260	-1.691]
	0.538	0.293	-0.069	-0.044	-2.072	-0.150	-2.762	-1.84-2
	0.539	0-307	-0.084	-0.095	-2.029	-0.309	-3.453	-1.557
	0.442	0.308	-0.299	-0.113	-2.406	-0.367 *	-4.094	-1.84-6
[5WW 1	0.253	0.269	-0 770	5.057	-7 170	-0.107	-7.07/	-1 920
2	0.360	0.282	-0.220	-0.033	-2.057	-0.197	-3.036	-1.629
3	0.504	0.293	-0.122	-0.084	-2.137	-0.273	-3.455	-1.600
4	0.558	0.319	-0.103	-0.066	-2 072	-0.207	-3 024	-175/
5	0.564	0.318	-0.080	-0.069	-2.025	-0.217	-3 021	-1601
6	0.592	0.333	-0.095	-0.055	-2.063	-0.165	-7.873	-1.811
- 7	0.515	0.339	-0.235.	-0.111	-2.212	-0.327	-3.719	-1.7/2
7 - 1 - 4								
- 2 E W - 1	-0.385	0.170	-1.008	-0.134	-3.665	-0.788	-7.291	-2.461
1 4	-0.414	0.170	-1.025	-0.117	-3.594	-0.688	-6.760	-2.543
	-0.438	0.165	-1.072	-0.093	-3.842	-0.564	-6.435	-2.982
4	-0.418	0.155	-0.963	-0.122	-3.516	-0.787	-7.137	-2.314-
	~0.419	<i>O</i> · 169	-1.042	-0.135	-3.686	-0.799	-7.361	-2.467
5EW1	-0.404	0.168		-0.117	-3.612	-0.696	-6817	-2550
2	-0.428	0.167	-1 095	0.111	_7 004	0.050	0.017	2.530
3	-0.539	0.183	1.220	-0.032	-3.237	-0.337	-6.528	-3.783
4	-0.524	0.179	-1.150	-0.112	-1 107		-0.011	- 2.828
5	-0.481	0-171	-1.052	-0.132	-7 770	-0.757	-6.889	-2.377
						-0.780	-6.036	-2.178
5201	0.120	0.511	-1.272	-0.118	-2.724	-0.231	-3.786	-2.371
4 4	0.159	0.470	-1.341	-0.330	3.191	-0.702	-6.421	-2.119
1 5	0.141	0.243	-1.262	-0.185	-5.774	-0.761	-9.276	-4.611
4	-0.147	0.166	-0.757	-0.133	-3.675	-0.801	-7.360	-2.451
55W 1	0.169	0.557	-1 085	-0.205	-1867	0.700	-7.12.0	7 7 8 4 -
[2	0.235	0.469	-1.985	-0.395	-3.007	-0.709	-7.129	-2.784
		0.700	-1.914	-0.206	-4.110	-0.439	-6-730	-4.059
4								· •
2								-
LANCI	-0.438	0.172	-1.390	-0.225	-5.535	1.308	-11.552	-3.537
2	-0.383	0.163	-1.338	-0.156	-5.859	-0.957	-10-261	-4.397
5 81/ 1								
2	1							
F								-
[-
[1	}		}			-
ļ			}	Į –	ļ			-
Ļ						[-
\mathbf{F}						1		-
MONUS								-
HOLE	DATUM	PATUM	· PATUM	· DATUM			[· •
ION PITOT				l.		}	1	-
I'UM STATIC						Į	1	-
30 M PITOT			1					-
- SUN STATE								-
1]			1	1	

(2 Sac average 17 min. observation 1)

QUANTITY RECORDED LOWEST EXTREME CA WIND ANGLE 233 . ROOF PITCH 222 BRE. RUI

	<u></u>	CURRENT BASIC ORTA				MODE		
1	Maan Cr	R.M.S. Co	Mode	Disporsion	1 11 - A	1 b		
	m	6	u	Ь	$u' = \frac{u'}{6}$	$b' = \frac{b}{6}$		
_3WW 1	O.067	0.192	-0.164	-0.057	-2.245	-0.297		
- 2	0.256	O.223	- 0.241	-0.054	-2.229	-0.242		1
- 3	0.367	0.243	- 0.164	-0.059	-2.185	-0.243]]
· 4	0.429	. 0.263	-0.123	-0.078	-2.099	-0.297]
. 5	0.500	0.276	-0.086	-0.079	-2.123	-0.286]
- 0	0.550	0.296	-0.302	-0.253	-2.878	-0.855		L
. /	0.534	0.339	-0.617	-0.216	-3.395	-0.637		_
5WW 1	0.116	0.220	-0.329	-0 040	-2 022	-0 222		-
2	0.232	0.248	-0.270	-0.053	-2.023	-0.225	}	
_ 3	0.371	0.254	-0.163	-0.067	-2.102	-0.244		4
_ 4	0.474	0.288	-0.126	-0.054	-2.083	-0.188		4
5	0.502	0.304	-0.088	-0.054	-1.941	-0.178		-
_ 6	0.561	0.330	-0.231	-0.241	-2.400	-0.730		
7	0.605	0.373	-0.741	-0.167	-3.609	-0.44x		-
						+····		1
_3EW.1	-0.521	0.162	-1.065	-0.103	-3.358	-0.636		-
2	- 0.560	0.165	-1.102	-0.108	-3.285	-0.655	1	-
- 3	-0.560	0.175	-1.173	-0.134	-3.503	-0.766	-	-
4	-0.501	.0.162	-1.064	-0.116	-3.475	-0.716		
5	-0.483	.0.173	-1.082	-0.092	-3.462	-0.532		
SEU1	5 E1 2	0.162			,		· · · · ·]]
	-0.542	0.163	- 1.076	-0.079	-3.276	-0.485]
2	-0.571	0.178	-1.159	-0.101	-3.303	-0.567		
4	-0.542	0.181	•+1.181	-0.126	-3.530	-0.696] _
5	-0.300	0.171	-1.152	-0.111	-3.813	-0.649		-
f J	-0.472	0.107	-1.057	-0.117	-3.503	-0.701		-
$\begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$	0.142	0.491	-1.253	-0.201	-2 011	-0.100		-
[2]	0.207	0.458	-1.287	-0.160	-1.262	-0.249	-	} -
3	0.168	0.242	-0.566	-0-123	-3.033	-0.508		-
4	-0.141	0.161	-0.642	-0.071	-3.112	-0.441		-
15511 1	. 199				_			
2 2 2 2	0.172	0.536	-1.533	-0.258	3./81	-0.481		
	0.278	0.445	-1.4/2	-0.311	-3.933	-0.699		
								_
	1							-
3 NW 1	-0.387	0.150	-0.999	_0.167	-3810	-1000		-
2	-0.414	0.160	-1.146	-0.184	-4.575	-1.150		
	•				- 11 57 5	-1.150		-
5 NW 1			-					-
2								-
├						ĺ		-
								-
\mathbf{F}								-
}								.
F								
F						ļ		.
MANHOLE	()							
IUN PITOT	ratim	DATUM	DATUM	. DATUM				
ION STATIC								•
30m PITOT				-			{	.
30 M STATIC								· ·
[.				[· ·

- 51 -

QUANTITY RECORDED HIGHEST EXTREME CO WIND ANGLE 233 " ROOF PITCH 5 " BRE. RUN A38-C (2 Sec Average, 17 mm. observation)

	CURRE	NT BASIC	DATA	9	REDUCED MODE RANGE OF			F EXTREME
		1	1	1	AND DIS	PERSION	VA	LUES .
	Mean Cr	RMS Cr	Mode	Dispersion	$u' = u - \mu$	1º b	4'+4.600 b'	и'-1.527 b'
	m	6	u	Ь	6	6	(F=0.99)	(F=0.01)
3WW 1	0.075	0.194	0.756	0.115	3.510	0.593	6.237	2. 905
- 2	0.259	0.237	1.139	0.181	3.713	0.764	7.226	2.547
	0.371	0.261	1.298	0.134	3.552	0.513	5.913	2.768
	0.433	0.278	1.410	0.179	3.514	0.644	6.476	2.531
	0.494	0.283	1.500	0.150	3.555	0.530	5.993	2.745
	0.542	0.309	1.6//	0.167	3.460	6.540	5.946	2.634
t í	0.321	0.345	1.667	0.243	3.204	0.696	6.487	2.220
[5WW 1	0.116	0.224	0.872	0.127	3.375	0.567	5 983	2508
[2	0.226	0.259	1.141	0.189	3.533	0.730	6.890	2.419
3	0.373	0.261	1.340	0.731	3.705	0.502	6.014	2.939
4	0.456	0.291	1.541	0.248	3.72 <i>9</i>	0.852	7.649	2.427
5	0.484	0.312.	1.627	0.190	3.663	0.609	6.465	2.734
6	0.542	0.324	1.725	0.198	3.651	0.611	6.462	2.718
F 7	0.562	0.368	1.759.	0.199	3.253	0.54)	5.740	2.427
JEW 1	-0.499	0.169	n 117	0.077	1 200	0 219	2 207	1 956
2	-0.532	0.166	-0.136	0.037	2386	0.253	3.227	1.999 -
3	-0.507	0.162	-0.148	0.042	2.216	0.259	3.40.9	1.82.0
[4	-0.452	0.155	-0.117	0.043	2.161	0.277	3.437	1.738
5	-0.425	0.158	-0.067	0.037	2.266	0.234	3.343	1.908
55111	0 4 0 7	0.1/5			0.07		7 - 07	
J E W 1	-0.497	0.783	-0.120	0.029	2.285	0.176	5.093	2.0/6
	-0.327	0.170	-0.146	0.045	2.241	0.265	5,459	1.837
4	-0 (49	0.162	-0.152	0.013	2.241	0.276	3.250	1.911
5	-0.430	0.153	-0.00%	0.042	2.43 8	0.211	3. 105	2.047
		5.152	-0.075	0.043	2.13		J. 712	1.785
35W1	0.118	0.531	1.416	0.236	2.444	0.444	4.489	1.766
2	0.197	0.476	1.360	0.163	. 2.443	0.342	4.018	1.920
3	0.148	0.250	1,022	0.139	3.496	0.556	6.054	2.647
4	- 0.127	0.164	0.399	0.091	3.207	0.555	5.760	2.360
55W 1	0.110	0.548	1.587	0.180	2.695	0.328	4.206	2.102
[2	0.158	0.485	1.400	0.215	2.561	0.441	4.600	1.884
3								-
4	ļ	•	1					-
7								
I ANGI	- 0.426	0.151	- 0.055	0.036	2.457	0.238	3.554	2.093
- 2	- 0.372	0.143	-0.052	0.025	2.238	0.175	3.042	1.971
5 NW 1								
2						1		-
[_								-
								-
-								
ł				ĺ				
[MAN HOLE								
[IOM PITOT								-
ION STATIC		1		1	1			•
30m PITOT								•
30 m STATIC			1					
1	1	l	}	i	1	1	1	1

QUANTITY RECORDED HIGHEST EXTREME CO WIND ANGLE 233 " ROOF PITCH 10 " BRE. RUN A38-B (2 Sec Averoya, 17 min Observation)

- 52 -

.

	CURREN	VT BASIC	DATA		REDUCED	Mode	RANGE L	OF EXTREME
			1	1	AND DIS	PERSION	VAL	IVES .
	Mean Cr M	<u>RMS Cr</u>	Mode	<u>Disparsion</u> b	$u' = \frac{u - m}{2}$	$b' = \frac{b}{a}$	u'+4.600 b'	u'-1.527 b'
****			~		6	6	(F=0.99)	(F=0.01)
	0.077	0.197	0.704	0.097	3.183	0.492	5.448	2.431
	0.250	0.231	1.083	0.158	3.606	0.684	6.752	2.562
	0.363	0.249	1.520	0.133	3.843	0.534	6.300	3.028
5	0.496	0.290	1.370	0.128	3.619	0.485	5.841	2.88
6	0.543	0.301	1.641	0.141	3.514	0.400	5.750	2.777
7	0.526	0.348	1740	0.157	3.040	0.512	6.001	2.867
				0.755	3.407	0.333	0.040	2.041
5WW 1	0.120	0.226	0.846	0.164	3.212	0.726	6.550	2.104
2	0.211	0.248	1.193	0.168	3.960	0.677	7.076	2.925
L 3	0.394	0.266	1.389	0.137	3.74)	0.515	6.110	2,954
4	0.467	0.283	1.593	0.191	3. 97 <i>9</i>	0.675	· 7.083	2.948
5	0.488	0.312 .	(1.627	0.161	3.651	0.516	6.024	2.863
- 6	0.528	0.327	1.669	0.185	3.489	0.566	6.092	2.625
7	0.545	0.377	1.805	0.166	3.342	0.440	5.368	2.670
SEW 1	-0.497	0.161	-0.126	0.040	2.304	0.248	3.447	1.925
L 2	-0.530	0.163	-0.154	0.027	2.307	0.166	3.069	2.054]
- 3	-0.512	0.167	-0.156	0.035	2.132	0.210	3.096	1.812
- 4	-0.464	0.154	-0.122	0.031	2.2.21	0.201	3.147	1.913
	-0.437	,0.160	-0.086	0.04.0	2.1 <i>9</i> 4	0.250	3.344	1.812
5641	-0.506	0.166	-0.170	0.070	2 2 4 1		1 070	
2	-0.525	0.166	-0.134	0.030	2.241	0.187	3.072	1.965
3	-0.925	0.165	-0.128	0.046	2.406	0.279	3.088	1.980
4	-0.441	0.152	-0.738	0.041	2.205	0.255	3.376	1.876
5	-0.451	0.172	-0.084	0.077	2.302	0.289	3.695	1.920
[0,0,0		-0.001	0.032	2.151	0.186	3.007	1.867
35W1	0.108	0.525	1.544	0.209	2.735	0.398	4.566	2.127
2	0.165	0.463	1.380	0.174	2.624	0.376	4.353	2.050
3	0.150	0.248	0.992	0. 144	3.395	0.581	6.066	2.509
} 4	-0.122	0.171	0.415	0.096	3:140	0.561	5.723	2.283
554 1					<u>1</u>			
	0.141	0.57/	1.519	0.228	2.388	0.395	4.206	1.785
	0.206	0.476	1.442	0.215	2.597	0.452	4.674	1.907
						-		
								_
3 NW 1	-0.422	0150	-0.070	0.017	2 2 2 2 7	0.220	2 100	
2	-0.385	0.147	-0.044	0.040	2.201	0.2.20	5.299	1.951
[_					2.320	0.212	3.5 /1	1.904 -
[5 NV 1]]				-
2				1				-
								-
Ļ								_
Ļ				1				-
ŀ								-
ŀ		1						-
ŀ			1		[_
MONULE				1				-
HOLE								
LION PITOT	ł		l	(-
LIUM SIATIC							1	
1 SUM PILOT								-
- JUA JIAIIC		}		1				
L		I	I.	F		ł		

QUANTITY RECORDED HIGHEST EXTREME Cr WIND ANGLE 233 " ROOF PITCH 15" BRE. RUN A38-A ' (2 Sac Agrarage , 17 Min. Observation)

	CURA	RENT BA	SIC DATA	}	REDUCED	MODE	RANGE D	F EXTREME
				n	AND DI	PERSION	VALL	IES .
	Mean Cr	ins ch	Toke	Visrersion	$u' = \frac{u - \mu}{u}$	b' = -b	u'+4.600 b'	U'-1.527 b
	<u> </u>	6	<u>u</u>	b	6	6	(F = 0·99)	(F=0.01)
13WW 1	0.069	0.202	0.677	0.105	3.010	0.520	5.401	2.216.
- 2	0.260	0.229	1.078	0.152	3.572	0.664	6.625	2.558
	0.350	0.249	1.199	0.192	3.410	0.771	6.957	2.232
5	0.420	0.272	1.352	0.109	3.397	0.401	5.240	2.785
F G	0.546	0.304	1.4/3	0.154	3.148	0.441	5.176	2.475
7	0.519	0.350	1.000	0.242	3.010	0.786	7.225	2.4/1
[0.015	0.000	1.725	0.133	5.457	0.369	6.073	2.589
5WW 1	0.119	0.233	0.972	0.161	3.661	0.691	6.380	2,606
2	0.203	0.252	1.117	0.195	3.627	0.774	7.187	2.44.5
_ 3	· 0.392	0.266	1.394	0.141	3.767	0.530	6.205	2.957
4	0.462	0.286	1.606	0.232	4.000	0.811	7.731	2.761
5	0.457	0.300	1.561	6.191	3.680	0.637	6.609	2.708
6	0.576	0.347	1.799	0.192	3.524	0.553	6.070	2.680
- /	0.578	0.392	1.852	0.194	3.250	0.4.95	5.527	2.494
[3EW 1	-0.514	0.163	-0.148	0.037	2.245	0.227	3.290	1.899
2	-0.557	0.172	-0.175,	6.029	2.221	0.169	2.997	1.963
- 3	-0.546	0.167	-0.161	0.029	2.305	0.174	3.104	2.040
4	-0.516	0.166	-0.150	0.044	2.205	0.265	3.424	1.800
5	-0.473	0.165	-0.095	0.028	2,291	0.170	3.072	2.032
5 E W 1	-0.530	0.161	-0.161	0.042	2.292	1 0.261	3.492	1.894
2	-0.558	0.174	-0.164	0.036	2.264	0.207	3.216	1.948
3	-0.526	0.182	- 6.159	0.034	2.016	0.187	2.876	1.731
4	-0.503	0.184	-0.102	0.044	2.179	0.239	3.279	1.814
5	-0.484	0.182	-0:115	0.029	2.027	0.159	2.760	1.784
35W1	0.113	0.532	1.500	0.205	2.607	0.385	4.380	2.01.9
	0.179	0.467	1.385	0.225	2.582	0.535	5.045	1.765
	0.159	0.258	0.990	0.118	3.221	0.457	5.325	2.523
	~0.15Z	0.167	0.408	0.066	3.234	0.395	5.051	2.630 -
[5SW 1	0.128	0.553	1.580	0.281	2.626	0.508	4.963	. 1.850
2	0.196	0.496	1.437	0.203	2.502	0.409	4.385	1.877
3	1							
- 4			•		:			
[3 NW 1	-0.4-26	0.149	-0.067	0.027	2.409	7.181	3.243	2.133
- 2	-0.390	0.151	-0.070	0.038	2119	>-252	3.277	1.735
5 NI / 1								
2								-
[_								-
- -								
ł							ł	-
-								-
t								.
[.		}						•
MANHOLE	ŕ						1	-
ION PITOT								-
ION STATIC								-
30m PITOT								-
30 n STATIC								-
1 .		l				1	1	1

- 54 -

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE WALLS

QUANTITY RECORDED HIGHEST EXTREME CO WIND ANGLE 248 · ROOF PITCH 222 · BRE. RUN ASS. (2 Sec. Avorabe, 17 Ann. Observation)

	CURREN	T BASIC	DATA	······································	REDUCED	MODE	RANGE O	F EXTREME
	Meun Cn	inns ch	Mode	PICTATION	<u>10 UI</u>	ST'ERSIONI	VAL	AUES .
	m	6	u	<u>ь</u>	u': <u>u-m</u>	$b' = \frac{b}{s}$	(5-00)	u = 7.5270
3WW 1	0.156	0.230	1.048	0.170	9 970	0770	7 450	(420.01)
2	0.352	D.249	1.366	0.173	4.072	0.775	7.361	2.981
3	0.452	0.267	1.518	0.168	3.993	0.629	6.887	3.032
4	0.498	0.281	1.621	0.240	3.996	0.854	7.925	2.692
- 5	0.538	0.293	1.647	0.179	3.785	0.611	6.595	2.852
	0.539	0.307	1.756	0.167	3.964	0.544	6.466	3.134
	0.442	0.308	1.632	0.174	3.864	0.565	6.462	3.001
[5WW 1	0.253	0.269	1.139	0.176	3.2.94	0.654	6.303	2,205.
2	0.360	0.282	1.458	0.213	3.894	0.755	7.368	2.740
3	0.504	0.293	1.617	0.198	3.7 <i>99</i>	0.676	6.907	2.767
4	0.558	0.319	1.777	0.179	-3.811	0.560	6.384	2.956
- 5	0.564	0.318 .	1.706	0.178	3.591	0.560	6.166	2.736
	0.592	0.333	1.747	0.153	3.468	0.459	5.582	2.767
- /	0.515	0.339	1.754	0.192	3.655 '	0.566	6.260	2.790
3EW 1	-0.385	0.170	-0.026	0.044	2.112	0.259	3, 3, 02	1 717 -
2	-0.414	0.170	-0.054	0.031	2.118	0.182	12.956	1.839
- 3	-0.438	0.165	- \$.073	0.049	2.212	0.296	3.578	1.759
4	-0.418	0.155	-0.034	0.047	2.477	0.303	3.872	2.014
5	-0.419	Q.169	-0.064	0.042	2.101	0.249	3.244	1.721
SEW1	-0.404	0.168	-0.016	0.040	2310	0.228	3 405	1 946
2	-0.428	0.167	-0.079	0.034	2.090	0.204	3.025	1.779
3	-0.539	0.183	-0.152	0.038	2.115	0.208	3.070	1.798
4	-0.524	0.179	-0.142	0.042	2.1.34	0.235	3.213	1.776
- 5	-0.481	0.171	-0.108	0.015	2.181	0.205	3.123	1.869
35W1	0.120	0.511	1.481	0.156	2.663	0.305	4.068	2.197
. 2	0.159	0.470	1.400	0.259	. 2.640	0.551	5.175	1.798
- 3	0.141	0.243	0.574	0.091	1.782	0.374	3.505	1.210
- 4	-0.147	0.166	0.200	0.076	2.090	0.458	4.196	1.391
55W 1	0.169	0.557	1.183	0.19]	1.820	0.343	3.398	1.297
_ 2	0.235	0.469	1.019	0.185	1.672	0.394	1.486	1.069
- 3	·.	•] .		· · ·
- 4	-							
1 JNN 1	-0.478	0.172	- 0 099	0.078	2020	6 221	7.45	1 (0 2
2	-0.383	0.163	-0.067	0.047	1 07 0	0.201	2.045	1.692
	•				1.000	0.204	3.752	1.220
5 NV 1								
- 2	2							
- .			[·		
[
-								
MANHOIS								
ION PITOT							1	
ION STATIC								
30m PITOT								1
30 M STATIC				l l	4			
j					•		Į	

QUANTITY RECORDED HIGHEST EXTREME CO WIND ANGLE 233 . ROOF PITCH 222° BRE. RUN

(2 sec. a	vorage	17min obsor	uration)					
	(URRENT	BASIC DAT	<u>n</u>	REPUCED	MODE	1	
,	Mean Co	R.H.S. CP	Mode	Disporsion	<u>HND DIS</u>	PERSION H	7	i .
	M	6	u	<u> </u>	$u' = \frac{u - \gamma c}{6}$	6 = 10	4	
JWW 1	0.067	0.192	0.706	0.107	3 328	A 557]	
2	0.256	0.223	1.128	0.155	3.910	0.605		4
3	0.367	0.243	1.274	0.155	3 737	0.618	1	
4	p.4-29	0.263	1.378	0.180	3.608	0.684		
5	0.500	0.276	1.435	0.200	3.388	0.725		
_ 6	0.550	0.296	1.656	0.130	3.736	0.439		
7	0.534	0.339	1.615	0.158	3.189	0.466		
5 WW 1	0.116	0.220	0 959	0.100	2 2 7 7	0.105		
2	0.232	0.248	0.858	0.103	3.3/3	0.495	-	
3	0.371	0.254	1.342	0.214	1 823	0.84?	•	
[• 4	0.474	0.288	1.487	0.746	3.517	0.854		
	0.502	0.304	1.633	0.212	3.720	0 6 97		
[6	0.561	0.330	1.665	0.159	3.345	0.482		
7	0.605	0.373	1.766.	0.151	3.113	0.405		
354.1	-0.521	0.162	0.120	0.025				
2	-0.540	0.102	-0.128	0.030	2.426	0.185		
7	-0.560	0.175	-0.173	0.054	2.345	0.327		
4	-0.501	0.167	-0.110	0.028	2.229	0.149		
5	-0.483	0.171	-0.105	0.037	2.290	0.515		
		, _ , _ , _ , _ ,		0.030	2.703	0.220		
SEW1	-0.542	0.163	-0.151	0.035	2.399	0.215		
2	-0.571	0.178	0.170	0.037	2.253	0.208		
3	-0.542	0.181	· -0·172	0.037	2.044	0.204		1
4	-0.500	0.171	-0.139	0.030	2.111	0.175		
5	-0.472	0.167	-0.096	0.035	2.251	0.210		
3541	0.142	0.401	1.653	0.190	7 . 7 7	. 207		
2	0.207	0.458	1.399	0.144	2.607	0.58/		
[3	0.168	0.242	1.023	0.146	3.577	0.607		
4	-0.141	0.161	0.418	0.068	3.472	0.422		
5541	A 177	0.57	1 (01					
	0.172	0.536	1.001	0.161	2.666	0.300		
- 2	0.17.	0.445	1.433	0.110	2.800	0.247		
			{					
							•	
3 NW 1	-0.387	0.159	-0.030	0.041	2.245	0.258		
L 2	-0.414	0.160	-0.081	0.039	2.081	0.244		
C NI A								
SNU 1			_	· .		1		
- 2								
F	í í				-	(
							ļ	
-								
} .		1						
MANUNIC	107	AATA	1054 m					
100 PITOT	VAIVA	UNT IM	DATUM	DATUM	:			
ID & STATIC			[1				l
20- ATTAT		•	l í					
30 m STATI				ŀ				1
						.]

, ,

QUANTITY RECORDED PEAK PRESSURE FACTORS WIND ANGLE 233 . ROOF PITCH 5 . BRE. RUN ASY-C

		DUEST E	XTREMES	- 	HIG	SHEST	EXTREMES	
	<u>OXFO</u>	<u>RD</u>	<u>B.R.E</u>	<u>U.W.O</u>	OXFO	RD	<u>B.R.E</u>	<u> V. W. O</u>
	F=0.99	F=0.01	Single Sample	Single Sample	==0.99	F=0.01	Single Sample	Single Sample
3WW 1 2 3 4 5 6 7	- 3.58 -3.36 -3.20 -3.14 -3.22 -6.48 -5.98	-2.00 -1.76 -1.62 1.82 -1.71 -1.51 -2.24		-3.94 -3.47 -3.47 -2.91 -2.96 -3.11 -4.84	6.24 7.23 5.91 6.48 5.99 5.95 6.49	2.91 2.55 2.77 2.53 2.75 2.63 2.22	2.90 3.41 3.10 3.16 3.36 3.48 3.92	5.53 7.47 6.21 5.83 5.36 5.41 5.81
5 WW 1 2 3 4 5 6 7	-3.00 -2.62 -3.75 -2.63 -3.10 -5.19 -5.90	-1.74 -1.77 -1.63 -1.71 -1.57 -2.10 -2.37		-3.65 -3.32 -3.32 -3.17 -3.04 -3.11 -3.58	5.98 6.89 6.02 7.65 6.47 6.46 5.74	2.51 2.42 2.94 2.43 2.73 2.72 2.43	3.09 3.65 3.35 2.97 3.17 3.83 4.10	5.59 6.95 7.16 5.91 5.61 5.48 4.94
3EW 1 2 3 4 5	-7.50 -7.28 -5.11 -5.63 -7.31	-1.88 -2.37 -2.58 -2.59 -1.92	-4.42 -4.02 -4.33 -5.17 -3.63	-4.37 -5.87 -5.00 -4.33	3.3c 3.55 3.41 3.44 3.34	1.96 2.00 1.82 1.74 1.91		2.74 3.27 3.20 3.00
5 E W 1 2 3 4 5	-5.67 -6.30 -5.95 -5.91 -5.81	-2.44 -2.19 -2.47 -2.27 -2.49	-3.76 -3.98 -3.85 -3.63 -3.50	-3.84 -4.59 -4.47 -4.33 -4.77	3.10 3.46 3.24 1 .71 3.41	2.02 1.84 1.92 2.04 1.79		3.00 3.35 2.67 3.07 3.38
35W1 2 3 4	-3.97 -4.62 -7.71 -5.16	-1.53 -2.60 -2.36 -1.98	-2.31 -3.03 -4.75 -2.58	-4.06 -3.26 -4.09	4.49 4.02 6.05 5.76	1.77 1.92 2.65 2.36		4.71 3.94 4.13
55W1 2 3 4	-4.87 -5.82	-2.48 -2.97		-2.71	4 ·21 4 60	2.1 <i>9</i> 1.88	3.62 3.42	3 23
3 NW 1. 2	-8.55 -7.10	-2.26 -2.69	-4.33 -4.39	-5.33 -7.05	3.55 3.04	2.09 1.97		5.13 1.21
5 NW 1 2		•	•	-5.60 -4.33				3.33 3.07
MANHOLE				•				
ION PITOT ION STATIC 30M PITOT 30M STATIC					1 7			

- 57 -

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE WALLS

RECORDED PEAK PRESSURF FACTORS WIND ANGLE 233 . ROOF PITCH 10 ° BRE. RUN ASS-B

1		LOWEST	EXTREMEL		H1	GHEST	EXTREMES	
•	OXFC	DRD	B.R.E		OXF0	RD	BRE	i .
	-		Single				Single	
+	F=0.99	F=0.01	Sampla		F=0.99	F=0.01	Sample	
	-3.11	-1.90	1		5.45	2.43	4.25	-
•	-3.20	-1.8/			6.75	2.56	4.43	-
4	-3.06	-1.72			5.84	2.88	4.84	-
1	-3.63	-1.60			5.75	2.77	4.46	-
-	-5.50	-2.04			6.00	2.87	3.67	-
	-2,30	~2.23			6.04	2.64	2.03	-
	-3.29	-1.80			6.55	2.10	3.59	
	-3.26	-1.90			7.08	2.93	3.58	-
	-3.15	-1.95			6.11	2.95	3.95	
- 1	5.55	-1.89	1		6.02	2.86	3.95	-
	-= . 93	-1.66	1		6.09	2.63	3.50	
1	-6.40	-2.22			5.37	2.67	2.90	
í	-6.63	-2.03	-3.61		3.45	1.93		-
	-6.23	-2.47	-3.64		3.07	2.05	ι	-
	-6.26	-2.84	-2.97		3.10.	1.81		
	-1.24 -6.18	-2.58	-3.22		3.34	1.81		•
1			200					
1	-6.35	-2.25	-3.23		3.07	1.97		
	-6.74	-2.92	-3.12		5.69	1.98		•
	-5.93	-2.50	-3.27		3.69	1.92		
	-6.02	-2.53	-3.20		3.0 <i>i</i>	1.87	:	
	-4.28	-2.10			4.57	213	3.05	
-	-5.20	-2.5)			4.35	2.05	2.87	
	-7.48	-2.09			6.07	2.51	3.55	
	92	-2.02	•		5.72	2.28	2.09	
	-4 <i>.9</i> 7	-2.20			.4.21	1.79	2.96	-
	-5.91	-2.95			4.67	1.91	2.77	
			1			· ·		•
						·.	•	
	-7.20	-2.14	-4.09		3.30	1.96		
	-7.36	-2.32	-4.93	·	3.57	1.91		
			•					
	,							
		.						
1	•		:					
			1					
1								
k				1				
		1	ł		1	}	ł	

- 20 -

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE WALLS

QUANTITY RECORDED PEAK PRESSURE FACTORS WIND ANGLE 233 " ROOF PITCH 15 " BRE RUN A38-A

	Lon	IEST EX	TREMES		<u>_</u>	HIGHEST	EXTRE MES	
	. <u>0xfo</u>	20	<u>B.R.E</u>		OXF	oro	<u>B.R.E</u>	· ·
	1= 0.99	F=0.01	Single Samplo		F=0.99	F=0.01	' Single Sample	
3WW 1 2 3 4 5 6 7	-3.34 -3.37 -3.30 -3.61 -4.04 -5.64 -6.85	-1.64 -1.87 -1.83 -1.74 -1.46 -1.79 -2.16			5.40 6.62 6.96 5.24 5.18 7.22 6.07	2.22 2.56 2.23 2.79 2.48 2.41 2.59	7.38 6.31 5.22 5.32 4.56 3.40 4.15	
5 WW 1 2 3 4 5 6 7	-3.25 -3.16 -3.23 -3.42 -3.18 -5.62 -5.13	-1.88 -1.70 -1.71 -1.81 -1.73 -1.52 -2.24			6.39 7.19 6.21 7.73 6.61 6.07 5.53	2.61 2.45 2.96 2.76 2.71 2.68 2.49	6.70 7.11 6.28 5.65 4.11 4.26 4.12	
3EW 1 2 3 4 5	-4.82 -6.77 -5.18 -6.23 -5.53	-2.64 -2.03 -3.20 -2.14 -2.42	-4.22 -5.14 -5.31 -4.12 -3.37		3.29 3.00 3.10 3.42 3.07	1.90 1.96 2.04 1.80 2.03	•	
5 E W 1 2 3 4 5	-5. 96 -5.62 -5.63 -6.03 -6.24	-2.46 -2.49 -2.63 -2.36 -2.37	-3.84 -5.28 -4.78 -2.99 -2.59	,	3.50 3.22 2.88 3.28 2.76	1.90 1.95 1.73 1.81 1.78		
3 S W 1 2 3 4	-4.52 -4.84 -6.01 -4.21	-2.06 -2.69 -2.28 -2.11	-2.69 -3.50 -5.44 -2.92		4.38 5.05 5.33 5.05	2.0 <u>2</u> 1.77 2.52 2.63		-
55W 1 2 3 4	-4.77 -5.83	-2.62 -2.85			4.96 4.39	1.85 1.88	2.61 2.50	- - - -
3 NW 1 2	-7.66 -8. <i>99</i>	-2.61 -2.21	-8.08 -10.30		3.24 3.28	2.13 1.74		
5 NV 1 2			, , ,					-
				-				- - -
MANHOLE ION PITOT ION STATIC 30N PITOT 30N STATIC								

í 1

11

QUANTITY RECORDED FEAK PRESSURE FACTORS WIND AN

WIND ANGLE 248 . ROOF PI

ROOF PITCH 22 2 BRE. RUN A38-G

		LOWEST	EXTREMES		<u> </u>	IGHEST	EXTREMES	
	OXFORD		B.R.E	U.W.O	OXFO	no	B.R.G	<u>V.V. 0</u>
	F= 0.99	F=0.01	Single Sample	Single Sümple	F=0.99	15=0.01	' Single Samplo	Single Sumple
3WW 1 2 3 4 5 6 7	-3.28 -3.45 -3.00 -3.26 -2.76 -3.45 -4.09	-1.97 -1.80 -1.82 -1.70 -1.84 -1.56 -1.85		-3.50 -3.00 -3.38 -2.92 -2.81 -3.54 -3.00	7.46 7.36 6.89 7.93 6.60 6.47 6.46	2.69 2.98 3.03 2.69 2.85 3.13 3.00	4 .56 3 .10 4 .17 3 .90 3 .64 3 .52 3 .58	6.90 6.50 6.58 4.96 6.35 5.85 5.85
5 WW 1 2 3 4 5 6 7	-3.04 -3.04 -3.45 -3.02 -3.03 -2.82 -3.72	-1.83 -1.73 -1.70 -1.76 -1.69 -1.81 -1.72	•**	-3.00 -3.00 -2.88 -3.00 -2.68 -2.68 -2.57 -2.93	6.30 7.37 6.91 6.38 6.17 5.58 6.26	2.30 2.74 2.77 2.96 2.74 2.77 2.79	3.71 3.33 4.23 3.92 3.86 3.86 3.86 3.86	5.77 5.96 5.62 5.60 5.64 6.43 5.57
3EW 1 2 3 4 5	-7.29 -6.76 -6.44 -7.14 -7.36	-2.46 -2.54 -2.98 -2.32 -2.47	-3.60 -3.30 -3.52 -4.67 -3.98	-4.74 -5.53 -4.53 -4.93	3.31 2.96 3.58 3.87 3.25	1.72 1.84 1.76 2.01 1.72		2.68 2.80 3.07 2.67
5 E W 1 2 3 4 5	-6.82 -6.53 -6.61 -6.89 -6.83	-2.55 -3.15 -2.83 -2.37 -2.17	-3.73 -3.62 -3.46 -4.58 -3.73	-6.73 -6.33 -4.89 -5.47 -5.00	3.41 3.03 3.07 3.22 3.12	1. <i>95</i> 1.78 1.80 1.78 1.87		3.67 3.53 3.06 3.13 3.07
3 S W 1 2 3 4	-3.79 -6.42 -9.28 -7.36	-2.37 -2.12 -4.61 -2.45	-2.87 -2.92 -3.41 -3.02	-4.27 -5.20 -4.05	4.07 5.18 3.51 4.20	2.20 1.80 1.21 1.39		3.34 3.43 3.53
55W1 2 3 4	-7.13 -6.73	-2.78 -4.04		-4.12	3.40 3.50	1.30 1-07	3.16	2.88
3 NW 1 2	- 11 . 55 -10 . 26	-3.54 -4.40	-3.92 -4.49	-5.55 -5.23	3. <i>05</i> 3. <i>15</i>).70 1.54		3.00 2.86
5 NW 1 2	· · · · · · · · · · · · · · · · · · ·		•	-5.11 -6.63				3.11 3.32
	•							-
MAN HOLE ION PITOT ION STATIC 30N PITOT 30N STATIC								-

BUANTITY RECORDED LIND ANGLE & 233 ROUF PITCH 5 BRE. RUN A 38-C

l

	MEAN	PRESSURE	COEFFIC	IENTS	R.M.S.	PRESSURI	E COEFFK	CIENTS
	<u>B.R.E</u> .	OXFORD corrected for	U.W.0		<u>B. R. E</u>	OXFORD	<u>U.W.O</u> .	
WRIA B C D E F	-1.24 -1.54 -1.20 -0.22 -0.32	-1.22 -1.62 -1.31 -1.05 -0.77	-0.80 -0.84 -0.88 -0.77 -0.69 -0.48		1-21 0.99 0.54 0.50 0.40	0.33 0.54 0.39 0.38 0.31	0:38 0:36 0:34 0:27 0:27 0:23	
WR2A B C	-0.46	-1.22	-0.75		0.61	0.53	0.38	
- D - E - F	-0.18	-0.77	-6.73 -0.65		0.29	0.33	0.27 0.27	-
WR3A B C D E F G	-0.20 +0.12 -0.03 -0.19 +0.13	-0.94 -0.45 -0.50 -0.79 -0.64	-0.69 -0.38 -0.69 -0.61 1		0.32 0.30 0.38 0.40 0.27	0.54 0.19 0.29 0.35 0.24	0.37 0.30 0.25 0.25	-
WR4 A B C D E F	+0.34	, - 0. 3 3	-0.73 -0.23 -0.31 -0.38		0.25	0.17	0.11 0.19 0.19	-
ERIA B C	-0.40 -0.34	-0.69 -0.47	-0.61 -0.31 -0.22		0.23 0.19	0.25 0.15	0.19 0.18 0.17	- , - -
ER2 A B C D E	-0.4G +0.11	-0.91 -0.50	-0.80 -0.33		0.38 0.27	0.31 0.21	0.20 0.15	· · · · · ·
ER3 A B C	+0.41 +0.22	-1.24 -0.65	-0.88 -0.31		030	0.41 0.24	0.23 0.15	-
он - U он - L				-				-
MANHOLE ION PITOT ION STATIC SON PITOT JON STATIC	Datum	DATUM			DATUM	UATUr)		-

GUANTITY RECORDED WIND ANGLE & 233 · ROOF PITCH 10 ° RRE. RUN A39-6

.

·	MEAN	PRESSURE	COEFFICIENTS	<u>R.M.S.</u>	PRESSURE	COEFFICI	ENTS
	<u>B.R.E</u>	OXFORD corrected for		<u>B. R. E</u>	OXFORD		
WRIA B C	-0.75 -1.37 -1.14	-1.50 -1.30 -1.11		0.95 .1.00 0.54	0.65 0.45 0.35		-
- E - F	+0.01 -0.24	-0.98 -0.82		0.38 0.29	0.39 0.32		· -
WR2A B C D	-0.23	-1.00		0.56	0.46		· 1
E F	-0.09	-0.65		0.20	0.32		-
WR3A B C U E F G	-0.13 +0.18 +0.08 -0.04 +0.15	-0.73 -0.41 -0.45 -0.67 -0.56		0.36 0.28 0.29 0.36 0.26	0.50 0.17 0.24 0.30 0.21		- - - - - - - - - - - - - - - - - - -
WR4 A B C D E F	+0·22 ;	-0.35		0.26	0.15		
ERIA B C	-0.51 -0.46 -0.42	-0.74 -0.50		0.26 0.17 0.17	0.30 0.16		-
ER2 A B C D	-0.61 +0.05	-0.96 -0.56		0.46 0.27	0.32 0.23		
ER3 A B C	+0.09 -0.14	-1.43 -0.91	1	0.4 <i>9</i> 0.42	0.55 0.30		
он - U он - L			•				
							-
MANHOLE ION PITOT ION STATIC JON PITOT JON STATIC	DATUM	ijatum		DATUM	DATUM	•	
· · · · · · · · · · · · · · · · · · ·	• >	L	and the second s	1	1		

COMPARISON OF GUANTITY RECORDED MEAN . RMS CA WIND ANGLE & 233 ROUF PITCH 15 BRE. RUN A38A

1

	MEAN	PRESSURE	LOE FFIC	IEN TS	<u>R.M.S.</u>	PRESSU	IRE COEF	FICIENTS
	B.R.E	OXFORD Corrected for			<u> </u>	OXFORD		
WRIA B C	- 0.45 - 0.98 -0.84	- 0 . 8 7 - 0 . 94 - 0 . 96			0.74 0.83 0.51	0.39 0.39 0.37		-
E	+ 0. 11 -0. 29	-0.83 -0.88			0.37 0.27	0.38 0.34		-
WR2A B C	-0.19	-0.59			0.44	0.36		
. D . E F	-0.02	-0.51			0.19	0.30		-
WR3A B C D E F G	-0.05 +0.12 +0.04 -0.04 +0.05	-0.57 -0.37 -0.40 -0.50 -0.43			0.28 0.20 0.19 0.23 0.17	0.44 0.17 0.16 0.20 0.17		-
WR4 A B C D E F	+0.12	-0.41			0.19	0.16		-
ERIA B C	-0.62 -0.52 -0.48	-0.81 -0.59			0.25 0.17 0.18	0.28 0.20		-
ER2 A B C D E	-0.65 -0.17	-1.01 -0-69			0.41 0.24	0.35 0.28		
ER3A B C	+0.11 -0.47	-1.36 -0.95			0.66 0.44	0.58 0.28		
он - U он - L								
MANHOLE 10- PITOT 10- STATIC 30- PITOT 30- STATIC	VATUM	DATUM			DATVM	DATUM		
1

QUANTITY RECORDED

WIND ANGLE & 248 ROOF PITCH 222 BRE. RUN A38-G!

	MEAN	PRESSURE	COEFFIC	IENTS	<u>R.M.S.</u>	PRESSUR	E COEFFIC	IENTS
	<u>R.R.E</u>	OXFORD Corracled for pressure grad.	<u>U. W. O</u>		<u>B. n. e</u> .	<u>OXFORD</u>	<u>V. W. O</u> .	
WRIA B C D E F	-0.19 -0.38 -0.41 +0.17 -0.17	-0.42 -0.52 -0.59 -0.45 -0.68	-0.33 -0.48 -0.55 -0.55 -0.48		0.64 0.64 0.50 0.45 0.33	0.30 0.32 0.34 0.34	0.30 0.28 0.26 0.26 0.26 0.26	
WDZA			0 10			0.20	0.21	
B C D E	+0.14 +0.48	-0.21 -0.21	-0.34 -0.44		0.38 0.28	0.28	0.24 0.23	-
F WR 3 A B C U E F G	+0.14 +0.12 +0.10 +0.05 +0.12	-0.15 -0.14 -0.18 -0.22 -0.20	-0.07 -0.22 -0.33 -0.33 -0.33		0. 15 0. 15 0. 15 0. 19 0. 16	0.23 0.17 0.17 0.17 0.17 0.16	0.19 0.19 0.19 0.22 0.19 0.19	
WR4 A B C D E F	-0.22	-0.17	-0.30		0.]]	0.17	0.15	
ERIA B C	-0.60 -0.79 -0.81	-0.59 -0.59	-0.63 -0.59 -0.55		0.26 0.31 0.28	0.22 0.19	0-22 0-19 0-19	
ER2 A B C D E	-0.48 -0.53	-0.59 -0.58	-0.67 -0.67 -0.59 -0.59		0.26 0.26	0.24 0.22	0.22 0.19 0.20	
ER3A B C	-0.10 -0.36	-0.59 -0.55	-0.67 -0.59 -0.55		0.22 0.22	0.2G 0.19	0 22 0 19 0 19	
0H - U 0H - L	•		· . i					
Mourse	•		· · ·					
ITHNHOLE 10m PITOT 10m STATIC 30m PITOT 30m STATIC	ΦΑΤυΜ	<i>ΟΑΤυ</i> Μ΄			DATUM	<i>ΦΑ</i> Τυ Μ		

QUANTITY RECORDED LOWEST EXTREME CA WIND ANGLE & 233 ROOF PITCH 5 BRE. RUN A38-C (2 Sec. Average, 17 min Observation)

	_ <u>_</u>	URRENT I	SASIC DA	TA	<u>REDUCED</u> AND DIS	MODE PERSION	RANGE O	F = EXTREME LUES U'-1.527 C ($F=0.01$) -7.604 -3.162 -2.965 -2.568 -2.534 -2.302 -2.673 -2.386 -3.631 -3.400 -2.186 -3.631 -3.400 -2.186 -2.071 -2.392 -2.481 -2.408 -2.032 -2.032 -2.075 -2.270 -2.007	
	Mean Cn	RMG Cr	Mode	Dispersion	1 u-u	L' D	U'+4.600 H	u'-1.527 b	
	ju	6	a	Ь	· 6	6	(1==0.99)	(<i>[==0.01</i>)	
WRIA	-1-157	0.331	-4.329	-0.429	-9.583	-1.29G	-15.545	-7.604	
L B	-1.562	0.535	-3.799	-0.357	-4.181	-0.667	-7.251	-3.162	
L C	-1.253	0.391	-2.840	-0.280	-4.059	-0.716	-7.353	-2.965	
	007	0.281	-2 201	A 192	2.000			_	
	-0.710	0.307	-1 011	-0.183	-3.302	-0.480	-5.511	-2.568	
i i	-0.770		-1.811	-0.205	-3.340	-0.659	-6.572	-2.534	
WR2A	:								
B								*	
L C	-1.163	0.528	H2.806	-0.280	-3.112	-0.530	-5.551	-2.302	
D			1			-			
E	-0.710	0.331	-1.882	-0.188	-3.541	-0.568	-6.153	-2.673	
WRZA	-0.879	0 578	2 (:07	0 7 50	2 270				
R	-0.380	0.030	-2.69/	-0.350	-3.3/9	-0.651	-6.372	-2.386	
- c	-0.444	0.292	-1.423 -1.823	-0.223	-5.414	-1.168	-10.784	-3.631	
υ	-0.727	0.352	-1.811	-0.206	-3.080	-0.866	-8.708	-3.400	
E	-0.575	0.242	-1.319	-0.159	-3.074	-0.657	-6.007	-2.120	
- F							-8.037	-2.077	
_ G	•								
		· ·	•						
WK4 A	i								
	-0.269	01/7	0.57	A 107					
	0.208	0.167	-0.951	-0.187	-4.102	-1.120	-9.253	-2.392	
E	•					1			
F									
-	•								
ERIA	-0.631	0.251	-1.527	-0.17 <i>9</i>	-3.570	-0.713	-6.850	-2.481	
B	-0.407	0.150	-0.924	-0.102	-3.447	-0.680	-6.575	-2.408	
- L	-								
FR2 0	-0.854	0313	1977	- -	2		6.0.5		
R	-0.444	0.204	-1.823	-0.218	-3.096	-0.696	-6.300	-2.032	
Ċ		0.200	-1.15 /	-0.187	-3.401	-0.908	-7.657	-2.075	
ב									
. E			•.						
ERSA	~1.181	0.406	-2.6.25	-0.342	-3.557	-0.842	-7.432	-2.270	
15	-0.586	0.242	-1.319	-0.162	-3.029	-0.669	-6.108	-2.007	
				· ·					
он - и									
0H - L									
			t. North						
-	•	į						}	
-									
Manuara		_		•			[[
INHNHULE	DATUM	DATUM	DATUM	DATUM	ł				
ID M GOTIC			·	· ·]				
SOM PITOT								(
Jon STATIC									
	•		1						

· (2 Sec. Average, 17 min Observation)

;

.

.

QUANTITY RECORDED LOWEST EXTREME CO WIND ANGLE & 233 " ROOF PITCH 10 " BRE. RUN ASS-D

		URRENT	BASIC C	DATA	REQUCED	MODE	RANGE C	F EXTREME
	Magn Cu	I PMC C.	1 11.10	1 0	AND DISPL	CRSION ,	VAL	UES
	Liter of	<u>6</u>	u	b	$u' = \frac{u - u}{5}$	$b' = \frac{b}{6}$	U'+4.600 B	U'-1.527 b'
WRIA	-1.444	0.647	-3 178	0.217	7 144		(F=0.99)	(-=a0))
ß	-1.237	0.445	1-2.898	-0.317	-3.744	-0.490	-5.390	-2.396
c	-1.049	0.348	-2.260	-0.196	-3.480	-0.563	-6.071	-2.958
D								-2.020
	-0.916	0.391	-2.130	-0.224	-3.105	-0.573	-5.740	-2.230
	-0.760	0.5/5	-1.865	-0.232	-3.508	-0.737	-6.896	-2.383
WR2A								
B	- 041	- 157						
	-0.942	0.457	-2.336	-0.314	-3.050	-0.687	- 6.211	-2.001
Ē	-0.587	0.315	-1.73.9	-0201	-3 657	-0.020	-7 007	-2.246
F					5.057	0.324	7.307	-2.246
WR 3 A	-0.672	0.500	-2.404	-0.217	-3.464	-0.434	-5.460	-2.801
 . (-0.347	0.173	-1.204	-0.256	-4.954	-1.480	-11.761	-2.694 -
D	-0.609	0.240	-1.395	-0.191	-4.204	-0.796	-7.865	-2.989 -
Ē	-0.502	0.210	-1.136	-0.117	-3.773	-0.589	-5.824	-2.213 -
F F					1.012	-0.557	-3.302	-2.160
G	· ·							
WR4 D	•							
B								ļ .
C	-0.293	0.154	. 1-0.902	-0.146	-3.955	-0.948	-8.316	-2.507
. D	· .		• •		;			
. E							•	
							•	
ERIA	-0.683	0-285	-1.614	-0.194	-3.267	-0.681	-6.708	-2 277
B	-0.435	0.159	-0.905	-0.061	-2.956	-0.384	-4.721	-2.370
. C		[· · · ·						
ER2 A	-0.805	0.216	-1 075	0.102	2.050		5.000	2.000
B	-0.496	0.370	-1.718	-0.182	-3.254	-0.576	-5.909	-2.380
. C				-0.121	-3.021	-0.335	-6.071	-2.807
. D								<i>.</i>
. <i>E</i>								
ER3 A	-1.369	0.549	-3 146	-0.225	-7 277	-0.420	5 200	2 602
ß	-0.853	0.302	-2.016	-0.151	-1.951	-0.428	-3.206	-2.583
C				-0.757	5.251	-0.500	-0.131	-3.08/
			•					
						· ·		
оп. L.			i					
		. ·		н. - С		1 1 1		
-	•							
• •							ļ]
MANHOLE	DOTION	DATUA	0					
ION PITOT	P. (1979	UNIVE	רייעד אינו	DATUM				1
IOM STATIC								
JOM PITOT				[1
Jon STATIC			• .					}
	1	1	•	1	1 · · · ·	1	1	L

1

- 66 -

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE ROOF

QUANTITY RECORDED LOWEST EXTREME CA WIND ANGLE & 233 · ROUF PITCH 15 ° BRE. RUN A38-A. (2 Sac Augrage 17 min observation)

	<u></u>	IRRENT	BASIC DA	<u>TA</u>	REDUCED	MODE	RANGE OF	EXTREME
	Mean Cr	RHS - Cr	Mode	DISMOTSION	, U-M	1 b	U'+4.600 b'	u'-1.577 b'
	M	6	u	ь	$u' = \frac{u}{6}$	$b' = \frac{b}{G}$	(F=0.9.0)	(5-00)
WRIA	-0.806	0.385	-2.053	-0.198	-3.239	-0.514	-5.605	-2.454
ß	-0.878	0.390	-2.145	-0.215	-3.249	-0.551	-5.785	-2.407
L C	~0.902	0.367	-2.023	-0.255	-3.054	-0.695	-6.251	-1.994 -
	-0.768	0 382	-1 976	-0100	-2 770	0510		
F	-0.815	0.338	-1.780	-0. 243	-2.855	-0.719	-5.154	-1.9/8
WR2A		.•	· · · · · · · · · · · · · · · · · · ·					
B	0 5 2 2	- 3FC						-
	-0.532	0.355	-1.527	-0.190	-2.803	-0.535	-5.265	-1.986 _
E	-0.451	0.301	-1.4.80	-0.206	-1/10	-0 (91	1000	-2.270
F F			1. +00	200	5.405	-0.004	-6.367	-2.314 -
	-		_			· ·		
WR 3 A	-0.514	0.439	-2.169	-0.218	-3.770	-0.497	-6.054	-3.012 -
	-0.307	(0.168)	-0.963	-0.322	-3.905	-1.917	-12.271	-0.978 -
δ	-0.337	0.158	-0.88/	-0.146	-3.443	-0.924	-7.694	-2.032 -
E	-0.374	0.170	-0.884	-0.077	-2.915	-0.503	-5.225	-2.145 -
[F				-0.073	3.000	-0.723	-4.9/3	-2.344 -
G	•							_
WRA A	·	•	,		•			-
		}						-
Ċ	-0.353	0.157	0.787	0.045	2 7 7 0			
[D		0.755	0.705	-0.085	-2.739	-0.414	-4.645	-2.107 -
E	· ·							-
F	·						•	-
CO 1 0								-
	-0.753	0.282	-1.577	-0.142	-2.922	-0.504	-5.238	-2.153 -
Ċ	-0.530.	0.200	,-1.087	-0.095	-2.785	-0.475	-4.970	-2.060 -
			- 1		•			-
ER2 A	-0.950	0.345	-2.015	-0.214	-3.087	-0.620	-5.940	-2.140
B	-0.630	0.283	-1.475	-0.122	-2.986	-0.431	-4.969	-2.328 -
								-
				•				-
ER3 A	-1.298	0.575	-3.234	-0.256	-3.367	-0.445	-5.415	-7 687
·ß	-0.885	0.279	(-1.74-2	-0.192	-3.072	-0.688	-6.237	-2021
c c							0.237	2.021
								-
			•					-
			i					
-			,]	· ·			-
- -								
MANULA								
LINHNHOLE	DATVM	DATUM	DATAM	DATUM				
ID A STATIC								
SOM PITOT								
JON STATIC								
					2			

- 67 -

QUANTITY RECORDED LOWEST EXTREME CO WIND ANGLE & 248 ROUF PITCH 2220 BRE. RUN A38-G. (2 Sec. Average, 17min Ofservation)

	<u>()</u>	CURRENT BASIC DATA			REDUCED	MODE	RANGE OF	EXTREME
	Mean Cr	R.M.S. Cn	Mode	Oisnorsia	HND HIS	PERSION	144 600 b	UES_ 11'-1.527 b'
	M	5	u	Ь	$u' = \frac{u'}{5}$	$b' = \frac{b}{c}$	(1=-0.00)	
WRIA	-0.361	0.299	-1 441	-0.105	-3 612	- 151	(1-=0.44)	(1-=001)
ß	-0.462	0.324	-1.508	-0.162	-5.012	-0.500	-5.528	-3.076 -
c	-0.529	0.335	-1.560	-0.172	-3.078	-0.513	-5.439	-2.294
- 0	. 200							_
	-0.388	0.339	-1.223	-0.130	-2.463	-0.383	-4.227	·-1.878
[0.070	0.275	-1.432	-0.184	-2.928	-0.659	-5.962	-1.921
WR2A							-	
	0 10 9		1 0 12					-
	-0.14-3	0.215	-1.012	-0.131	-3.118	-0.476	-5.329	-2.411 _
E	-0.149	0.256	-0.926	-0.116	-3.035	-0.453	-5.120	-2.343
F								
WRZA	-0 000	0 271					0.15-	
	-0.087	0.231	-1. 14:4	-0.205	2 4. 5.//	-0.88/	-8.654	-5.216 -
[č	-0.123	0.166	-0.577	-0.012	-2.705	-0.421	-4.598	-2.018 -
L D	-0.158	0.169	-0.609	-0.066	-2.669	-0.391	-4.465	-2.072
- E	-0.14-3	0.162	-0.603	-0.066	-2.840	-0.407	-4.714	-2.217 -
		· ·						-
								-
WR4 A			1 .					-
B								-
	-0.110	0.168	-0.575	-0.085	-2.768	-0.506	-5.095	-1.995 _
F	· · ·							-
F	1. A.							-
1								-
ERIA	-0.532	0.223	-1.305	-0.173	-3.466	-0.776	-7.035	-2.282 -
Ċ	-0.328.	0.194	<u>, -1. 199</u>	-0.145	-5.459	-0.747	-6.897	-2.317 -
[- 1					-
ER2 A	-0.532	0.23.7	-1.376	-0.209	-3.561	-0.882	-7.618	-2.215
L B	-0.521	0.219	-1.458	-0.192	-4.279	-0.877	-8.311	-2.940
E				•				
						}		•
ER3 A	-0.528	0.255	-1,730	-0.350	-4.714	-1.373	-11.027	-2.618 .
	-0.489	0.188	+1.231	-0.148	-3.947	-0.787	-7.568	-2.745 .
t -								
он - и		•					1	
OH-L					1			
- 1								
h	.				· ·			•
[· · ·					•
-								
LITHNHOLE	DATUM	DATUM	DATUM	DATUM			-	
10 M STATIC) · ·	1		
JOM PITOT								
Jon STATIC	:			}	· .			
L				1	1	1		

QUANTITY RECORDED LOWEST EXTREME CO WIND ANGLE & 233 · ROOF PITCH 2220 BRE. RUN (2 Sac average 17 mm observation)

	<u>cur</u>	RENT BA	SIC DATA	<u>a</u>	REDUCED	MODE		
	Mean Co pr	<u>R.H.S.</u> CP G	Mode	Discorsion b	$u' = \frac{u - \mu}{\sigma}$	$b' = \frac{b}{6}$		
WRIA B C D E	-0.270 -0.429 -0.534 -0.308	0.296 0.320 0.313 0.281	-1.249 -1.505 -1.484 -0.933	-0.274 -0.287 -0.134 -0.087	~3.307 -3.363 -3.035 -2.224	-0.926 -0.897 -0.428 -0.310		-
F	-0.562	0.266	-1.455	-0.190	-3.357	-0.714		-
WR2A					. 1			
C D	~0.177	0.258	-0.928	-0.163	-2.911	-0.632	•	-
_ E _ F	-0.193	0.244	-0.986	-0.083	-3.250	-0.340	•	
WR 3 A C C E F G	-0.268 -0.143 -0.199 -0.242 -0.221	0.382 0.168 0.153 0.161 0.153	-1.737 -0.717 -0.605 -0.659 -0.629	-0.204 -0.155 -0.075 -0.070 -0.091	-3.846 -3.417 -2.654 -2.590 -2.667	-0.534 -0.923 -0.490 -0.435 -0.595		-
WR4 /	-0.254	0.162	· -0.772	-0.135	-3.198	-0.833		-
ERIA C	-0.785 -0.597 .	0.277 0.218	-1.713 -1.249	-0.194 -0.108	-3.350 -2.991	-0.700 -0.495		-
	-0.850 3 -0.773	0.2 <i>99</i> 0.286	-1.881 -1.689	-0.135 -0.205	-3.448 -3.203	-0.452 -0.717		
ER3 A	-0.915 -0.680	0.406 0.252	-2.491 (-1.453	-0.373 -0.136	-3.882 -3.067	-0.919 -0.540		
он - U 0 H - L ,						•		
MANHOLE ION PITO	ратим Г	NATUM	DATUM	DA TUM				
IOM STATI SOM PITO JOM STAT	с Т Гіс						,	

- 69 -

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE ROOF

GUANTITY RECORDED HIGHEST EXTREME CA WIND ANGLE & 233 ROOF PITCH 5° BRE. RUN A38-((2 Soc Average, 17 min observation)

	<u>CU1</u>	CRENT B	AJIC DATA	******	REDUCED AND DISI	MODE PERSION	RANGE OF	EXTREME VES
	Mean Cr	R.M.S. Cr	Mode	Dispersion	1' u-pa	<u>ь'</u> ь	U'+4.600 b'	Ц'-1.527 b'
	pu	6	a	Ь	4	0 = 5	(F=0.99)	(F=0.01)
WRIA	-1.157	0.331	-0.367	0.080	2.387	0.242	3.498	2.018 .
ß	-1.562	0.535	1-0.551	0.0 99	1.890	0.185	2.741	1.607 .
	-1.255	0.391	-0_443	0.083	2.072	0.212	3.048	1-747 .
E	-0.995	0.381	-0.164	0.071	2176	0102	1057	. 1001
F	-0.710	0.311	-0.198	0.030	1.646	0.096	1 2.090	1.889
		.•					2.050	
WR2 A								· .
	-1.163	0.528	0 177		1.05		0 1 0 1	
		0.528	-0.133	0.038	1.957	D.072	.2.282	1.841.
E	-0.710	0.331	-0.093	0.060	1.864	0.181	2.698	1.587
_ F			,	,			2.000	
1.020								
WH SH	-0.8/9	0.538	-0.042	0.056	1.556	0.104	2.035	1.397 .
- <u> </u>	-0.444	0.191.	-0.015	0.053	1.958	0.277	3.235	1.534 .
	-0.727	0.352	-0.119	0.039	1.592	0.134	2.207	1.389 -
E	-0.575	0.242	-0.141	0.032	1. 793	0.132	2.407	1.591
F F		. •						
_ G	•							
WR4 D				•	·			
B			•					•
[C	-0.268	0.167	. 0.099	0.041	2:198	0.251	3.354	1.814
- D					· .			
E					· .			
F	•		1				•	• •
ERIA	-0.631	0.251	-0.175	0.047	1 917	0 171	2.05	Lecc .
В	-0.407	0.150	-0.071	0.031	2.240	0.207	3.191	1.555
C	•							1.027
			3		•			
ERZ A	-0.854	0.313	-0.229	0.034	1.997	0.109	2.496	1.831
	-0.994	0.206	-0.062	0.030	1.854	0.146	2.524	1.632
D		•		1. A.				
. E	e		•					
-02 -				• •		,	•	•
ERSA	-1.181	0.406	-0.326	0.058	2.106	0.143	2.763	1.888
	-0.586	0.242	-0.130	0.036	1.884	0.149	2.569	1.657
0н-0			-					
0H - L								
- , *			4		· · ·			
		. ·						
MANHOLE				•				
ION PITOT						•		
IOM STATIC								
JOM MITOT								
אואונ הטנ					1			

,

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE ROOF

QUANTITY RECORDED HIGHEST EXTREME CA WIND ANGLE & 233 ROOF PITCH 10° BRE. RUN ASS-B

(2 Sec. Average, 17 min observation)									
· .		CURRENT	BASIC D	IATA	REDUCED	MODE	RANGE OF	EXTREME	
	Mean Cr	R.M.S. Cr	Mode	Distorsion	, u-u	. , b	4'+4.600 b'	<u>ез</u> u'-1.527 b'	
	m	6	u	Ь	u =	b = <u>-</u>	(F=0.99)	(F=0.01)	
WRIA	-1.444	0.647	-0.229	0.124	1.878	0.192	2.760	1.335	
ß	-1.237	0.445	-0.326	0.099	2.047	0.222	3.071	1.707	
C	-1.049	0.348	-0.365	0.062	1.966	0.178	2.785	1.693 -	
E D	-0.916	0.191	-0.091	0.112	2105	0.291	3 1 2 2	-	
F	-0.760	0.315	-0.221	0.037	1.711	0.117	2.251	1.532	
4024		• •						-	
WKZA	ł								
Ċ,	-0.942	0.457	-0.040	0.075	1.974	0.164	2.729	1722	
D							2.722		
. E	-0.587	0.315	-0.015	0.061	1.816	0.194	2.707	1.520 .	
. F								-	
WR 3 A	-0.672	0.500	0.031	0.057	1.406	0.101	1 20/1	1 24 4	
ß	-0.347	0.173	0.042	0.0.19	2 210	0.100	1.074	1.444-	
Ċ	-0.386	0.240	D.014	0.040	1 667	0.223	2 17	1.904 -	
υ	-0.609	0.302	-0.069	6.055	1.788	0.182	2.626	1.510	
E	-0.502	0.210	-0.083	0.031	1.995	0.148	2.674	1.770	
F									
G			1					-	
1104 4								•	
WK4 A		t.				1		-	
S S S S S S S S S S S S S S S S S S S	0.207	0.000						· · ·	
	-0.293	0.154	0.056	0.044	2.266	0.286	3.581	1.830 -	
D F			-					-	
. L F							· .	-	
•							1) ``-	
ERIA	-0.683	0.285	- 0.213	0.057	1.64.9	0.200	2 569	1.344	
ß	-0.435	0.159	-0.089	0.03.6	2.176	0.226	3.218	1.930	
C							5. 27 0		
C 2 4 4									
ERZA	-0.895	0.316	-0.264	0.041	1.997	0.130	2.594	1.799	
21	-0.496	0.227	- 0.076	0.030	1.850	0-132	2.458	1.648 .	
								•	
E	1								
ER3 A	-1.369	0.549	-0.147	0.060	1 971	0.100	2 7 7 7	1 704	
ß	-0.853	0 302	-0.302	0.000	1.071	0.109	2.3/3	1.704	
ĉ		0.302	-0.302	0.041	1.825	0.136	2.449	1.617	
OH - U									
0H - L								-	
								· ·	
	}	ļ	1					.	
•								· ·	
MANHOI E	·				1				
ION PITOT	-						, i		
IOM STATIC		{		1					
SOM PITOT		1	1	}	1		1		
Jon STATIC			ļ.						
			1		1			•	

QUANTITY RECORDED HIGHEST EXTREME CA WIND ANGLE & 233 " ROOF PITCH 15 " BRE. RUN A38-A (2 Soc Auerate, 17 min observation)

	<u></u>	IRRENT B	ASIC DATA		REDUCED AND DISPER	MODE	RANGE OI	EXTREME
	Mean Cr	R.M.S. Cn	Mode	Disrorsiur	u' u-m	L'_ b	U'+4.600 b'	u'-1.527 b'
	m	6	ja	. Ь	u = <u> </u>	0	(1==0.99)	(F=0.01)
WRIA	-0.806	0.385	-0.067	0.100	1.919	0.260	3.114	1.267 -
- C	-0.902	0.390	-0.186	0.092	2.038	0.236	3.124	1.678 -
D	0 7(0	0 307			1.557	0.256	5.12 5	1.912 -
F	-0.768	0.382	- 0.234	0.061	2.380	0.160	3.114	2.136
WP2A	,					0.1+2	2.572	1.502 -
B	:							
C D	-0.532	0.355	0.125	0.082	1.851	0 231	2.913	1.498 -
E	-0.451	0.301	0.166	0.072	2.050	0.23 9	3.150	1.685
F								-
WRJA	-0.514	0.439	0. 149	0.068	1.510	0.155	2 223	1274
B	-0.307	0.168	0.083	0.038	2.321	0.226	3.362	1.976 -
	-0.337	0.158	0.041	0.046	2.392	0.291	3.732	1.948 -
E	-0.374	0.195	0.011	0.033	2.072	0.169	2.850	1.813 -
[F		0.170		0.010	2.276	0.235	3.359	1.917 -
G				•				-
WR4 A	•							-
B	- 252	A 157						
	-0.353	0.157	0.010	0.038	2.312	0.242	3.425	1.943 -
E								-
F								· ~
ERIA	-0.753	0.282	-0.244	0.037	1.805	0.131	2 409	1605
B C	-0.530	0.200	-0.116	0.035	2.070	0.175	2.875	1.803 -
			•.					-
ER2 A	-0.950	0.345	-0.277	0.050	1.951	0.145	2.617	1.729 -
	-0.630	0.283	-0.160	0.028	1.661	0.099	2.116	1.510 -
ם ב			,					
E	-	·	,					· -
ER3 A	-1.298	0.575	-0.332	0.063	1 680	0.110	2 191	1 = 17
ß	-0.885	0.27 <i>9</i>	-0. 307	0.055	2.072	0.197	2.978	1.771 -
С								-
[он - и								
0H-L								-
-								-
-								-
-								, , , , , , , , , , , , , , , , , , ,
MANHOLE								
IOM PITOT								
JOM STATIC			:					-
JON STATIC	ł			•				
l <u>.</u>			L <u> </u>	<u></u>				11

- 72 -

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE ROOF

(2 Sac Averoxa, 17 min observation)

BRE. RUNASS-C QUANTITY RECORDED HIGHEST EXTREME CO WIND ANGLE & 248 ROOF PITCH 2220

REDUCED

.

RANGE OF EXTREME

MOPE

	CURR	ENT BASIC	IDATA		REDUCED	MODE	RANGE OF	EXTREME "
	Mean Cr	A.M.S. Cr	Mod.e	PUMPHIAM	AND DISP	ERSTON	WAZ IN	VES
	n	5	u	Ь	4=	$b' = \frac{b}{s}$	(F=0.99)	(F=0.01)
WRIA	-0.361	0.299	0 363	0.099	2 1 2 1	0 771	7 044	
ß	-0.462	0.324	0.378	0.185	2.421	0.317	5. 544 1 507	1.916
c	-0.529	0.335	, 0.224	0.086	2.248	0.257	7.203	1.956
. D					2.2.0	0.207	5.425	1.000
. E	-0.388	0.339	0.527	0.132	2.699	0.389	4.490	2 105
. F	-0.615	0.279	0.028	0.055	2.305	0.197	3.2/1	2.004
		•				а. С		
WKZA	•							
- ¹³	-0 149	0 275	10 615		9 770		1152	
D	-0.145	0.270	0.813	0.112	2.778	0.407	4.652	Z.156
Ē	-0.149	0.256	0.571	0.092	2,813	0.203	7.747	2 502
. F	•		1	0.052	2.075	- 200	5.7.17	2.502
]	
WR3A	-0.088	0.231	0.523	0.077	2.645	0.333	4.178	2.136
ß	-0-083	0.171.	0.446	0.086	3.094	0.503	5.407	2.326
_ C	-0.123	0.166	0.415	0.079	3.241	0.476	5.430	2.514 -
	-0.158	0.169	0.326	0.058	2.864	0.343	4.443	2.340
	-0. [43	0.162	0.275	0.042	2.580	0.259	3.775	2.184 .
- G	•		·					:
- 7	•					}		-
WR4 A								1
B							· ·	
C	-0.110	D. 168	0.358	0.077	2.786	0.458	4.894	2.086
D								-
<i>E</i>								
- F								
FRIA		0 112						-
R	-0.532	0.223	-0.099	0.034	1.942	0.152	2.643	1.709 -
č	-0.520	0.194	-0.135	0.020	2.026	0.103	2.500	1.868 -
_			•.					· ·
ER2 A	-0.532	0.237	-0.100	0.035	1.823	0.148	2.502	1.597
ß	-0.521	0.219	-0.094	0.024	1.950	0.110	2.454	1.782
C								
_ D			• •		· ·	[
FR3 A	-0.510	0255	0 10 1					
R	-0.489	0.232	-0.105	0.027	1.667	0.106	2.154	1.505 .
· ĉ		0,100	-0.11	0.035	2.011	0.186	2.867	1.726 .
						~		· ·
он - И		· ·						·
0H-L								
*								
•				[[
-								
-								
MANNUNE								
10 A PITOT					1	· ·		
10 M STATIC					1			}
SOM PITOT]
JON STATIC							lı	, .
-			1					

QUANTITY RECORDED HIGHEST EXTREME CO WIND ANGLE & 233 · ROOF PITCH 222 BRE. RUN _ F. (2 Soc. Avarate 17 min observation)

	CUR	RENT BA	IL DATA		REDUCED	MODE		
	Maan Cn	R.M.S. Cr	Mode	Disparsion	HNU DISP	ERSION		
	p	6	u	Ь	$u' = \frac{u}{6}$	$b' = \frac{b}{6}$		
WRIA	-0.270	0.296	0.423	0.107	2.341	0.361		
_ ß	-0.429	0.320	0.308	0.098	2.303	0.306		
. C	-0.534	0.313	0.191	0.082	2.316	0.262		2
E	0.000	0,101	0.400	0.116	2.000	0.413		
F	-0.562	0.266	-0.050	0.066	1.925	0.248		
WRZA		·	**					
B								
C C	-0.177	0.258	10.432	0.101	2.360	0.391		-
D		• .	1			-		-
- E -	-0.193	0.244	0.394	0.062	2.406	0.254		-
		-	<i>1</i> .					-
WR 3 A	-0.268	0.382	0.453	0.077	1.887	0.202		
ß	-0.143	0.168.	0.371	0.065	3.060	0.387		-
	-0.199	0.153	0.242	0.056	2.882	0.366		-
	-0.24Z	0.101	0.184	0.079	2.646	0.491		-
F	0.221		0.210	0.051	2.817	0.335		-
G	· ·			÷				-
1.100 0			٠	1			1	-
WK4 A								-
Č Č	-0.254	0.162	0.193	0.035	2.75.9	0.216		-
D			,					
_ E								-
- I ⁻								• -
ERIA	-0.785	0.277	-0.247	0.052	1.042	0100		-
В	-0.597	0.218	-0.162	0.038	1.995	0.174		
L C	3							-
ER2 A	-0950	0.200	-0.222	0.041	2067	. 177		-
ß	-0.775	0,286	-0.218	0.054	1.041	0.157		-
_ C						01103		
- D								
- E								
ER3 A	-0.915	0.406	-0.238	0.042	1.667	6.103		
ß	-0.680	0.252	-0.199	0.036	1.909	0.14.3		
c C	1		.'	· .				
'он - I)								
OH - L	-							
	e. K		ł					
-				·				
-	•							
-			1					
MANHOLE	DATUM	DATUM	DATUM	DATUM				
ION PITOT								
IOM STATIC	•			[
TOP STOTIC	t							
			,				· ·	l

QUANTITY RECORDED PEAK PRESSURE FACTURE WIND ANGLE & 233 . ROUF PITCH 5 . BRE. RUN A38-C

	LO	WEST I	EXTREMES		<u> </u>	HIGHEST	EXTREMES	
	DXEO	nn	B.R.E	<u>V. U. O</u>	OXFO	RD	B.R.E	<u>V.W.0</u>
	F=0.99	F=0.01			F=0.99	F=0.0]	singla sample	Singla Sampla
WRIA B C	- <i>15. 55</i> - 7. 2 <i>5</i> - 7. 35	-7.60 -3.16 -2.97	-3.40 -3.77 -4.34	-6.16 	3.50 2.74 3.05	2.02 J.61 J.75		2.82
	-5.51 -6.57	2.57 -2.53	-3.02 -3.53	-5.96 -6~17	3.06 2.09	1.88 1.50		* 3.00 2.83
WR2A			-		_			
	-5.55	-2.30	+3.07		2.28	· 1.84		
- <i>F</i>	-6.15	-2-67	- 5.55		2.70	1.59		
WR 3 A	-6.37 -10.78	-2.39 -3.63.	-5.04 -2.99	-5.16	2.04 [*]	1.40		2.70
C D E F G	- 8.71 -5.77 -6.10	-3.40 -2.19 -2.07	-3.68 -3.03	-7.27 -6.56 -5.32	2.20 2.32 2.40	.39 .53 .59	3.08	2.40 3.52 3.12
WR4 A B C D E F	-9.25	-2.39	•	-5.55	3 <i>.36</i>	J. 81	3.26	3.82
ERIA B C	-6.85 -6.58	-2.48 -2.41	-4.11 -3.42 -3.41	-4.26 -4.22 -3.59	2.61 3.20	1.55 1.9 2		3.79 2.78 3.06
ER2 A B C D E	-6.30 -7.64	-2.03 -2.08	-6.60	-5.20 -5.20	2.50 2.52	1.83 1.63	3.05	3.80 3.73
ER3 A B C	-7.43 -6.11	-2.27 -2.01	-4.30	-5.65 -5.07	2.76 2.57	1.89 1.66	3.14.	3.48 3.60
он - U 0 H - L	•	· · · · · ·						
	•							
MANHOLE ION PITOT ION STATIC SON PITOT 30N STATIC			1	· · · ·				

QUANTITY RECORDED PEAK PRESSURE FACTURE WIND ANGLE & 233 . ROOF PITCH 10 . BRE. RUN A38-6

		DWEST EX	TREMES		H			
	OXFORD		OXFORD B.R.E		UXFC	nn	B.R.E	
	F= 0.99	F =0.01	Single Sample		F=0.99	F=0.01	Single Sample	
WRIA B C	-5.40 -6.04 -6.07	-2.40 -2.94 -2.62	-5.42 -3.23 -3.98	· ·				
E F	-5.74 -6.90	-2.23 -2.38	-3.63 -2.88			• •		•
WR2A		·			. 1		•	
	-6.21	-2.00	-3.95				• • •	
E F	-7.91	-2.25	-3.46		. 		•	•
WR 3 A B C E F	-5.46 -11.76 -7.87 -5.82 -5.58	-2.80 -2.69 -2.99 -2.21 -2.17	-5.25 -2.39 -2.86 -3.33		2.6.7	1.77	2.56	• • • •
G G	•				•		· ·	
WR4 A B C D E	-8.32	-2.51	•		3.58).81	2.29	-
F								
ERIA B C	-6.40 -4.72	-2.23 -2.37	-3.05 -3.05 -2.13					-
ER2 A B C D E	-5.91 -6.07	-2.38 -2.81	-4.63 -1.75					-
ER3 A B C	-5.21 -6.15	-2.58 -3.09	-3.64 +3.00					-
он - U он - L ,								-
								-
MANHOLE IOM PITOT IOM STATIC JOM PITOT JOM STATIC								-
MANHOLE IOM PITOT IOM STATIC 30 M PITOT 30 M STATIC	•							

1

COMPARATIVE DATA FOR AYLESBURY TEST HOUSE ROOF

QUANTITY RECORDED PEAK PRESSURE FACTORS WIND ANGLE & 15 . ROOF PITCH 15 . BRE. RUN A38-F

r	1	•						a management and a second s	
	<u>LOWEST</u> <u>OXFORD</u>		<u>LOWEST</u> EXTREMES <u>OXFORD</u> <u>B.RE</u> Single		HIGHEST	EXTR	<u>EMES</u>		
					OXEOR	20	B.R.E		
	F=0.99	F=0.01	Sample		F=0.99	F=> 0.01	Sample		
WRIA B C D	~ 5.61 - 5.79 -6.25	-2.45 -2.41 -1.99	-3.54 -3.15 -2.72						
E F	-5.15 -6.16	~1.98 -1.76	-3.51 -4.50 1	- -			1		
WR2A B C D E F	-5.27 -6.57	-1.99 -2.37	-3.58 -4.47						
WR 3 A B C U E F G	-6.05 -12.27 -7.69 -5.23 -4.97	-3.01 -0.98 -2.03 -2.15 -2.34	-5.20 -1.76 -3.56 -2.60		3.36	1.92	2.94		
WR4 A B C D E F	-4.64	-2.11			3.43	1.94	2.87		
ERIA B C	-5.24 -4.97	-2.15 -2.06	/-3.20 -3.24 -3.29						
ER2 A B C D	-5.94 -4.97	-2.14 -2.33	-4.28 -2.43					· .	
ER3 A B C OH-U OH-L	-5.42 -6.24	-2.69 -2.02	-2.76 -3.28	· · · · · · · · · · · · · · · · · · ·					
MANHOLE ION PITOT ION STATIC SOM PITOT JON STATIC									

.

QUANTITY RECORDED PEAK PAESSURE FACTURS WIND ANGLE & 248 ROOF PITCH 22 - BRE, RUN A39-G ν.

	_ <u>_</u>	OWEST	EXTREMES		HIGHEST EXTREMES				
	PXFORD		B.R.E U.W.U		OXFO	np	B.R.C	U.W.O	
	F = 0.99	F =0.01	Single Sample	Single Sample	F= 0.99	F=0.01	Single Sample	Single	
WRIA B C	-5.23 -5.53 -5.44	-3.08 -2.60 -2.29	-3.38 -3.74 -3.31	-3.17	3.94 3.43	1.92 1.86		3.80	
D E F	-4.23 -5.97	-1.88 -1.92	-2.22	-5.19 -6.38	4.50 3.21	2.11 2.00	2.49	• 3.85 4.14	
WR2A B	-	•							
C D	-5.33	-2.41	-3.17		4.65	2.16			
E F	-5.12	-2.34			3.75	2.50	3.12		
WR 3 A B C U F	-8.65 -4.60 -5.01 -4.46 -4.71	-3.21 -2.01. -1.94 -2.07 -2.22	•** -	-7.79 -6.05 -6.23 -6.26	4 .18 5 .4) 5 .43 4 .44 3 .77	2.14 2.33 2.51 2.34 2.18	2.29 1.99 2.13 2.79 2.88	4 · 26 3 · 6 8 4 · 56 4 · 26	
G WR4 A R						7			
C D E	- 5.10	-2.00	3.27	-4.13	4.89	2.09		3.47	
ERIA B C	-7.04 - 6 .90	-2.28 -2.32	/-3.27 -3.17 -5.28	-5.50 -4.68 -5.11	2.64 2.50	1.7/ 1.87		2.86 3.11 3.26	
ER2 A B C	-7.62 -8.31	-2.21 -2.94	-3.61 -3.91	-5.68 -6.58	2.50 2.45	1.60 1.78		2.7 3 3.53	
D E			· ·						
ER3A B C	-11.03 -7.57	-2.62 -2.75	-6.58 -3.49	-6.36 -4.68	2.15 2.87	1.50 1.73	•	2.86 3.11	
0H - U 0H - L			ſ						
MANHOLE Ion Pitot Ion Static Son Pitot Ion Static									

5. DISCUSSION

It may be helpful, when reading the following comments in conjunction with the tabulated data of chapter 4 to use the hole code key which may be pulled out from inside the back cover of this report.

5.1 Regression analysis for mean and R.M.S. Pressure coefficients

The discussion of mean pressures in Part 1 drew attention to the difficulties inherent in mean pressure measurements which arise primarily from errors in the establishment of a suitable pressure reference. The data tabulated in chapter 4 of the present report includes the Part 1 results together with additional values obtained from the test house with various roof pitch angles corresponding to the full-scale runs A38 C, B, A and G.

In addition to the tabulations on pages 30, 34, 38, 42-45, 60-63 of chapter 4 limber regression analyses have now been performed for both mean and R.M.S. pressure coefficients comparing Oxford data with B.R.E. data and Oxford data with data from either Bristol or Western Ontario where applicable. These are displayed in figs. 7 to 10. The correlation coefficients from these analyses are assembled in Table 3.

TABLE	3
-------	---

SUMMARY AND INDEX OF REGRESSION ANALYSES

B.R.E. Wind Roof Da				Quantity	B.R.E. / OXFORD				OTHER TUNNEL / OXFORD					
Run Code	Kun Angle Pitch Source Code Page	Source Page	Source (Mean/RMS) Page		Correlation Coefficient	Regression Slope	Regression Intercept	Regression Fig. No.	Tunnel	Correlation Coefficient	Regression Slope	Regression Intercept		
A38-C	233 ⁰	5 ⁰	42,60	Mean	7a	0.791	0.740	0.182	9a	U.W.O.	0.972	0.834	0.163	
А38-В	233 ⁰	10 ⁰	43, 61	11	7Ъ	0.782	0.682	0.164	-	-		-	-	
A38-A	233 ⁰	15 ⁰	44, 62	11	7c	0.762	0.677	0.114	-	-	-	-	-	
A38-G	248 ⁰	22 ¹ / ₂ ⁰	45,63	**	7d	0.797	1.004	0.097	9Ъ	U.W.O.	0.952	0.883	-0.056	
A32	265 ⁰	221 ⁰	34, 38	11	7e	0.893	0.832	0.033	9c	U.W.O.	0.972 /	1.021	0.004	
A7	265 ^{0'}	Estate	30	11	· 7£.	0.747	0.529	0.193	9d	Bristol	0.902	0.807	-0.066	
A38-C	233 ⁰	5 ⁰	42, 60	R.M.S.	8a	0.669	1.098	0.035	10a	U.W.O.	0.812	0.508	0.086	
A38-B	233 ⁰	10 ⁰	43, 61		8ъ	0.828	1.140	0.004	-	-	· -	-	-	
A38-A	233 ⁰	15 ⁰	44, 62	11	8c	0.801	1.104	0.004	-	-	-	-	-	
A38-G	248 ⁰	221 ⁰	45,63	11	5 84	0.770	1.178	0.022	10Ъ	u.w.ç.	0.909	0.705	0.053	
A32	265 ⁰	221 ⁰	34, 38		8e	0.747	0.882	0.001	10c	U.W.O.	0.931	0.875	0.023	
A7	_ 265 ⁰	Estate	30	17	8f	0.768	0.915	-0.003	10d	Bristol	0.679	0.516	0.086	
A38-C	233 ⁰	: 5 ⁰	46, 51, 56 64, 69, 74	Extreme	13a	0.936	0.964	-0.048	14a	U.W.O.	0.967	1.388	0.300	
А38-в	233 ⁰	10 ⁰	47, 52, 57 65, 70, 75	11	13Ъ	0.972	1.019	0.094	-	`_	-	-	-	
A38-A	233 ⁰	· 15°	48, 53, 58 66, 71, 76	11	13c	0.952	1,365	0.348	-	-	-	-	-	
A38-G	248 ⁰	221 ⁰	49, 54, 59 67, 72, 77	TI	13d	0.979	0.961	0.025	14b _.	U.W.O.	0.977	1.437	0.165	
A32	265 ⁰	22½ ⁰	35, 36, 37 39, 40, 41	11	13e	0.982	1.125	0.057	14c -	U.W.O.	0.988	1.500	0.297	
Α7	265 ⁰	Estate	31, 32, 33	11	13f	0.961	0.887	0.322	14d	Bristol	0.976	0.861	0.152	
								1						

. . .

Taking an overall view of the correlation coefficients shown in Table 3, it may be observed that agreement with other wind tunnel results is considerably better than with full scale data. If the regression slopes are considered, then there is also an indication that agreement with full-scale data is better in the case of R.M.S. pressure coefficients than for mean pressure coefficients.

The disparity in the mean pressure results has already been discussed in part one, where the difficulty in establishing a reliable reference pressure was examined. Here, with more test house data available, the same pattern of mean pressure discrepancies is confirmed. The regression lines almost all indicate a tendency for the Oxford mean pressures to be lower than the full scale mean pressures, while the correlation coefficients between 0.7 and 0.8 indicate quite severescatter.

A closer examination of Fig. 7 reveals the interesting fact that the points plotted seem to fall into two distinct subsets. In each plot, one subset could be said to be grouped quite closely along the notional perfect agreement line of slope 1, whilst the other might be represented by a line of lower slope, but positioned above the ideal line.

Identifying some of these points with the aid of the appropriate table in chapter 4 (see Table 3 for cross-references) it is apparent, although with some exceptions, that it is the wall pressures which agree well whilst the roof pressures do not. Figure 7e has been marked to illustrate this impression and it is particularly noticeable that the worst discrepancies occur near the upstream roof edge. This, and other examples support the suggestion that the Oxford model has produced more pronounced roof suction areas near windward corners than were recorded at full scale. Other instances of this effect may be found near the windward gable edges when the wind direction has a significant component along the building axis.

- 80 -

The much higher correlation coefficients (Table 3) found in the comparison with mean pressures from Western Ontario (Apperley et al 1978) is consistent with the absence of any such pattern of discrepancies in the comparison of wind tunnel results of Figure 9.

Although transducer faults are a likely source of spurious individual results in the full scale experiments, it is unlikely that this would lead to a consistent pattern over a series of results taken at different times. Likewise, the agreement pattern between the two independent wind tunnel studies suggests that the discrepancy is not due to a fault in the wind tunnel instrumentation.

If these two propositions are true, then it must be concluded that the two small scale wind tunnel experiments have, in this case, exhibited a scale-effect problem in regions where corner separations might be expected to occur.

A curious exception to this generalisation exists in respect of the extreme windward corner holes WRIA, WRIB. In run A38 where the onset wind blows almost diagonally against this corner, the agreement between Oxford and full scale mean pressures for these holes is uncharacteristically good. At the same time however, Figure 8a to c shows that the full scale R.M.S. pressure coefficients for these two holes are exceptionally high. Run A32 does not show this effect which seems therefore to be a scale effect associated exclusively with diagonal flows.

With the exception just discussed, the R.M.S. pressure correlations of Figs. 8 and 10 show no striking features which stand out from the general scatter. The regression slopes show good agreement between the tunnel and full scale results with no general windward edge patterns which might help to explain the mean pressure discrepancies.

Comparisons with the U.W.O. tunnel in Fig. 10 show slightly better correlation coefficients. Also the distribution of points plotted is such that the agreement between the two tunnels is perhaps rather better than the very sensitive regression line slopes suggest.

- 81 -

5.2 Evidence from Spectral Analysis

Having drawn the conclusion from an examination of mean and R.M.S. pressures, that windward roof-edge flows are suspect on small scale models, it is worth examining some of the relevant spectral information to see whether any corresponding features exist in the comparison between the Oxford and full scale results. Selecting first a 'safe' pressure tapping for which the agreement in other respects is good, Figure 11 shows a comparison of Oxford and B.R.E. spectra for hole 5WW3. This comparison forms a control for the second, which is for hole WR1E at the windward edge of the roof and is displayed in Figure 12. In both cases, the Oxford spectrum is compared with two full scale spectra relating to the nominally identical runs A7 and A32 respectively. The presentation of two cases like this helps to establish the standard of judgement which must be applied when looking for differences between the model scale and full scale results.

Applying this standard of rather subjective judgement to the comparisons of Figures 11 and 12, the only obvious discrepancy, which is common to both pressure tappings, is an excess of energy in the tunnel spectrum centres around 0.02 Hz (0.5 to 0.6 Hz in the tunnel). At the time of writing, some suspicion rests upon the low-frequency stability of the tunnel speed control system. However, this does not effect the opinion of the authors that there is no significant difference between the two tappings in regard to the quality of agreement between the model scale and full-scale results.

Linking this remark with the previous observations of Chapter 5.1 it may now be noted that the mean static pressure discrepancy found near the windward roof edges is not matched by an observable discrepancy either

- 82 -

Figure 11

Spectrum comparisons for hole 5WW3

Spectrum comparisons for hole WR1E

 in the R.M.S. pressure or in the frequency content of the signal. Following this growing evidence that the discrepancy arises merely as a mean value shift with no change in the nature of the fluctuating pressure component, it is now of interest to examine the extreme value data. If the probability distribution for the pressures is genuinely unchanged but merely shifted in value, then it is to be expected that the extreme values will also be shifted but that the reduced extreme pressures will be unchanged.

5.3 Comparison of Extreme Pressures

Because of the fundamental differences discussed in chapter 4 between the present extreme-value presentation and the single point extremes reported both by Eaton and Mayne (1974) and by Apperley et al (1978) it is not easy to make a meaningful comparison.

Because the present experiments were designed to match the 17 minute full scale observation period of the B.R.E. experiments, the dispersion of the resulting extreme value data is unusually large compared with the mode. As a result, the range between the 0.99 and 0.01 quantiles, where most single sample extremes would be expected to fall, is surprisingly wide. These ranges have been tabulated partly to illustrate the futility of making any comparison or prediction in terms of single sample extremes.

On the other hand, when a linear regression analysis is used to make a generalised comparison involving a large number of separate cases, then it becomes reasonable to define agreement in terms of the modes, since in each case the mode represents the most likely value. Following this reasoning, the linear regressions presented in Figures 13 and 14 compare the single sample extremes from other experiments with the mode values taken from

chapter 4. The cases compared are listed and cross-referenced in Table 3.

Before considering the details of each comparison, it is of interest to observe from the data summary in Table 3 that the correlation coefficients are all very high. The groupings of points in Figures 13 and 14 show however that this is because both positive and negative extremes have been included, thus stretching the pattern of compared points and masking the typical scatter of the points.

The regression intercepts are all small so that the slopes can be interpreted with some confidence. These show that the Oxford data agrees very well with the full scale reduced extremes in most cases, although A38A and A7 will bear further examination.

In the A7 case, the Oxford extremes tend to be higher than both the full scale and the Bristol values, whilst the results for A38A show the Oxford extremes to be low compared with full scale.

Examining the comparison with the U.W.O. results, still on Table 3, a consistent pattern is revealed in which the U.W.O. peak factors are higher than the Oxford mode values by nearly 50 per cent.

In considering possible reasons for this discrepancy it is noted from Apperley et al (1978) that although the full-scale-equivalent averaging time used in the U.W.O. experiments was between 1 and 2 seconds, the equivalent observation time was 150 minutes. This is very much longer than the 17 minute period used in the full scale experiments by Eaton and Mayne (1974) and in the Oxford wind tunnel measurements.

The effect of observation time is examined more carefully in Part III of this report and it is shown that the discrepancy in the observation period corresponds very closely indeed with the discrepancy in the present regression line slope. Thus the results from the two wind tunnels do in fact show a

- 84 -

very encouraging agreement.

Considering the Bristol comparison, it may be deduced with some difficulty from Bray (1977) that the equivalent full scale observation period corresponding to the Bristol extreme value measurement was about 8.8 minutes. By the argument of Part III this reduced observation period might be expected to lead to the slightly lower peak factors which are in fact indicated by the regression slope for run A7 in Table 3.

Having explained the apparent discrepancies revealed in the linear regression slopes of Figure 14, it is now possible to argue that there is not obvious pattern of disagreement between the reduced extreme pressures measured at full scale and in the various wind tunnel experiments. The scatter in the linear regression analyses includes the random effects of using single sample extremes for one variate in each case and should not be taken as an indication of poor measurements.

This same scatter means that it is really not possible to complete the argument begun in Chapter 5.1 and 5.2 concerning the nature of the windward roof-edge discrepancy because, as stated at the beginning of this section, single sample extremes cannot be compared on an individual basis.

6. CONCLUSIONS

It is perhaps a fundamental characteristic of an on-line computer experiment such as this one, that the scope and quantity of the data collected is far in excess of that actually required to support the comments which have been made. Indeed, the task of surveying and interpreting the data presented here is almost inevitably beyond the scope of any single paper.

- 85 -

For this reason, no apology is made for presenting the data in full. The ultimate objective of the international collaborative research effort on Aylesbury is of course the improvement of wind-loading design codes and in that context the present work is merely another small contribution to the growing collection of data which, in due course, must be compared and analysed exhaustively. In addition to its primary purpose, it is to be hoped that the data will also provide useful raw material for quite different studies as indeed it has already done in Part III of this report.

Because the present authors are not the first to complete a wind tunnel study on the Aylesbury estate, the opportunity has arisen to make some preliminary comparisons with other data. Thus, at the present time, it was felt that the most useful subsidiary objective would be an assessment of the validity of wind tunnel tests on low-rise housing.

In Part I attention was drawn to the difficulty of defining a reliable reference for mean pressure measurements. This problem is exacerbated on a model which covers a large site area because the inevitable, and so far quite inadequately documented, wind tunnel pressure gradients are sufficient to cause quite substantial errors where the reference pressure point is some distance away from the active pressure tappings.

This problem does not affect measurements of R.M.S. pressures and it is noticeable that the comparisons of these measurements show very much better general agreement, both between different wind tunnels and between tunnel and full-scale results.

Extreme pressure measurements however, if presented as simple pressure coefficients, are affected by reference pressure errors. To avoid this influence in the present comparisons, the extreme pressures have been presented as reduced coefficients or peak factors. These describe departures from the mean value scaled in terms of the R.M.S.

- 86 -

Of the somewhat limited and generalised comments which have been made so far, perhaps the most encouraging is the overall agreement between the independent wind tunnel experiment as indicated by linear regression analysis. The scatter is not small and it seems that to claim an accuracy better than \pm 20% for any single data value would be quite unjustified on the present evidence. Nevertheless these discrepancies do seem to be random rather than systematic.

To eliminate the possibility of unsuspected correlations, of course, a detailed point-by-point survey would be required, and it must be admitted that the present examination has not been complete in this respect. Nevertheless, to the extent that wind tunnels have been shown to agree fairly well together, a base of moderate confidence is established for the examination of comparisons with full-scale measurements.

In this comparison, some non-random discrepancies have been identified. Perhaps the most significant of these is the excessive mean suction which appears to occur in all the small-scale experiments near the windward edges of roof surfaces.

It has been argued in chapter 5 that this must be a scale effect associated with modified corner-separation characteristics in the low Reynolds number experiments. However, this judgement should be accepted with some caution in view of the acknowledged difficulty (see Part 1) in establishing a reliable reference pressure for the mean pressure measurements. Thus this conclusion merely casts doubt upon the reliability of wind tunnel measurements in these sensitive corner regions and should provoke further study.

- 87 -

ACKNOWLEDGEMENTS

The work described in this report was sponsored by the Science Research Council whose financial support and personal interest is gratefully acknowledged.

The authors also wish to acknowledge the invaluable work of Mr. R.E. Belcher who built the models and kept the tunnel and computer running for many long and boring hours.

Reference is made in this report, not only to the full-scale experiments conducted at the Building Research Establishment by K.J. Eaton and J.R. Mayne, but also to the wind tunnel experiments of L. Apperley, D. Surr y, T. Stathopoulos and A.G. Davenport at the University of Western Ontario, of J.R. Holmes at the James Cook University of North Queensland, and of C.G. Bray with T.V. Lawson at the University of Bristol. Thanks are due to all these persons and organisations for permission to see and use data which was made freely available to us.

- 88 -

REFERENCES

Apperley, L. Surry, D. Stathopoulos, T Davenport, A.G.	1978	"Comparative measurements of wind pressures on a model of a full-scale experimental house at Aylesbury, England." Proc. 3rd Colloq.Ind.Aero. Aachen, June 14-16, 1978.
Barnaud, G. Gandemer, J.	1974 -	"Determination en soufflerie simulant le vent naturel des coefficients de pression sur les structures basses." C.S.T.B. (France) ADYM - 12 - 74
Bray, C.G.	1976	"Wind tunnel modelling of the wind loading on low-rise houses in a housing estate." Univ. Bristol Dissertation Nov. 1976.
Eaton, K.J. Mayne, J.R.	1974	"The measurement of wind pressures on two- storey houses at Aylesbury." J.Ind.Aero. Vol.1, No. 1, pp. 67-109. Also Building Res. Est. CP 70/74.
Eaton, K.J. Mayne, J.R. Cook, N.J.	1976	"Wind loads on low-rise buildings - effects of roof geometry." Building Res. Est. CP 1/76.
Engineering Sciences Data Uņit	1972	"Characteristics of the wind speed in the lower layers of the atmosphere": E.S.D.U. Data Item 72026.
Fisher, R.A. Tippett, L.H.C.	1928	"Limiting forms of the frequency distribution of the largest or smallest members of a sample." Proc. Camb. Phil. Soc. Vol. 24, pp. 180-190.
Greenway, M.E. Wood, C.J.	1977	"Wind Tunnel pressure measurements on the Aylesbury low-rise housing estate" Part I - Simulation design and mean pressures. Oxford Univ. Eng. Lab. Report 1213/77.
Greenway, M.E.	1978 a	"An analytical approach to wind velocity gust factors." Oxford Univ. Eng. Lab. Report 1241/78.
Greenway, M.E.	1978 Ъ	"Low speed wind tunnel subroutine software - A user's guide." Oxford Univ. Eng. Lab. Report 1251/78.
Greenway, M.E. Wood, C.J.	1978	"Notes on two techniques for estimating Fisher-Tippett type 1 extreme value probability distributions." Oxford Univ. Eng. Lab. Report 1250/78.
Gold, B. Rader, C.	1969	"Digital processing of Signals" McGraw-Hill

.

- 89 -

Gumbel, E.J.	1954	"Statistical theory of extreme values and some practical applications." Nat. Bureau of Standards (U.S.) App. Math Ser. 33.
Holmes, J.D. Best, R.J.	1977	"Wind tunnel measurements of mean pressures on house models and comparison with full- scale data." Proc. 6th Australiasian Conf. on Hydraulics Adelaide - Dec. 1977.
Holmes, J.D. Best, R.J.	1978	"Further measurements on wind tunnel models of the Aylesbury Experimental House". James Cook Univ. N. Queensland, Wind Eng. Rep.4/78.
Lawson, T.V.	1976	"The design of cladding." Building and Environment, Vol.11, pp.37-38.
Lieblein, J.	1974	"Efficient methods of extreme value methodology." Nat. Bureau of Standards (U.S.) Report 74-602.
Lieblein, J.	1975	"Note on simplified estimators for type 1 extreme value distributions." Nat. Bureau of Standards (U.S.) Report 75-637.
Mayne, J.R. Cooke, N.J.	1978	"On design procedures for wind loading." Building Res. Est. C.P. 25/78.
Newberry, C.W. Eaton, K.J. Mayne, J.R.	1973	"Wind loading on tall buildings - further measurements from Royex House." Building Res. Est. C.P. 29/73.
Newland, D.E.	1975	"Random vibrations and spectral analysis." Longmans.
Van der Hoven, I.	1957	"Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour." J. Met., Vol.14, p.160.
Wood, C.J.	1977	"The Oxford University 4m x 2m industrial aerodynamics wind tunnel." Oxford Univ. Eng. Lab. Report 1188/77. Also J. Ind. Aero., Vol.4, No.1, pp.43-69.
Wood, C.J.	1978	Unpublished communication to N.J. Cook and J.R. Mayne. 8th May, 1978.

APPENDIX A

EXTREME PRESSURE COEFFICIENT DATA

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

TUNNEL WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 TEST HOUSE FRESSURE TAFFINGS 3WW1-5EW? FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG, B.R.E. RECORD A7-A32 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CH TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CH TUBE BETWEEN SCANIVALVE AND TAFFING PRESSURE TRANSDUCER A, 21 PORTS CONNECTED PITOT 10M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

*	********	*******	******	*******	********	*******	*********	*********	*******	*****	********	********	
*	FRESSURE!	FULL	FULL	FULL 1	WIND	I WIND	I WIND		NUMBER 1	FXTEEN		F COFFFI	TTENTS *
*	TAPPING !	SCALE	SCALE	I SCALE	TUNNEL	TUNNEL	TUNNEL	TUNNEL	DE I				*
*	HOLE !	AVERAGE	OBSERVA	EQUIVA I	MEAN	DESERVA	AVERAG-	SAMPLING	SAMPLIND		1		*
*	CODE I	WIND	-TION	I -LENT I	WIND	I -TION	ING TIME	INTERVAL	INTERVALI	HAXI	1A İ	MI	NIMA *
*	!	SPEED	I TIME	I AVERAG- I	VELOCITY	I TIME	(SECS)	(mS)	OVER !				*
*	i	(H/S)	(MINS)	I ING TIME	(H/S)	(MINS)	!	I I	WHICH 1	MODE !	DISPER- 1	HODE	DISPER- *
*	1		I	I (SECS)		!	1 1		DATA WAS!	i	SION !		SICN *
*	1	1		! !		1	1	1	AVERAGED!	1	1	•	! *
*	********	*******	********	********	(********	*******	**.*******	********	*******	*******	*******	********	********
*	3WW1 !	14.3	17.0	! 2.00 !	4.913	0.66	0.078	9.7 !	8 !	1.129 !	0.242 !	-0.283	! -0.054 *
*	3WW1 - 4	14.3	17.0	3.99	4.873	0.66	0.156	39.0 !		0.940 !	0.093 !	-0.211	! -0.037 *
*	3WW1 !	14.3	16.9	! 15.85	4.782	0.67	0.632	79.0 !	8 1	0.643 !	0.062 !	-0,033	i -0.038 *
*	3WW2 i	14.3	17.0	1 2.00 1	4.913	1 0.66	0.0713	9.7 1	8 !	1.303 !	0.112 !	-0,164	! -0.050 *
*	3WW2 !	14.3	17.0	1 3.99 1	4.873	1 0.66	1 0.156	39.0 1	4 !	1,183	0.114 !	-0.075	! -0.049 *
*	3WW2 !	14.3	17.0	1 15.90 1	4.859	l 0.67	0.624	78.0 !	8 1	0.923 1	0.064 !	0.101	! -0. 035 ≭
*	3MM2 i	14.3	17.0	1 2.00 1	4.913	0.66	0.078	9.7 1	8 1	1.500	0.170	-0,098	! -0.047 *
*	3003 1	14.3	17.0	1 3.99 1	4.873	1 0.66	0.156	39.0 1	4 1	1.204 !	0.131	-0.057	! -0.054.*
*	3003 1	14.3	17.0	15.90	4.859	1 0.67	0.624	78.0 !	8 1	0.936 1	0.071 !	0.118	! -0.060 *
*	3WW4 !	14.3	17.0	2.00 1	4.913	0.66	0,078	9.7 1	8 1	1.654 1	0.224 !	-0.102	! -0.048 *
*	3004 [14.3	17.0	1 3.99 1	4.873	0.66	0.156	39.0 1	4 1	1.302	0.176 !	-0.058	! -0.041 *
*	3004 1	14.3	17.0	15.90 !	4.859	0.67	0.624	70.0	8 1	0.978	0.066 !	0.127	! -0.048 *
*	3002 1	14.3	16.9	1 • 78	5.077	0.63	0.074	9.3 1	8 I	1.718	0.176 !	-0.111	! -0.063 *
*	3005 !	14.3	17.0	3.99	4.873	0.66	0.156	39.0	4 1	1.329 1	0.127	-0.059	! -0.065 *
*	3005 !	14.3	17.0	1 15.90 1	4.859	0.67	0.624	78.0 !	8 1	0.955 1	0.123 !	0.148	-0.046 *
*	3006 1	14.3	16.9	1,98	5.077	0.63	0.074	9.3	8 1	1.659	0.154 !	-0.214	! -0.087 *
*	3006 1	14.3	17.0	3.98	4.994	0.65	1 0.152	38.0	4 1	1.265	0.149	-0.143	! -0.055 *
*	3006 1	14.3	17.0	15.90	4.859	1 0.67	1 0.624	78.0 1	8 1	0.964	0.117	0.084	1 -0.044 *
*	3007 !	14.3	17.0	2.00 1	4.963	0.65	0.077	9.6 !	8 1	1.247 1	0,135	-0.537	1 -0.088 *
*	3007 1	14.3	17.0	1 3.98 1	4,994	0.65	0.152	38.0 1	4 1	1.043	0.168	-0.400	! -0.068 *
*	3007 !	14.3	17.0	15,95	4.873	0.66	0.624	78.0	8 !	0.583	0.056	-0.135	! -0.055 *
*	5WW1 !	14.3	17.0	1 ,2.00 1	4,963	0.65	1 0.077	9.6	8 !	1.467	0.176	-0.230	! −0.072 *
*	5WW1	14.3	17.0	1 3.98 1	4.994	1 0,65	0.152	38.0 1	4 i	1.241	0.132	-0.128	-0.059 *
*	5WW1 !	14.3	17.0	15.95	4.873	0.66	0.624	78.0 1	8 1	0.832	0.100	0.046	-0.028 *

*********	*******	********	*******	*********	*********	*****	*********	**1.******	********	*******	*******	**********
* PRESSURE	I FULL I	FULL	I FULL I	WIND	WIND	I WIND	WIND I	NUMBER I	EXTRE	HE PRESSUR	E COEFFIC	CIENTS *
* TAPPING	SCALE	SCALE	I SCALE	TUNNEL	TUNNEL	I TUNNEL I	TUNNEL !	OF I				*
* HOLE	AVERAGE	OBSERVA	! EQUIVA	MEAN I	OPSERVA	I AVERAG- I	SAMPLING!	SAMPLING!		1		*
CODE	I WIND	-TION	I-LENT	WIND	-TION	I ING TIME	I INTERVAL!	INTERVAL	MAX	IMA !	MI	* AMIR
r	SPEED	TIME	AVERAG- 1	VELOCITY	TIME	I (SECS) !	(mS) !	OVER !		!		*
K i	(H/S)	(MINS)	ING TIME	(M/S)	(HINS)	! !	!!!	WHICH I	MODE	! DISPER- !	HODE	DISPER- *
۲ ۲	!!!	!	! (SECS)			!!!	!	DATA WAS!		I NOIZ !		SION *
	1 !		i i	! 1	1	!!!	· ·	AVERAGED		1 1		! *
********	********	********	**********	*********	*********	*********	*********	*******	*******	********	*****	*********
5002	! 14.3 !	17.0	1 2.00 1	4.963	0.65	1 0.077	9.6	8!	1.669	9.161 !	-0,128	! -0.058 *
5002	! 14.3 !	17.0	3.98	4.994	0.65	0.152	38.0	4 1	1.491	0.163 !	-0.019	! -0.043 *
ຽພພ2	14.3	17.0	15.95	4.873	0.66	0.624	78.0 1	8 1	1.007	! 0.129 l	0.136	1 -0.051 *
5443	1 14.3	17.0	1 2.00 1	4.963	0.65	0.077	9.6	8 !	1.708	0.156 !	-0.106	-0.075 *
5003	1 14.3	17.0	1 3.98 1	4.994	0.65	1 0.152	38.0 1	4 1	1.476	! 0.152 !	-0.040	-0.060 *
รมพว	! 14.3	17.0	i 15.95 i	4.873	0.66	0.624	78.0 !	8 1	1.041	0.094 1	0.177	! -0.037 *
5444	! 14.3	17.0	1 2.00 1	4.963	0.65	0.077	5.6	. 8 !	1.830	0.147 /	-0.039	-0.051 *
5664	! 14.3 !	17.0	1 3.97 1	4.857	0.67	0.156	39.0 !	4 1	1.529	0.127 !	-0.012	-0.044 *
5WW4	14.3	16.9	! 15.90	4,857	0.66	0.624	78.0	8 1	1.016	0.065 !	0.185	-0.055 *
รมนร	1 14.3	16.9	1.98	5.076	0.64	0.074	. 9.3	8 1	1.834	0.210	-0.101	! -0.063 *
ຽນພຽ	14.3	1 17.0	1 3.94	4.945	0.65	0.152	38.0	4 !	1.563	0.152 1	-0.018	0.052 *
5445	14.3	17.0	15.98	4.945	0.65	0.616	77.0	. 8 1	1.096	0.098	0.185	-0.036 *
5446	14.3	16.9	1.78	5.076	0.64	0.074	9.3	8 1	1.837	1. 0.162 1	-0.133	-0.040 *
5006	1 14.3	17.0	1 3.94 1	4.945	0.45	1 0.152	39.0	4 1	1.503	0.202 1	-0.044	-0.050 *
5446	1 14.3	17.0	1 15.98 1	4.945	0.45	0.416	77.0	9 i	1.047	0.099 1	0.171	-0.047 *
5007	14.3	16.9	1.78	5.076	0.64	0.074	9.3	8 1	1.477	0.232	-0.397	-0.078 *
5007	14.3	17.0	1 3.94 1	4.945	0.65	0.152	39.0	4 1	1.148	0.127	-0.309	-0.052 *
5007	14.3	17.0	1 15.98	4.945	0.45	0.616	77.0	. 8 1	0.732	1 0.096 1	-0.049	-0.049 *
35.01	14.3	16.9	1 1.90	5.076	0.64	1 0.074	9.7	8 1	0.031	0.025	1-0.949	-0.103 1
3501	1 14.3	17.0	1 7.94 1	4.915	0.45	0.157	1 38.0 1	4 1	-0.034	0.024 1	-0.859	-0.093 #
3EW1	14.3	17.0	1 15.98	4.945	0.65	0.616	77.0	8 1	-0.142	0.015	-0.634	-0.043 *
3592	1 14.3	14.9	1.98	5.076	0.64	1 0.074	9.3	R I	-0.023	0.035	-1.001	-0.171 *
3542	1 14.3	17.0	ו פסיד ו	A.001	0.45	0.152	19.01	4 1	-0.053	0.030 1	-0.875	-0.096 *
3542	14.3	17.0	1 15.91 1	A.991	0.65	0.608	76.0	8 1	-0.149	0.024	-0.615	-0.061 *
3503	14.7	1 14.9	1 1.99 1	4.997	0.45	0.076	9.5	8 1	-0.005	0.027	-0.922	-0.104 *
2503	1 14.3	17.0	1 3.98	4.991	0.65	0.152	38.0	4 1	-0.045	0.028	-0.871	-0.085 *
3543	14.3	17.0	1 15.91	4.991	0.45	0.408	76.0	8 1	-0.150	0.017	-0.611	-0.045 *
35114	1 14 7	1 14.0	1.00	A.992	0.45	1 0.074	0.5	9 I	0.004	1 0.037 1	-0.944	-0.068 *
361/4	1 14.7	1 17.0	ι 1,477 Ι 1 7,00 Ι		0.45	1 0.157	1 79.0	<u> </u>	-0.049	1 0.024	-0.844	0.110 ±
TEMA	1 14.3	17.0	: 3170 I I 15.91 I	A.001	0.45	1 0.409	56.0		-0.147	0.019	-0.612	-0.067 *
3645	1 14.7	1 14.9	1 1.99	A.987	0.45	0.076	9.5		-0.019	0.033 1	-0.972	-0.077 *
7545	1 14 7	1 17.0	1 7.00	A 001	0.45	0.157	0.97		-0.048	0.037	-0.894	-0.106 ¥
7545	1 1 4 7 1	1 1710	1 15 01 1	A 001	0.05		- 30+0 s	0 1	-0.175		-0.649	-0.043 *
3EW3	: 14+3+	1/10	1 1 3 1 7 1 1	- 4+77L 1	0,03			0 1	-0.175	; V+V2J !	-0 210	-0.043 *
	14.3	10.7	1 1.77	4.702			1 7.J		-0.004	: 0.03J !	-0.710	
JEW1 ECUI	14.3	1/10	1 15 01				38+0		-0.149		-0.504	: -0.100 #
5EW1 5600	14.3	1/10	1 10141 1		0.00			0 !	-0.140		-0.014	
JEW2	14.3	1 16.7	1 1.77	4.782	0.60	0.076	7.5		0.008	· 0.032 !	-0.710	
SEW2	14.3	17.0	3.94	4.937	0.66	0.152	38.0	4 1	-0.055	0.027	-0.841	-0.109 ¥
SEW2	14.3	1/.0	1 13.95	4.93/	0.66		//.0	8 1	-0.168		-0.630	
SEW2	14.3	16.9	1.99	4.982	0.65	0.076	9.5	8 1	0.008	0.032	-0.916	-0.096 *
SEW2	14.3	17.0	3.74	4.937	0.66	0.152	38.0	. 4 !	-0.055		-0.841	
SEWZ	14.3	17.0	1 15,95 1	4,937	0.66	1 0.616	//.0	8 1	-0.168		-0.030	
*******	********	*********	**********	**********	*********	*********	**********	*******	********	*********	*********	******

STOP ---

EXF009

.

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

TUNNEL WIND SIMULATION AS DESCRIBED IN D.U.E.L. REPGRT 1213/7: PRESSURE TRANSDUCER A, 5 TEST HOUSE PRESSURE TAPPINGS FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG. B.R.E. RECORD A7-A32 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALVE AND TAPPING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

**	*******	**	******	**	******	**	*****	****	k 🖈 :	******	*	*******	k *.	********	.*	********	*	******	****	****	***	*******	***	******	***	******	**
*	PRESSURE	1	FULL	ļ	FULL	1	FULL	1		WIND	1	WIND	1	WIND !	Ē	WIND !	·	NUMBER I	1	EXTRI	EME	PRESSU	RE	COEFFIC	TE	NTS	*
*	TAPPING	1	SCALE	1	SCALE	ł	SCALE	1		TUNNEL	1	TUNNEL	1	TUNNEL I		TUNNEL !		05 1									-*
×	HOLE	1	AVERAGE	1.	OBSERVA	1	EQUIV	A j		MEAN	j.	ORSERVA	Ì	AVERAG- 1		SAMPLING!		SAMPLING					1				*
*	CODE	I.	WIND	1	-TION	1	-LENT	1		WIND	!	-TION	1	ING TIME!		INTERVAL!		INTERVALI		MA)	KIN	A	i	MIN	IN	A	*
*		1	SPEED	1	TIME	Į.	AVERA	G- !		VELOCITY	1	TIME	1	(SECS) !		(mS) !		OVER !					!				- *
*		1	(H/S)	1	(MINS)	1	ING T	IME!		(M/S)	1	(MINS)	1	1		i		WHICH !	MOI	θE	11	DISPER-	!	MODE	D	ISPER-	*
*		!		!		ł	(SEC	5) I			!		I	!		i		DATA WASI			1	SION	!		! !	SION	*
*		!		1		Ţ		1			Ţ		ł	i		1		AVERAGED!			1		!.		!		*
**	*******	**	*******	**	*******	k * >	*****	****	k * :	******	(*)	*******	k#:	*******	i de	*******	*	*******	****	****	***	*******	***	******	***	******	"*
*	3006,	ļ	14.3	t	17.0	ļ	0.20	0 !	!	4.930	!	0.66	1	0.008 !		1.9 1		4!	2	.007	ł	0.339	!	-0.510	ب ا	-0.047	*
*	SWW1'	!	14.3	i	17.0	!	0.2	0 (l -	4.930	I	0.66	T	0.008 !		1.9 1		4 1	2	.140	1	0.252	!	-0.453	۱ ·	-0.075	*
*	5WW2	1.	14.3	1	17.0	1	0.2	0 1	ŧ.	4.930	1	0.66	1	0.008 !		1.7 1		4 1	2	321	1	0.303	1	-0.288	į .	-0.095	*
*	5EW1	!	14.3	ł	17.0	İ	0.2	0 1	t i	4.930	Ł	0.66	١.	0.008 !		1.9 !		4 1	0	.096	I.	0.028	1	-1.268	ا	-0.141	*
*	SEW2	!	14.3	!	17.0	1	0.2	0 9	!	4.930	ł	0.66	1	0.008 !		1.9 !		4 !	0	.074	1	0.037	1	-1.062	!	-0.106	*
*	SEW2	ł	14.3)	17.0	1	0.24	0 1	1	4.930	ļ	0.66	I.	0.008 1		1.9		4 1	0	.074	1	0.037	!	-1.052	ļ.	-0.106	*
**	*******	() (k)	*******	(**)	(*******	** >	*****	****	**:	******	(*)	*******	** :	********	1	******	*	******	****	****	***	*******	***	******	***	******	**
CT																											

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

TUNNEL WIND SIMULATION AS DESCRIDED IN O.U.E.L. REPORT 1213/77 21 TEST HOUSE PRESSURE TAPPINGS, PRESSURE TRANSDUCER A FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG. B.R.E. RECORD A7-A32 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALUE AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALUE AND TAPPING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

*	*******	******	******	**>	******	**	*******	***	*******	**	*******	()	*******	**	*******	***	******	***>	******	**:	*******	***	*****	**
*	PRESSURE	FULL	I FULL	! F	FULL	!	WIND	! !	WIND	1	WIND I		WIND !	!	NUMBER I		EXTREM	١E	PRESSU	RE	COEFFIC	CIE	NTS	*
*	TAPPING !	SCALE	I SCALE	! !	SCALE	Ł	TUNNEL	1 7	TUNNEL	1	TUNNEL I		TUNNEL !	ļ	OF I									- *
*	HOLE !	AVERAGE	I OBSERVA	! 8	EQUIVA	1	MEAN	1 0	OBSERVA	!	AVERAG- !		SAMPLING!		SAMPLING!					1				*
*	CODE !	WIND.	! -TION	1 -	-LENT	!	WIND	! -	-TION	!	ING TIME!		INTERVAL!		INTERVAL!		HAXI	E HA		1	MIN	11	A	*
*	į	SPEED	I TIME	1 /	AVERAG-	1	VELOCITY	1 1	TIME	!	(SECS)		(mS) !		OVER !					i				-*
*	!	(H/S)	(MINS)	1 3	ING TIME	1	(M/S)	1	(MINS)	1	i		1		WHICH 1	M	DDE I	! D1	ISFER-	!	MODE !	Γ	ISPER-	*
*	1		1	t	(SECS)	ţ		1		I	1		!		DATA WAS!			! !	SION	1	!	!	SION	*
*	!		!	!		!	,	!		!	. !		i		AVERAGED!		1	ļ		1.	į			*
*	******	*******	*******	**>	******	**	******	***	*******	**	*******	*	******	k≭k	*****	***	******	***>	*******	**>	********	***	*****	**
*	3001 !	14.3	17.0	!	0.19	!	4.866	ł	0.67	!	0.008 1		1.9		4 1		1.638		0,189	!	-0.496 !		-0.079	*
*	3002	14.3	17.0	!	0,19	1	4.866	1	0.67	1	0.008 1		1.9 1		4 1		1,848		0.202	1	-0.294		-0.065	· *
*	3003 !	14.3	17.0	!	0.19	!	4.866	1	0.67		0.008 1		1.9 1		4 1		2.004		0.242	!	-0.241		-0.063	*
*	3004	14.3	17.0	1	0.19	Ł	4.866	1	0.67	!	0.008 1		1.9 1		4 1		2.043	!	0.227	!	-0.226		-0.055	*
*	3005	14.3	17.0	!	0.19	Į.	4.866		0.67	!	0.008 1		1.9 1		4 !		2,057	!	0,223	!	-0.290 !		-0.082	. *
*	3.966 1	14.3	1 17.0	1	0.19	I	4.847	1	0.67	!	0.000		1.9 !		4 1		1.961	!	0.249	!	-0.503. !		-0.071	*
*	3007 !	14.3	! 17.0	1	0.19	1	4.847	1	0.67	1	0.008 1		1.9 1		4 1		1.942	!	0.382	1	-0.758	!	-0.110	· *
*	SWW1 !	14.3	17.0	!	0.19	1	4,847	1	0.67	!	0.008 1		1.9		4 1		2.165	!	0.324	I.	-0.490		-0.088	*
*	5WW2 !	14.3	1 17.0	1	0.19	ł	4.847	1	0.67	1	0.008		1.9 !	!	. 4 1		2.384	t	0.204	ļ	-0.319		-0.060	*
*	5443 !	14.3	! 17.0	!	0.19	I	4.847	i	0.67	1	0.008 1		1.9		4 1	:	2.444	ł	0.251	!	-0.294		-0.085	*
*	5WW4 !	14.3	! 17.0	i	0.20	1	4.730	1	0.67	!	0.008 1		2.0 1		4		2.321	!	0.242	!	-0.228		-0.049	*
*	SWW5 !	14.3	! 17.0	1	0.20	Į.	4.730	1	0.69	I.	0.008		2.0 1		4 1		2.263		0.281	1	-0.245		-0.076	*
*	5WW6 !	14.3	! 17.0	!	0.20	1	4.730	1	0.69	1	0.008 1		2.0 1		4		2.401	1	0.310	1	-0.340	E .	-0.062	*
*	SWW7 !	14.3	! 17.0	!	0.20	Į.	4.730	!	0.69	1	0.008 1		2.0 1		4		1.893	!	0.201	!	-0.710 !		-0.069	*
*	3EW1 !	14.3	! 17.0	!	0.20	1	4.730	i	0.69	1	0.008 1		2.0 1		4 1		0.112	!	0.030	!	-1.138		-0.180	. *
*	3EW2 !	14.3	! 17.0	1	0.19	I	4.814	1	0.67		0.008 1		1.9		4	4	080.0	!	0.034	!	-1.168		-0,118	*
*	3EW3 !	14.3	1 17.0	1	0.19	1	4.814	1	0.67	1	0.008		1.9 1		4 1	1	0.071	!	0.035	1	-1.083		-0.150	*
*	3EW4 !	14.3	1 17.0	!	0.19	1	4.814	1	0.67	1	0.008 1		1.9 1		4 1		0.139		0.056	!	-1.136		-0.109	*
*	3EW5 !	14.3	17.0		0.19	1	4.814	1	0.67	!	0.008 1		1.9		4 1		0.092	!	0.034		-1.268		-0.225	. *
*	5EW1 !	14.3	1 17.0	!	0.19	!	4.814	!	0.67	!	0.008 1		1.9		4		0.121	!	0.029	1	-1.2/5		-0.1/2	
*	SEW2	14.3	1 17.0	1	0.19	!	4.785	1	0.68	1	0.008 1		1.9 1		4 1		0.082	!	0.034	1	-1.201	1	-0.093	· •
*	SEW2 !	14.3	1 1/.0	1	0.19	1	4./85	1	V,68	1	0.008 1		1.9 1	1	4 1	ا	0.082	1 	0.034	۱ سند	-1.201	! • • •	-0.093	*
*	********	******	*********	**)	******	жX	*******	**)	******	**	*******	L #	*****	* *	*******	***	******	***	******	**:	*******		******	4."

STOP --

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

TEST HOUSE HOLES SET 2, EXTREME VALUES 2,4,16 SECOND AVERAGES TUNNEL WIND SIMULATION AS DESCRIBED IN 0.U.E.L. REPORT 1213/77 17 TEST HOUSE PRESSURE TAPPINGS, PRESSURE TRANSDUCER A FULL MOBEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7-A32 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALVE AND TAPPING PITOT 10 M AROVE REFERENCE ANEMOMETER SITE

PROCESSED DATA 1-

*********	********	*******	******	********	******	*****	******	*******	********	*******	*********	*********
* PRESSURE!	FULL	FULL	I FULL	I WIND	WIND	I WIND	WIND	NUMBER !	EXIREN	IE FRESSUR	E COFFFIC	IENTS *
* TAPPING	SCALE	SCALE	I SCALE	! TUNNEL	I TUNNEL	I TUNNEL	TUNNEL	1 OF 1				*
* HOLE !	AVERAGE	DASERVA	! EQUIVA	I MEAN	I OBSERVA	I AVERAG-	SAMPLING	I SAMPLING!				*
* CODE !	UND UNIW	NOIT-	! -LENT	I WIND	NOIT- !	I ING TIME	I INTERVAL	I INTERVALI	HAXI	INA !	MIN	łIMA ≭
*	SPEED	TIME	1 AVERAG-	I VELOCITY	I TIME	(SECS)) (mS)	I OVER !		!		*
*	(8/5)	(MINS)	I ING TIME	! (M/S)	I (MINS)	1	1	I WHICH !	MODE	DISPER- !	NODE !	DISPER- *
*		1	(SECS)	1	1	1	!	I DATA WAS!	!	SION !	!	SION *
*			!	1	!	!	!	AVERAGED!		l I	. !	*
*********	********	*******	*******	*******	****	*********	*********	*********	********	**********	*********	*********
* 3591	14.3	17.0	2.00	! 4.953	0.65	! 0.0//	9.6	. 8 .	0.327	0.224	-1.657	-0.251 ×
* 3501	! 14.3	17.0	1 3.99	1 4.877	0.66	0.156	9.0	1 4 1	0.149	0.137	-1.558	-0.126 *
* 35W1	14.3	17.0	1 15.96	4.877	1 0.66	0.624	1 78.0		-0.275	0.064	-1.184	-0.113 *
¥ 35W2	14.3	17.0	2.00	1 4.953	0.65	1 0.077	9.6	9 9	0.348	0.135	~1.756 !	-0.165 *
¥ 35W2	14.3	17.0	1 3.99	4.877	0.66	1 0.156	1 39.0	1 4 1	0.190	0,082	-1.528 !	: -0.127 ×
* 35W2	14.3	17.0	1 15.96	4.877	0.66	0.624	78.0	8	-0.207	0.067	-1,166	-0.090 *
* 3503	14.3	17.0	1 2.00	1 4.953	0.65	1 0.077	9.6	1 8 1	0.219	0.068	-1.440 !	-0.153 *
* 3503	14.3	17.0	3.99	1 4.877	0.66	0.156	1 39.0	4 1	0.153	0.038	-1.215 !	-0.14/ *
* 3563	14.3	17.0	15.96	4.877	0.66	0.624	1 78.0	9 8 1	-0.057	0.040 !	-0.900 !	-0.103 *
* 3504	14.3	17.0	2.00	1 4.953	0.65	0.077	9.6	1 8 1	0.086	0.039	-0.989 !	-0.124 *
× 3504 !	14.3	17.0	1 3.99	4.877	! 0.66	1 0.156	1 39.0	4	0.013	0.038	-0.840 !	-0.098 ×
¥ 35W4 I	14.3	17.0	15.96	1 4.8//	0.66	0.624	1 78.0	1 8 1	-0.100	0.014	-0.530 !	-0.066 *
* 3NW1	14.3	17.0	2.00	1 4.953	0.65	0.077	9.6	1 8 1	-0.032	0.059	-1.483	-0.16/ *
* 3NW1	14.3	17.0	1 3.99	1 4,877	0.66	0,156	39.0	4 1	-0.108	0.042	-1.301	-0.125 *
¥ 3N⊎1	14.3	17.0	15.96	4.877	0.66	0.624	78.0	1 8 1	-0.285	0.032	-0.963	-0.091 *
* 3NW2	14.3	16.9	1,98	1 4.914	0.66	0.077	9.6	1 8 1	-0.092	0.057	-1.655	-0.232 *
* 3NW2	14.3	17.0	1 3.92	4.914	0.66	0.152	38.0	9 4 1	-0.200	0.033	-1.531	-0.181 *
* 3NW2	14.3	16.9	15.88	1 4.914	1 0.65	0.616	77.0	1 8 1	-0.342	0.037	-1.126	-0.148 *
¥ WR1A	14.3	16.9	1.78	4.914	1 0.66	1 0.077	9.6	1 8 1	0.137	0.093	-1.770	-0.175 *
* WRIA	14.3	17.0	1 3.92	1 4.914	0.66	0.152	1 38.0	1 4 1	-0.117	0.056	-1.535	-0.199 *
¥ WRIA	14.3	1 16+9	1 13,88	1 4.914	0.65	0.616	1 77.0	1 8 1	-0.355	0.044	-1.188	-0.083 ×

EXP011

* PRESSURE	I FULL	FULL	I FULL	WIND	I WIND	I WIND	WIND !	NUMBER I	EXTREM	IE FRESSUA	COEFFI	CIENTS
* 1005	I AUFRAGE	I DESERUA	I FOUTUA	MEAN	I DREEPUA	I AUERAG-	I TUNNEL I	SAMEL THE				
* CODE	I WIND	I -TION	I -LENT	WIND	I -TION	I ING TIME	INTERVAL	INTERVAL	HAX	(HA	118	AHIA
*	SPEED	I TIME	AVERAG-	VELOCITY	TIME	I (SECS)	(mS)	OVER I				
*	((M/S)	(MINS)	I ING TIME	(H/S)	(MINS)	t	1	WHICH 1	HODE I	DISPER-	HODE	DISPER-
*	!	!	I (SECS)		ŀ	1	1 1	DATA WAS!	1	SION		SION
*	1	!	1		!	1	1	AVERAGEDI	1			1
*******	********	*********	*****	******	*****	********	*********	*******	********	*********	********	*******
* WRIE	14.3	1 17.0	1 2.00	4.813	0.67	0.079	9.9	8 1	0.005	0.162	-1.695	-0.176
* WRIE	14.3	17.0	3.94	4.813	0.67	0.156	1 39.0 1	4 1	-0.132	0.098	-1.564	1 -0.175
* WRIE	! 14.3	17.0	1 15,95	4.813	0.67	1 0+632	1 79.0 1	8 1	-0.368 1	0.044	-1.125	-0.085
* WR3A	! 14.3	17.0	1 2.00	4.813	1 0.67	1 0.079	9.9	8 1	0.373	0.061	-0.752	! -0.095
* WR3A	14.3	17.0	1 3.94	4.813	0.67	1 0.156	39.0	4 1	0.224	0.044	-0.610	-0.075
# WR3A	14.3	17.0	1 15.95	4.013	0.67	0.632	79.0	8 1	0.039	0.025	-0.389	-0.051
* WRJB	1 14.3	17.0	1 2.00	4.813	0.67	0.079	9.9!	8 1	0.378	0.067	-0.640	-0.092
* WR3B	! 14.3	17.0	1 3.94	4.813	0.67	1 0.156	1 39.0 1	4 1	0.261	0.052	-0.551	-0.071
* WR38	1 14.3	! 17.0	1 15.95	4.813	9.67	1 0.632	1 79.0 !	8!	0.044	0.026	-0.344	-0.035
* WR3C	14.3	! 17.0	1 2.00	4.813	0.67	0.079	9.9	8 (0.325 !	0.065	-0.677	-0.074
* WF3C	! 14.3	! 17.0	1 3.94	4.813	0.37	1 0.156	39.0	4 1	0.194 !	0.063	-0.556	i -0.029
* WR3C	! 14.3	! 17.0	1 15.95	4.813	9.67	1 0.632	1 79.0 1	8 !	0.021	0.029	-0.366	! -0.057
* WR4A	! 14.3	17.0	! 2.00	4.813	1 0.67	1 0.079	9.9 !	8 !	0.086	0.034	-0,089	1 -0.087
¥ WR4A	! 14.3	17.0	1 3.94	4.813	0.67	1 0.156	1 39.0 1	4 ł	0.010	0.023	-0.884	1 -0.161
* UR4A	14.3	17.0	! 15.95	4.813	0.67	0.632	1 79.0 1	8 1	-0.114	0.026	-0.535	-0.057
* WR4E	1 14.3	17.0	1 2.00	4.758	0.68	1 0.000	1 10.0 1	8 1	0.018	0.032	-0.838	1 -0.117
* WR4E	1 14.3	! 17.0	1 3.99	4.758	0.68	0.160	1 10.0 1	4 !	-0.042	0.034	-0.749	1 -0.085
* UR4E	! 14.3	17.0	1 15,97	4.758	1 0.49	1 0.640	1 80.0 1	9 1	-0.153 !	0.019	-0.568	-0.062
* ER1A	14.3	17.0	2.00	4.758	0.68	1 0.080	1 10.0 1	8 1	-0.040 1	0.024	-1.203	! -0.156
* ER1A	1 14.3	1 17.0	1 3.99	4.758	0+68	0.160	1 40.0 1	4 1	-0.110	0.041	-0.978	-0.095
* ER1A	! 14.3	17.0	1 15.97	4.758	1 0.68	1 0.640	1 80.0 1	8 1	-0.230	0.033	-0.756	! -0.082
* ER1B	! 14.3	! 17.0	1 1.99	4.704	1 0.69	1 0.081	10.1	8 I	-0.066	0.049	-1.180	1 -0.129
* ER1B	14.3	1 17.0	1 3.95	4.704	0.69	1 0.160	1 40.0 1	4 1	-0.143	0.034	-1.082	! -0.113
* ER1B	14.3	17.0	1 15.99	4.704	1 0.69	1 0.648	i 91.0 i	1 8	-0.261	0.028	-0,847	! -0.071
¥ ERZA	! 14.3	17.0	1 1.99	4.704	0.69	1 0.091	10.1	8 1	-0.033	0.029	-1.185	! -0.210
¥ ER2A	1 14.3	17.0	1 3.95	4.704	0.69	1 0.160	40.0 1	4 !	-0.116	0.039	-1.158	1 -0.179
* ER2A	! 14.3	17.0	1 15.99	4.704	0.69	0.648	1 81.0 1	8 1	-0.233 1	0.018	-0.827	-0.069
* ER3A	1 14.3	17.0	1 1.99	4.704	1 0.69	1 0.001	1 10.1 1	8 1	-0.016	0.035	-1.559	1 -0.370
* ERJA	1 14.3	17.0	1 3.95	4.704	0.69	1 0.160	1 40.0 1	4 1	-0.097	0.038	-1.295	! -0.237
* 5974	1 14.3	1 17.0	1 15.99	4.704	0.69	1 0.648	B1.0	8 1	-0.233	0.020	-0.827	-0.084

-

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

TEST HOUSE HOLES SET 2, EXTREME VALUES 0.2 SEC AVERAGES TURNEL WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 17 TEST HOUSE PRESSURE TAPPINGS, PRESSURE TRANSDUCER A FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7-A32 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALVE AND TAPPING PITOT 10 H ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

*	*******	*******	******	*****	*****	**	*******	***	******	**:	*******	**	*******	***	******	*******	********	**:	*******	***	*****	**
*	PRESSURE	FULL	! FULL	I FUL	L	1	WIND	1 W	IIND	1	WIND	I	WIND	1 1	UMBER I	EXTRE	ME PRESSU	RE	COEFFIC	IEN	TS	*
*	TAPPING !	SCALE	I SCALE	1 SCA	ILE.	1	TUNNEL	! T	UNNEL	1	TUNNEL	ł.	TUNNEL	! (DF !							-*
*	HOLE !	AVERAGE	I OBSERVA	1 EQU	JIVA	1	MEAN	! 0	DESERVA	Ŧ	AVERAG-	!	SAMPLING	! 5	SAMPLING!			!				*
*	CODE !	WIND	1 -TION	! -LE	TM	!	MIND	I -	-TION	1	ING TIME	!	INTERVAL	1]	INTERVALI	HAX	IHA	!	MIN	IMA		*
*	· · · · · ·	SPEED	! TIME	I AVE	RAG-	1	VELOCITY	! T	IME	1	(SECS)	ţ	(n,S)	! (OVER !			!				- *
*	. !	(H/S)	! (HINS)	! ING	; TIME	!	(H/S)	I .	(HINS)	1	1	!	!	! L	HICH 1	MODE	I DISPER-	!	NODE !	DIS	SPER-	*
*			1	1 (S	SECS)	1		ł		1	1	1	1	1	DATA WAS!		I SION	1	i	S	ION	*
*	·	والمروان والمروان والمروان والمروان	!			!		1		1		1		l f	VERAGED!		!	!	!			*
*	*******	*******	********	*****	*****	**	*******	***	******	кж)	*********	**	*******	***	********	********	*********	***	********	***	*****	F# -
×	35W1: !	14.3	17.0	1 0	0+20	!	4.955	I.	0.65	1	0.008	1	1.9	!	4 !	0.748	0.216	!	-2.401 !	-(0.275	*
*	3592 !	14.3	17.0	! 0	0.20	!	4.935	!	0.65	1	0.000	!	1.9	!	4 !	0.704	0.207	1 ·	-2.500 !	-(0.255	*
*	3543 !	14.3	! 17.0	! 0	1.20	!	4.955	!	0.85		0.008	!	1.9	!	4 1	0.416	0.102	!	-1.890 !	-(0.207	*
*	3584 !	14.3	! 17.0		/ 20		4,955	!	0.65	1	0.008	!	1.9		4 !	0.272	0.053	!	-1.397 !	-(0.155	*
*	37/01 !	14.3	1 17.0	1 0		!	4.955	1	0.60	1	0.008	!	1.9	1	4 !	0.158	0.060	!	-1.982 1	-(0.214	*
*		14.3	1 17.0		1.19	!	4.781		0.68	1	0.008	!	1.9		4 1	0.115	0.093	:	-2.320 !	(0.300	*
*	- WKIA !	14.3	1 17.0	1 0	1.19	!	4.781	1	0.08	-	0.008	!	1.9	!	4 1	0.749	0.121	!	-2.778	-0	0.287	*
÷		14.3	1 17.0	· ·	1.19	1	4.781	1	0,68	1	0.008	!	1.9		4 1	0,584	0.210	:	-2.014 !	-(0.273	*
÷.	WA3A !	14.3	17.0	1 0	X + 1 7	!	4.781	1	0,08	-	0.000	1	1.9	!	4 1	0.723	0.095	1	-1.248	. ~ (0.233	1
1		14.3	1 17.0			1	4.781	!	0.68	-	0.008	1	1.9	:	4 !	0.673	0.091	:	-1.081 !		0.224	1
÷		14+3	1 17.0	1 0	1.19	1	4.827	!	0.07	1	0,008	:	1.7	1	4 1	0.652		1	-1.0003	-(0.149	*
Ĵ	- WAAAA !	14.3	1 17.0		10	1	4.827	1	0.07		0.008	:	1.7		4 1	0.282		:	-1.230 :		0.203	÷
*	WR4E !	14.5	17.0	1 0		!	4.786	!	83.0	1	0.008	1	1.9	!	4 !	0.138	0.081	:	-1.038 1	-(0.091	*
*	ENIA !	14.3	17.0	! 0		1	4.786	1	0,68	-	0.008	1	1.9	!	4 1	0.097	0.033	!	-2.0(1.1		0.330	÷.
÷.	ENIB !	14+3	17.0	1 0			4.786		0.08	1	0.008	!	.1.9	!	4 1	0.037	1 0.032	1	-2.001 1	_	V.200	1
*	ERZA !	14.3	! 17.0	1 0).19 	!	4.786	!	0.68	1	0.008	1	1.9	!	4 1	0,113	0.039	1	-1.493 !	-1	0.1/3	*
	EKJA !	14.5	1 1/.0	1 0	/*12 /*12	1 	4./86	ا سىسى			0.008	! •••	1.7	ا دىدە	4 !	U.032	1 0.038	1 ***	-1.001 !		U.231	**
-	*********	*****	*****	****	*****	* *	****	₩ #	******		********	* #	*******	***	*******	*****	********	***	*****	***	*****	**
3	1ur																					

.

. ..

1

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

ESTATE HOUSES 70,76,83, EXTREME VALUES, 2,4,16 SEC AVERAGES TUPNEL WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 PRESSURE TRANSDUCER A FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALVE AND TAPPING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

*	********	******	********	******	*******	********	*********	*****	******	******	*******	********	********
*	PRESSURE!	FULL !	FULL	I FULL	WIND 1	WIND	I WIND	WIND	NUMBER !	EXTREM	E PRESSUR	E COEFFIC	IENTS *
*	TAPPING !	SCALE	SCALE	SCALE	TUNNEL	TUNNEL	TUNNEL	I TUNNEL	! OF !				**
*	HOLE	AVERAGE	OPSERVA	EQUIVA	MEAN	OUSERVA	AVERAG-	SAMFLING	SAMPLING!		!		*
*	CODE	WIND	-TION	I -LENT	I WIND	-TION	ING TIME	INTERVAL	INTERVAL!	HAXI	HA I	MIN	IMA *
*	1	SFEED	TIME	I AVERAG-	VELOCITY!	SMIT !	(SECS)	(mS)	OVER !		!		**
*	i	(M/S)	(MINS)	ING TIME	(M/S)	(MINS)	1	!	WHICH !	HODE 1	DISPER- 1	MODE	DISPER- *
*	!	1		(SECS)	!!!	1	!	1	DATA WAS!	!	SION !		SION *
*	1	1		•	· · ·		1	1	AVERAGED!		1	i	*
*	*******	*******	*********	******	*********	*******	****	*********	******	*********	********	********	********
*	70WG1 !	14.3	16.9	1.78	4.776	0.68	0.079	9.9	. 8 !	1.734 1	0.187 1	-0.250 !	-0.057 *
*	70UG1 !	14.3	17.0	3.91	4.776	0.68	0.156	39.0	4	1.370	0.147 1	-0.132 !	-0.052 *
*	70WG1 [14.3	16.9	15.83	4.776	0.67	0.632	79.0		0.857 !	0.081 1	0.102 1	-0.037 *
*	70HR1 !	14.3	16.9	1.78	4.776	0.68	0.079	9.9	1 8 1	-0.314 !	0.054 1	-1,756 !	-0.158 *
*	70NR1 !	14.3	17.0	3.91	4.776	0.68	0.156	39.0	4 1	-0.397 1	0.036 1	-1.630	-0.122 *
*	70NR1 !	14.3	16.9	15.83	4,776	0.67	0.632	79.0	9	-0.535 !	0.038 !	-1.276	-0.078 *
*	705R1A !	14.3	16.9	1.98	4.776	0.68	0.079	9.9	8 1	-0.346 1	0.080 !	-2.673	-0.308 *
*	705R1A	14.3	17.0	3.91	4.776	0.68	0.156	37.0	4 1	-0.438 1	0.087 1	-2,454	-0.118 *
*	705R1A !	14.3	16.9	15.83	4.776	0.67	0.632	79.0	1 8 1	-0.729 1	0.056 !	-1.850 !	-0.102 *
*	70SR18	14.3	16.9	1.78	4.776	0.68	0.079	9.9	. 8 1	-0.114 !	0.023	-1.242 !	-0.171 *
*	70SR18 !	14.3	17.0	3.91	4.776	0.68	0.156	39.0	4	-0.171 !	0.035 !	-1.083 !	-0.135 *
*	705R18 !	14.3	16.9	15.83	4.776	0.67	0.632	79.0	8 1	-0.262 !	0.018	-0.768 1	-0.072 *
*	705R2A	14.3	16.9	1,78	4.776	0.60	0.079	9.9	8 1	-0.174 1	0.047 1	-1.812	-0.186 *
*	705R2A 1	14.3	17.0	3.71	4,776	0.68	0.156	39.0	4	-0.264 !	0.052	-1.599 !	-0.198 *
*	705R2A !	14.3	16.9	15.83	4.776	0.67	0.632	1 79.0	. 8 .	-0.410 !	0.032 !	-1.210 !	-0.109 *
*	705R2B	14.3	17.0	1.99	4.893	0.66	0.078	9.7	1 8 1	-0.071 /	0.026 1	-0.855	-0.084 *
×	705R2R	14.3	17.0	3.90	4.893	0.66	0.152	1 38.0	1 4 1	-0.135	0.031	-0.727	-0.071 *
*	705R28 I	14.3	16.9	15.81	4.893	0.66	0.616	77.0		-0.210	0.016 1	-0.549	-0.062 *
*	705R3A	14.3	17.0	1 1.99	4.893	0.66	0.078	9.7	1 8 1	-0.533	0.042	-2.590 1	-0.297 *
*	705R3A 1	14.3	17.0	3.90	4.873	0.66	0.152	38.0		-0.573 1	0.053	-2.385	-0.317 *
*	705R3A 1	14.3	16.9	15.81	4.893	0.66	0.616	77.0	1 8 1	-0.753 1	0.054 1	-1.787	-0.163 *

* PRESSURE	I FULL	! FULL	! FULL	WIND	I WIND	I WIND	WIND !	NUMBER 1	EXTRE	ME PRESSU	RE COEFFI	CIENTS
<pre>* TAPPING</pre>	I SCALE	I SCALE	I SCALE	I TUNNEL	I TUNNEL	I TUNNEL I	TUNNEL !	0F !				
* HOLE	! AVERAGE	I OBSERVA	EQUIVA	I MEAN	OBSERVA	! AVERAG-	SAMPLING	SAMPLING!			!	
* CODE	i MIND	! -TION	I -LENT	! WIND	/ -ТІОN	I ING TIME	INTERVAL!	INTERVAL!	MAX	IMA	I NI	NIMA
*	! SPEED	I TIME	! AVERAG-	VELOCITY	I TIME	I (SECS)	(mS) !	OVER !	~~~~~~		!	
*	! (M/S)	! (MINS)	I ING TIME	I (M/S)) (MINS).	1 1	I	WHICH	HODE	1 DISPER-	I HODE	! DISP
*	1	1	I (SECS)	· ·	ł	1 !	. !	DATA WAS!		SION	1	! \$10
*	i	!	!	l	ł	! 1	· · · · ·	AVERAGED!		1	F	i.
********	*******	*******	*********	********	********	*********	*******	******	*******	********	********	*****
* 76WW2	! 14.3	! 16.9	1.99	4.879	9.66	1 0,078 1	9.7 !	8!	1.110	1 0.204	1 -0.299	1 -0.
* 76442	! 14.3	17.0	1 3.99	4.879	. 0.66	1 0.156 1	39.0 !	4 !	0.854	9.118	-0.195	1 -0.
* 76892	1 14.3	! 17.0	1 15.97	4.879	0.66	1 0.624 1	78.0 !	6 [0.483	0.079	-0.038	1 -0.
* 76WR2	! 14.3	! 16.9	1.79	4.879	0.66	0.078	9.7	8 1	0.051	1 0.042	-0.744	! -0.
* 76₩R2	1 14.3	! 17.0	3.99	4.879	0.66	0.156	39.0 !	4 1	-0.039	1 0.023	9.625	! -0.
* 76UR2	1 14.3	1 17.0	15.97	4,879	0.66	0.624 1	78.0 1	8 I	-0.176	0.021	-0.470	! -0.
* 76ER2	1 14.3	1 16.9	1.79	4.879	0.66	1 0.078	9.7 !	8 !	-0.253	0.032	-1,188	1 -0.
* 76ER2	14.3	1 17.0	3.99	4.879	0.66	0.156	39.0 1	4 1	-0.313	0.021	-1.063	! -0.
¥ 76ER2	14.3	17.0	1 15.97	4.879	0.66	0.624 1	78.0 1	8 !	-0.396	0.022	-0.851	1 -0.
* 76ER1	1 14.3	1 16.9	1.99	4.881	0.66	1 0.078	9.7	8 1	-0.268	0.018	-1.234	1 -0.
* 74FR1	1 14.3	17.0	1 3.99	4.881	1 0.66	1 0.156	79.0 1	<u> </u>	-0.311	1 0.074	1 -1.101	1 -0.
* 76ER1	1 14.3	17.0	1 15.98	4.881	0.66	1 0.624 1	78.0	8 1	-0.358	0.076	-0.873	· - 0.
* 835G1A	1 14.3	1 16.9	1.99	4,828	0.67	0.078	7.8	8 1	-0.113	0.084	-1.867	-0.0
* 835G1A	1 14.3	1 17.0	3.95	4.828	0.67	1 0.156 1	39.0 1	4 1	-0.260	0.075	-1.746	! -0.
* 835G1A	1 14.3	1 16.9	1 15.80	4.828	0.67	1 0.674 1	78.0 1	8 1	-0.534	0.038	-1.458	-0.
* 83562	1 14.3	1 16.9	1.99	4.828	0.67	0.076	7.8	8 1	-0.259	0.047	-1.402	-0.
¥ 83562	1 14.3	1 17.0	3.95	4.828	0.67	1 0.156 1	39.0 1	4 1	-0.353	0.035	1 -1.289	1 -0.1
* 835G2	1 14.3	1 16.9	15.80	4.828	0.67	1 0.624	78.0 1	8 1	-0.459	0.077	-1.021	1 -0.0
* 835G1P	14.3	1 17.0	2.00	4.803	0.67	0.079	9.9 1	8 1	-0.344	1 0.034	-1.273	1 -0.
* 83SG1B	1 14.3	17.0	1 3.93	4,803	0.67	0.156	39.0 1	4 1	-0.396	0.036	-1.167	! -0.0
* 83SG1B	1 14.3	17.0	1 15.92	4.803	0.67	0.632	79.0 1	8	-0.490	0.021	-0.949	! -0.
* 83NG1B	1 14.3	1 16.9	1 1.99	4.828	0.67	0.078	9.8 1	8 1	0.042	0.141	-1.570	! -0.
* 83NG1B	1 14.3	1 17.0	3.95	4.828	0.67	0.156	39.0 1	4 1	-0.167	0.109	-1.502	! -0.
* 83NG1B	1 14.3	1 16.9	1 15.80	4.828	. 0.67	0.624	78.0 1	8 1	-0.427	0.057	-1,156	! -0.0
* 83NG2	1 14.3	1 16.9	1 1.99	4.929	0.67	1 0.078	9.8 1	8 1	-0.251	! 0.036	! -1.181	! -0.
* 83NG2	1 14.3	17.0	3.75	4.828	0.67	0.156	39.0	4 1	-0.339	0.033	! -1.114	0.
* 83NG2	1 14.3	1 16.9	15.80	4.828	0.67	0.624	78.0 (8 1	-0.413	0.017	! -0.893	! -0.
* 83NG1A	1 14.3	! 16.9	1 1.99	4.828	1 0.67	0.078	9.8 !	8!	-0.244	1 0.027	1 -1.041	! -0.
* 83NG1A	1 14.3	1 17.0	1 3.95	4.828	0.67	0.156	39.0	• 4 1	-0.313	0.021	-0.986	! -0.
* 83NG1A	14.3	1 16.9	15.80	4.828	0.67	0.624	78.0 1	8 1	-0.384	0.020	-0.810	! -0.
¥ 705R3B	1 14.3	1 17.0	1 1.99	4.893	0.66	1 0.078	9.7	8 1	0.004	1 0.055	-1.154	! -0.
¥ 705838	1 14.3	1 17.0	3.90	4.893	0.66	0.152	38.0 1	4 1	-0.110	1 0.036	1 -1.072	! -0.
# 705R38	1 14.3	1 16.9	1 15.81	4.873	0.66	0.616	77.0	18 I	-0.239	0.037	-0.777	! -0.
********		*******	*******		********	********	*******	*********	*******	*******	********	******

.

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

•

ESTATE HOUSES 70,76,83, EXTREME VALUES, 0.2 SEC AVERAGES TUNNEL WIND SIMULATION AS DESCRIBED IN D.U.E.L. REPORT 1213/77 PRESSURE TRANSDUCER A FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TURE DETWEEN TRANSDUCER AND SCANIVALVE 20 CM TURE DETWEEN SCANIVALVE AND TAPPING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

FROCESSED DATA :-

•																					
*	********	********	*******	****	*****	***	******	**:	*******	**	*******	* *	*******	r k r	******	*******	******		*******	******	***
*	PRESSURE	FULL	FULL	! FU	ILL.	1	WIND	1 1	UTNI	i.	WIND	1	ωτητι Ι		NUMBER 1	FYTEF	IF PRESSUE	SF 1	CUEEEIC	TENIS	***
*	TAPPING !	SCALE	SCALE	! SC	ALE	i	TUNNEL	1	TUNNEL	i.	TUNNEL	i	TUNNEL		DF I			·			*
*	HOLE !	AVERAGE	ORSERVA	E E	UIVA	i	MEAN		DESERVA	i	AVERAG-	i	SAMEL ING		SAMPL TNGI						*
*	CODE !	WIND	-TION	! -L	ENT	1	WIND	į.	TION	i	ING TIME	i	INTERVAL		INTERVAL	MAX	IMA I	1	HTN	THA	*
*	ļ	SPEED	TIME	! AV	ERAG-	i.	VELOCITY	1 .	TIME	i	(SECS)	1	(mS)					I			*
×	!	(M/S)	(MINS)	! IN	G TIM	εi	(M/S)	i	(HINS)	i		i	1		WHICH I	NODE	DISEER-	i	HODE I	DISPER	- x
*	!			! (SECS)	1		1		1		È	1		DATA WAS!		SION		1	SION	*
*	!		ļ.	1		!		1		ŧ		È	1		AVERAGED				1		*
*	********	********	********	****	*****	***	*******	**>	*******	*>	******	**	********	k 🗱	*******	*******	*********	k**	********	******	***
*	70WG1 !	14.3	17.0	!	0.19	1	4.881	!	0.66	ł.	0.008	1	1.9	t	4 1	2.449	0.230		-0.524 !	-0.11	7 *
*	70NR1 1	14.3	17.0	!	0.19	1	4.881	1	0.66	Ì.	0.000	1	1.9		4 1	0.057	0.101	1	-2.617 !	-0.16	0 ×
*	705R1A 1	14.3	17.0	1	0.19	1	4.881	İ.	0.66	È	0.008	1	1.9		4 1	0.093	0.075		-4.073 1	-0.31	0 *
*	705R18 !	14.3	17.0	!	0.19	!	4,881	!	0.66	t	0.009	1	1.7		4 1	0.178	0.065		-1.722 1	-0.23	1 #
*	705R2A !	14.3	17.0	!	0.19	1	4.881	1	0.66	E	0.008	!	1.9	ł	4 !	0.120	0.099	!	-2.560 !	-0.21	4 *
*	705R28 !	14.3	17.0	1	0.19	!	4.857	ŧ.	0.67	Į.	0.008	I.	1.7	F	4!	0.191	0.082		-1.121 !	-0.11	1 *
*	705R3A !	14.3	17.0	!	0.19	1	4.857	1	0.67	Ł	0.008	ł	1.7 1		4 1	-0.304	0.054	!	-3.763 !	-0.52	2 *
*	76WW2 !	14.3	17.0	1	0.20	- E	4.948	!	0.66	1	0.000	Ŀ	1.9 !		4 1	1.652	0.187	!	-0.542 !	-0.08	3 *
*	76WR2 !	14.3	17.0	ļ	0.20	1	4.948	1	0.66	L	0.008	ł	1.7 !		4 1	0.366	0.058	1	-1.092 !	-0.14	8 *
*	76ER2 !	14.3	17.0	1	0.20	1	4.948	1	0.66	I.	0.008	L	1.9 1		. 4 1	-0.162	0.035	!	-1.664 !	-0.22	2 *
*	76ER1 !	14.3	17.0	1	0.20	1	4.948	!	0.66	1	0.008	!	1.9 !		4 1	-0.155	0.038		-1.733 !	-0.22	8 ×
*	76EW1 !	14.3	17.0	!	0.20	1	4.948	1	0.66	ţ.	0.005	L	1.9		4 1	-0.046	0.048	ł	-1.076 !	-0.08	3 *
*	835G1A !	14.3	17.0	1	0.20	1	4.913	1	0,66	Ł	0.008	Ł	1.9 !		4 1	0.370	0.153	!	-3.004 1	-0.30	7 *
*	83562 !	14.3	17.0	!	0.20	!	4.950	1	0.65	I.	0.008	I	1.9		4 1	0,017	0.074	1	-2.034 !	-0.22	1 *
*	83SG1B	14.3	17.0	!	0.20	1	4.915	ł	0.66	Į.	0.009	L	1.9	ł	4 1	-0.203	0.045	!	-1.572 !	-0.16	8 *
*	83NG18 !	14.3	17.0	1	0.20	1	4.913	Ł	0.66	!	0.008	1	1.9	E .	4 1	0.706	0.246 !	!	-2.521 !	-0.18	8 *
*	83NG2 !	14.3	17.0	1	0.20	1	4.913	ł	0.66	Ł	0.008	1	1.9	ł	4 1	-0.025	0.094	I	-1.693	-0.15	6 *
*	83NG1A !	14.3	17.0	!	0.20	1.	4.913	t	0.66	ł.	0.008	1	1.7		4 1	-0,180	0.032	I	-1.307	-0.11	3 *
*	705R38 !	14.3	17.0	ŧ	0.19	I	4,857	ł	0.67	1	0.008	1	1.9	ł	4 1	0.333	0.052	I .	-1.681 !	-0.25	1 *
*	********	*******	*******	****	*****	***	*******	**)	*******	*>	******	*1	********	**	*******	******	*********	**1	*******	******	***
S	TOP																				

. .

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

ESTATE HOUSES 33,47,58 EXTREME VALUES, 2,4,16 SEC AVERAGES TUNNEL WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 PRESSURE TRANSDUCER A FULL HODEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7 BACK OF TRNSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALVE AND TAPFING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

_....

*********** * FRESSURE * TAPPING * HOLE * CODE * *	********** ! FULL ! SCALE ! AVERAGE ! WIND ! SPEED ! (M/S) !	********** ! FULL ! SCALE ! OPSERVA ! -TION ! TIME ! (MINS) !	********** FULL SCALE EQUIVA -LENT AVERAG- ING TIME ! (SECS)	********** WIND TUNNEL MEAN WIND VELOCITY (M/S)	(*********** WIND TUNNEL OHSERVA -TION TIME (MINS) !	*********** WIND TUNNEL AVERAG- ! ING TIME (SECS) 	*********** WIND TUNNEL SAMFLING INTERVAL (mS) 	(********** NUMBER ! OF' ! SAMPLING! INTERVAL! OVER ! WHICH ! DATA WAS!	HAXIMA HODE DISPER- SION		MINIMA	
*	!	!	!!!		I	1	1 1	AVERAGED!	1		E, E	*
********** * 58WW1	**********	******** ! 16.9	**********	(**********) 4.919	******** 0.66	**********	**********	******	*********	*********	(************	*******
* 58WW1	14.3	17.0	1 3.92	4.919	9.66	1 0.152	1 38.0	4	0.014 1	0.095	-0.747	-0.057 1
* 58WW1	! 14.3	16.9	1 15.89 1	4.919	0.65	0.616	77.0	8 1	-0.196	0.045	-0.600	-0.047 1
* 59WW2	14.3	! 16.9	1 1.98 1	4.919	0.66	0.077	9.6	8 1	0.350	0.147	-0.953	-0.089
* 58WW2	14.3	! 17.0	1 3.92 !	4.919	0.66	1 0.132	1 38.0 1	4 1	0.131	0.121	-0.767 1	-0.072 #
* 58WW2	14.3	! 16.9	! 15.87 !	4.919	0.65	0.616	77.0	8 1	-0.159 1	0.029	-0.605	-0.054
* 58WR1	1 14.3	1 16.9	1.78	4,919	0.66	1 0.077	9.6 !	8	0.465	0.141	-0.764	-0.074
* 58WR1	! 14.3	! 17.0	1 3.92 1	4.919	0.66	1 0.152	1 38.0 1	4	0.247 !	0.095	-0.640	-0.058
* 58WR1	1 14.3	! 16.9	! 15.89	4.919	0.65	0.616	1 77.0 !	8 1	-0.080 1	0.048	-0.457 !	-0.033
* 58WR2	14.3	16.9	1 1.98	4.919	0.66	0.077	9.6 1	8 1	0.327 !	0.070	-0.702 1	-0.044
* 52WR2	! 14.3	! 17.0	1 3.92 1	4.919	0.66	1 0.152	1 38.0 1	4 1	0.136	0.070	-0.557 1	-0.056 >
* 58WR2	1 14.3	16.9	1 15.89 1	4.919	0.65	0.616	77.0 !	8 1	-0.078 !	0.036	-0.410 !	-0.025 #
* 58ER1	14.3	! 16.9	1 1.98 1	4.919	0.66	1 0.077	ا ۲۰۵ I	8 1	-0.096	0.016	-1.115 !	-0.187 >
* 58ER1	14.3	! 17.0	1 3.92 !	4.919	0.66	0.152	1 38.0 1	4 1	-0.16B	0.014	-0.954	-0.078 >
* 58ER1	! 14.3	16.9	1 15.89 !	4.919	! 0.65	0.615	1 77.0 1	8 t	-0,256	0.015	-0.706 !	-0.053 #
* 58ER2	14.3	17.0	1.79	4.846	0.67	0.078	9.8 1	8 !	-0.119	0.033	-1.288 !	-0.148 *
* 58ER2	14.3	17.0	1 3.76 1	4.846	0.67	0.156	1 39.0 1	4 1	-0,190	0.017	-1.084	-0.103 *
* 58ER2	14.3	! 16.9	1 15.86	4.846	1 0.66	1 0.624	1 78.0 i	8 1	-0.268 1	0.014	-0.773 !	-0.101 *
* 58EW1	! 14.3	! 17.0	1 1.99 1	4.846	1 0.67	1 0.078	9.8 1	8 1	-0.023 1	0.032	-0.607 !	-0.049 *
* 58EW1	14.3	17.0	1 3.96 1	4.846	0.67	0.156	1 39.0 1	4 1	-0.115 !	0.019	-0.569	-0.053.*
* 58EW1	1 14.3	1 16.9	1 15.86	4.846	0.66	0.624	1 78.0 1	8 1	-0.192	0.015	-0.442 1	-0.028 *

PRESSURE	E! FULL !	FULL	I FULL	WIND	! WIND	I WIND	WIND !	NUMBER I	EXTREM	IE PRESSUR	E COEFFI	CIENTS #
LAPPING	I AUERACE	DECEDIA		I IUNNEL	I UNNEL	I IUNNEL I	CANDLINC					×
CODE	I UTND	-TION			1 UDSCRVA	1 AVERAU- 1	THIEDUAL	INTERIAL I	MAY	- HA	мт	4 11114A - 14
CODE	I COCCD I	TIME	I AUERAC- I			1 100 11001	INTERVAL!	AUED	пна.			ж нп <u>т</u> и *
	1 JFEED 1	(ATNC)	I TNG TIME	VELUCITA			(#137)	UVER 1	HODE		HODE	1 DISCER- *
	1 (1) 37 1	(111137	I (SECS) I	(117.57					HOPE	1013FCK-	none	1 STON *
	1 1		1 1			1 1	1	AVERAGED		5101		1 31010 *
*******	**********	*******	*********	*********	, **********	*******	*********	*********	********	**********	******	***********
47441	1 14.3	17.0	1 1.99 1	4.802	0.67	0.079	9.9 1		0.674	0.135	-0.515	+ -0.039 #
47661	1 14.3	17.0	1 3.93 1	4,802	0.67	0.156	39.0	4	0.490	0.113	-0.414	1 -0.046
47001	1 14.3	17.0	1 15.92	4.802	0.67	0.632	79.0	8	0.174	0.050	-0.246	1 -0.018 *
47062	1 14.3	17.0	1 1.99	4.802	0.67	0.079	7.9 1	8	0.981	0.195	-0.502	1 -0.046 #
47₩₩2	1 14.3	17.0	1 3.93	4.802	0.67	0.156	39.0 1	4 1	0.655	0.186	-0.397	1 -0.036 \$
47482	! 14.3	17.0	15.92	4.802	0.67	0.632	79.0 1	8 1	0,215	0.078	-0.247	! -0.017 *
47WR1	1 14.3	17.0	1 1.99	4.802	0.67	1 0.079	9.9 1	8 1	0.475	0.101	-0.965	! -0.108 *
47WR1	14.3	17.0	1 3.93	4.802	0.67	0.156	39.0 !	4 1	0,280	0.077	-0.755	1 -0.072 *
47WR1 🐪	! 14.3	17.0	1 15.92 1	4,802	0.67	I 0.632 I	79,0	8 1	-0.059	0.049 !	-0.499	-0.035 *
47WR2	! 14.3	17.0	1 1.99 1	4.802	0.67	1 0.079	9.91	8 1	0.256	0.116	-0.774	! -0.049 #
47WR2	14.3	17.0	1 3,93	4.802	0.67	0.156	39.0 1	4 1	0.126	0.089	-0.655	! -0.034 *
47WR2	! 14.3	17.0	1 15.92	4.802	0.67	0.632	79.0	8	-0.115	0.037	-0.453	! -0.032 *
47ER1	14.3	17.0	1 1.99	4.802	0.67	1 0.079 1	9.9 1	8	-0.228	0.035	-1.376	! -0.118 #
47ER1	! 14.3	17.0	! 3.93	4.802	0.67	0.156	39.0 1	4 1	-0.268	0.026	-1.203	1 -0.094 *
47ER1	14.3	17.0	1 15.92	4.802	0.67	I 0.632	79.0 !	8 1	-0.399	0.022 !	-0.921	I -0.058 *
47ER2	1 14.3	17.0	1 1.99	4.943	0.66	1 0.077 H	9.6 1	8 1	-0.220	0.025 !	-1.344	! -0.153 *
47682	! 14.3	17.0	1 3.94 !	4.943	0.66	0.152	38.0 1	4 1	-0.293	0.037 !	-1.190	! -0.134 *
47ER2	1 14.3	17.0	1 15.97 1	4.943	0.66	0.616	77.0 !	8 1	-0.409	0.019	-0.928	! -0.042 *
47EW1	14.3	17.0	1 1.99	4.943	0.66	0.077	9.6 !	8 1	-0.095	0.030 !	-0.866	1 -0.080 *
47EW1	! 14.3 !	17.0	1 3.94	4.943	0.66	0.152	38.0 1	4 1	-0.174	0.033	-0.767	! -0.048 *
47EW1	! 14.3	17.0	1 15.97	4.943	0.66	0.616	77.0 1	8 1	-0,292	0.017 !	-0.603	! -0.033 *
33WW1	1. 14.3	17.0	! 1,99	4.995	0.65	1 0.076	9.5 !	8 1	0.798	0.080 !	-0.685	! -0.101 *
33WW1	1 14,3	17.0	1 3.98 1	4,995	0.65	0.152	38.0 1	4	0.534	0.106 !	-0.567	! -0.055 *
33WW1	1 14.3	16.9	1 15.88 1	4.790	0.67	0.632	79.0	8 1	0.164	0.053 !	-0.367	! -0.051 *
33WW2	1 14.3	17.0	1 1.99	4.995	0.65	1 0.076 I	9.5 1	8 1	0.905	0.121	-0.641	! -0.059 *
33WW2	! 14.3 !	17.0	1 3,98 1	4.995	0.65	0.152	38.0	4	0,618	0.082	-0,549	10.043 *
33002	! 14.3	16.9	15.88	4.790	0.67	0.632	79.0	8	0.220	0.077	-0.363	! -0.032 *
33WR1	! 14.3	17.0	1 1.99	4.995	0.65	0,076	9.5 1	8 1	0.728	0.152	-0.883	-0.080 *
33WR1	14.3	17.0	1 3.98	4.995	0.65	0,152	38.0 1	4	0.425	0.098	-0.735	1 -0.080 *
33WR1	14.3	16.9	15.88	4,790	0.67	0.632	79.0 1	8	0.065	0.055	-0.476	! -0.047 *
33WR2	14.3	17.0	1.99	4.995	0.65	0.076	9.5 1	8 1	0.440	0.080	-0.754	! -0.081 *
33WR2	14.3	17.0	3,98	4.995	0.65	0.152	38.0	4	0.221	0.079	-0.678	· -0.067 *
33WR2	14.3	16.9	1 15.88	4.790	0.67	0.632	79.0 1	8 1	-0.048	0.033	-0.477	! =0.039 *
33ER1	! 14.3	17.0	1.99	4.975	0.65	0.076	9.5	8	-0.261	0.026		· -0.109 *
33ER1	14.3	17.0	1 3.98	4.995	0.65	0.152	38.0	4	-0.331	0.031	-1.185	
33ER1	! 14.3	16.9	1 15.88	4.790	0.67	0.632	79.0	8	-0.462	0.019	-0.942	· -0.059 *
33ER2	! 14.3	16.9	1.99	4,835	0.67	0.078	9.8	8	-0.279	0.042	-1.5/0	· -0.109 *
33ER2	14.3	17.0	1 3.93	4.929	0.66	0.152	38.0	4	-0.352	0.031	-1.340	· -0.110 *
33ER2	14.3	17.0	1 15,92	4.929	0.66	0.616	77.0	8	-0.470	0.024	-0.982	· ~0.061 *
33EW1	! 14.3	16.9	1 1.99	4.835	0.67	0.078	9.8	8	-0.127	0.050	-0.888	
33EW1	! 14.3	17.0	1 3,93	4.929	0.66	0,152	38.0	4	-0.209			
SSEW1	! 14+3	17.0	1 15.92	4.929	1 0+66	1 0.010	//.0	8	-0.323	0.010	-0.633	
DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

ESTATE HOUSES 33,47,58, EXTREME VALUES , 0.2 SEC AVERAGES TUNNEL WIND SIMULATION AS DESCRIDED IN D.U.E.L. REPORT 1213/77 FRESSURE TRANSDUCER A FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE DETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE DETWEEN SCANIVALVE AND SCANIVALVE 20 CM TUBE DETWEEN SCANIVALVE AND TAPPING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

PRESSURE!	FULL !	FULL	FULL	I WIND	-1	WIND TUNNEL	!	WIND I	WIND	NUMBER	EXTREM	E PRESSUR	E COEFF	ICIE	ENTS
HOLE	AUFRAGEI	DECEEUA	I FOUTUA	I MEAN		I DECEDUA	1	AUEDAG- 1	CANCILLUC						
CODE I		-TION	I -I FNT			I -TION	ì	TNG TIME	INTERUAL	INTERUAL	Hayt	'HA 1	н	тыта	нл -
1	SPEED 1	TIME	AVERAG-		TTY	TINE	i	(SECS) I	(mS)	DUER					
I	(8/9)	(MINS)	I ING TIME	1 (MZ	3)		i	102007 1	1	UHICH	MODE 1	DISEFR- I	HUDE	1 1	DISFE
į	1.1.7 - 1.		(SECS)	1			i			DATA WAS	1 1000	5100	nore		SION
i	i		1	1			i	i		AVERAGED	1	0101		i	010
********	********	******	*********	******	****	*********	***	********	******	*******		********	*******	***	*****
58001 !	14.3 !	17.0	1 0.19	1. 4.8	36	0.67	1	0.008 1	1.9	4	0.501 !	0.205	-1.160	1	-0.1
58002 !	14.3 !	17.0	0.19	1 4.8	36 -	0.67	1	0.008 !	1.9	4	0.947 1	0.215	-1,697	!	-0.1
58WR1 !	14.3 1	17.0	0.17	1 4.8	36	0.67	1	0.008 1	1.9	4	1.165	0.186	-1.135	i	-0.0
58WR2 1	14.3 !	17.0	0.17	1 4.8	36	0.67	1	0.008 1	1.9	4	0.842	0.134	-1.064	1	-0.1
58ER1 !	14.3 !	17.0	! 0.19	1 4.8	36	0.67	1	0.008 1	1.9	4	0.097	0.043	-1.667	1	-0.2
58ER2 !	14.3 !	17.0	! 0.19	1 4.8	30	0.66	1	0.008	1.9	4	0.032 1	0.037	-1.870	I	-0.3
58EW1 !	14.3 !	17.0	! 0.19	1 4.8	90	1 0.66	ł.	0.008 !	1.9	4	0.085 1	0.030	-0.829	.1	-0.0
47WW1 !	14.3 !	17.0	! 0.20	1 4.9	59	0.65	- E	0.008	1.9	. 4	1.098 !	0.245	-0.770	!	-0.1
47002 !	14.3 !	17.0	1 0.20	1 4.9	59	0.65	1	0.008	1.7	4	L 1.400 !	0.244	-0.748	!	-0.0
47WR1 !	14.3 !	17.0	1 0.20	1 4.9	59	0.65	1	0.000	1.9	! 4	0.912	0.167	-1.546	ļ	-0.2
47882 !	14.3 !	17.0	! 0.20	1 4.9	59	0.65	1	0.008 1	1.9	4	0.615	0.132	-1.037	i	-0.1
47ER1 !	14.3 1	17.0	1 0.20	1 4.9	59	0.65	1	0.008 1	1.9	4	-0.080	0.053	-2.066	I.	-0.2
47ER2	14.3 !	17.0	! 0.20	1 4.9	05	0.66	1	0.008 1	1.9	4	-0.065 !	0.042	-2.060	!	-0.2
47EW1 !	14.3 !	17.0	! 0.20	1 4.9	05	0.66	ł	0.008 1	1.9	4	0.051 !	0.066	-1.039	ł.	-0.0
33WW1 !	14.3 !	17.0	1 0.19	1 4.8	46	1 0.67	ł	0.008 1	1.9	4	1.230	0.131	-1.014	1	-0.1
33442 1	14.3 !	17.0	! 0.19	1 4.8	46	0.67	1	0.008 1	1.7	4	1.477 !	0.178	-1.049	!	-0.1
33WR1 !	14.3 !	17.0	! 0.19	1 4.8	46	1 0.67	1	0.008 1	1.9	4	1.250	0.215	-1.286	1	-0.1
33WR2 !	14.3 !	17.0	! 0.19	1 4.8	46	! 0.67	ł	0.008 1	1.9	4	0,880	0.149	-1.090	i	-0.1
33ER1 !	14.3 !	17.0	0.19	1 4.8	46	1 0.67	.1	0.00B	1.9	4	-0.028 !	0.064	-2.179	i	-0.2
33ER2 !	14.3 !	17.0	1 0.20	1 4.9	00	0.66	I	0.008 1	1.9	4	-0.090	0.053	-2.250	!	-0.1
33EW1 !	14.3 !	17.0	1 0.20	1 4.9	00	1 0.66	F	0.008 1	1.9	4	-0.007 !	0.039	-1.106	i	-0.1

,

EXP016

.

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

4 TEST HOUSE HOLES, 3 OBSERVATION TIMES, 0.2 AND 2.0 SEC AVERAGES TUNNEL WIND SIMULATION AS DESCRIBED IN D.U.E.L. REPORT 1213/77 PRESSURE TRANSDUCER A FULL MODEL IN WIND TUNNEL WIND DIRECTION 265 DEG., B.R.E. RECORD A7 BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANIVALVE 20 CM TUBE BETWEEN SCANIVALVE AND TAFFING PITOT 10 M ABOVE REFERENCE ANEMOMETER SITE

PROCESSED DATA :-

* PRESSURE! FULL ! FULL ! FULL ! WIND ! WIND ! WIND ! WIND ! NUMBER ! EXTREME PRESSURE COEFF	CIENTS *
* TAPPING ! SCALE ! SCALE ! SCALE ! TUNNEL ! TUNNEL ! TUNNEL ! TUNNEL ! OF !	**
* CODE ! WIND ! -TION ! -LENT ! WIND ! -TION ! ING TIME! INTERVAL! INTERVAL! MAXIMA ! M	NIMA *
SPEED ! TIME ! AVERAG- ! VELOCITY! TIME ! (SECS) ! (mS) ! OVER !!! (M/S) ! (MINS) ! ING TIME! (M/S) ! (MINS) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	*
* ! <td>! SION *</td>	! SION *
* 5WW3 X2 ! 14.3 ! 34.0 ! 0.19 ! 4.863 ! 1.33 ! 0.008 ! 1.9 ! 4 ! 2.543 ! 0.253 ! -0.328	! -0.072 *
* 5WW3 X2 ! 14.3 ! 34.0 ! 2.00 ! 4.863 ! 1.33 ! 0.078 ! 9.8 ! B ! 1.803 ! 0.129 ! -0.179	! -0.070 *
* 5WW3 X5 ! 14.3 ! 85.0 ! 0.20 ! 4.933 ! 3.29 ! 0.008 ! 1.9 ! 4 ! 2.940 ! 0.266 ! -0.417	! -0.063 *
* 5WW3 X5 ! 14.3 ! 85.0 ! 2.00 ! 4.808 ! 3.37 ! 0.079 ! 9.9 ! 8 ! 1.953 ! 0.199 ! -0.224	! -0.052 *
* 5WW3 X10! 14.3 ! 170.0 ! 0.19 ! 4.813 ! 6.73 ! 0.008 ! 1.9 ! 4 ! 2.928 ! 0.251 ! -0.470	! -0.086 *
* 5WW3 X10! 14.3 ! 170.0 ! 2.00 ! 4.813 ! 6.73 ! 0.079 ! 19.8 ! 4 ! 2.270 ! 0.156 ! -0.301	! -0.065 *
* 3EW3 X2 ! 14.3 ! 34.0 ! 0.19 ! 4.863 ! 1.33 ! 0.008 ! 1.9 ! 4 ! 0.118 ! 0.041 ! -1.197	! -0.176 *
* 3EW3 X2 ! 14.3 ! 34.0 ! 2.00 ! 4.863 ! 1.33 ! 0.078 ! 9.8 ! 8 ! 0.043 ! 0.036 ! -0.981	! -0.089 *
* 3EW3 X5 ! 14.3 ! 85.0 ! 0.19 ! 4.873 ! 3.33 ! 0.008 ! 1.9 ! 4 ! 0.161 ! 0.039 ! -1.334	! -0.131 *
* 3EW3 X5 ! 14.3 ! 84.6 ! 1.98 ! 4.873 ! 3.31 ! 0.078 ! 9.7 ! 8 ! 0.060 ! 0.032 ! -1.074	! -0.104 *
* 3EW3 X10! 14.3 ! 170.0 ! 0.20 ! 4.914 ! 6.60 ! 0.008 ! 1.9 ! 4 ! 0.192 ! 0.034 ! -1.408	! -0.178 *
* 3EW3 X10! 14.3 ! 170.0 ! 1.99 ! 4.914 ! 6.60 ! 0.077 ! 19.3 ! 4 ! 0.105 ! 0.028 ! -1.202	! -0.115 *
* WR1E X2 ! 14.3 ! 34.0 ! 0.19 ! 4.863 ! 1.33 ! 0.008 ! 1.9 ! 4 ! 0.717 ! 0.235 ! -2.613	! -0.262 *
* WR1E X2 ! 14.3 ! 34.0 ! 2.00 ! 4.863 ! 1.33 ! 0.078 ! 9.8 ! 8 ! 0.139 ! 0.117 ! -1.779	! -0,141 ×
* WRIE X5 ! 14.3 ! 85.0 ! 0.19 4.873 3.33 ! 0.008 ! 1.9 ! 4 ! 0.982 ! 0.202 ! -3.008	! -0.278 *
* WR1E X5 ! 14.3 ! 84.6 ! 1.98 ! 4.873 ! 3.31 ! 0.073 ! 9.7 ! 8 ! 0.261 ! 0.112 ! -1.832	! -0.189 *
* WRIE X10! 14.3 ! 170.0 ! 0.19 ! 4.850 ! 8.88 ! 0.008 ! 1.9 ! 4 ! 1.018 ! 0.142 ! -3.188	-0.285 *
* WR1E X10! 14.3 ! 170.0 ! 2.00 ! 4.861 ! 6.67 ! 0.078 ! 19.6 ! 4 ! 0.381 ! 0.073 ! -2.116	! -0.162 *
* ERIB X2 14.3 34.0 0.19 4.863 1.33 0.008 1.9 4 0.080 0.033 -2.131	i -0.280 *
* ERIF X2 14.3 34.0 2.00 4.063 1.33 0.078 9.8 8 -0.024 0.028 -1.203	! -0.103 *
* ERIB X5 14.3 85.0 0.19 4.873 3.33 0.008 1.9 4 0.138 0.033 -2.638	· · · · · · · · · · · · · · · · · · ·
* ERIB X3 i 14.3 i 14.4 i 1.79 i 4.873 i 3.31 i 0.078 i 9.77 i 8 i -0.003 i 0.027 i -1.237	· · · · · · · · · · · · · · · · · · ·
# ERIB A10: 14.3 : 170.0 ! 0.17 ! 4.862 ! 6.67 ! 0.008 ! 1.7 ! 4 ! 0.162 ! 0.043 ! -2.670	: -0.040 *
* CRIB AIV: 14+3 : 1/V+V	·***********
╺╀╅╄╋╄╅╄╅╄╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋	ጥጥጥጥጥጥጥጥጥ

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

.

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-G, WIND DIRECTION 248 DEG NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 21 TAPPINGS ROOF FITCH 22.5 DEG, OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND RETWEEN SCANI AND TAPPING BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

.

*	********	********	******	*****	*********	*********	******	******	*****	*****	******	********	*****
*	PRESSURE!	FULL	FULL	! FULL	WIND	WIND	WIND	WIND	NUMBER	! EXTREM	E PRESSUP	RE COEFFI	CIENTS *
*	TAPPING !	SCALE	SCALE	I SCALE	TUNNEL	TUNNEL	I TUNNEL	TUNNEL	! OF	!			*
*	HOLE !	AVERAGE	OBSERVA	! EQUIVA	MEAN	OBSERVA	AVERAG-	SAMPLING	I SAMPLING	!	!		*
*	CODE !	WIND	-TION	! -LENT	WIND	-TION	ING TIME	INTERVAL	INTERVAL	! MAXI	MA !	MIN	4INA *
*	!	SPEED	TIME	! AVERAG-	VELOCITY	TIME	(SECS)	! (mS)	! OVER	!	!		*
*	!	(M/S)	(MINS)	! ING TIME	(M/S)	(MINS)	!		! WHICH	! MODE !	DISPER- !	MODE	! DISPER- *
*	!	1		! (SECS)	!		ł		I DATA WAS	1 1	SION !		SION *
*	i			1	!		1		AVERAGED	1			*
*	*******	*******	*******	*********	********	********	**********	********	*******	*******	*****	*********	*******
*	3WW1 !	8.3	17.0	! 0.20	4.962	0.38	0.004	1.1	4	1.357 [0.154	-0.486	-0.056 ×
*	3WW1 !	8.3	17.0	! 1.99	4.962	0.38	0.044	11.1	! 4	1.048	0.179	-0.372	! -0.049 *
*	3WW2 !	8.3	17.0	! 0.20	4.962	0.38	0.004	1.1	4	1.613	0.198	-0.305	-0.076 *
*	3WW2 !	8.3	17.0	! 1.99	4.962	0.38	0.044	11.1	! 4	1.366	0,178	-0.199	-0.08/ *
*	3003 1	8.3	17.0	1 0.20	4.962	0.38	0.004	1.1	. 4	! 1.634 !	0.251	-0.198	-0.061 *
*	3003 1	8.3	17.0	! 1.99	4.962	0.38	0.044	11.1	. 4	! 1.518 !	0.168	-0.113	-0.051 *
*	3WW4 !	8.3 !	17.0	! 0.20	4.962	0.38	0.004	1.1	4	! 1.794 !	0.1/9	-0.181	· -0.092 *
*	3004 !	8.3	17.0	1,99	4.962	0.38	0.044	11.1	! 4	! 1.621 !	0.240	-0.087	
*	3005 !	8.3	17.0	0.20	4.962	0.38	0.004	1+1	! 4	! 1,965 !	0.203	-0.149	
*	3005 !	8.3	17.0	! 1,99	4.962	0.38	0,044	11.1	. 4	! 1+64/ !	0.179	-0.089	-0.057 *
*	3006 !	8.3	17.0	! 0.18	5.065	0.37	0.004	1.0	! 4	2.008 !	0.1/7	-0.229	-0.037 ×
*	3006 1	8.3	17.0	1 2.00	5.065	0.37	0.044	10.9	<u> </u>	1 1 000	0.10/	-0.084	
*	3007 !	8.3	17.0	0.18	5.065	0.3/	0,004	1.0	! 4 		0.174	-0.010	=0.078
*	3007 !	8.3	17.0	2.00	5.065	0.37	0.044	10.9	1 4	! 1.632 !	0.147		· -0.113 *
*	5WW1 !	8.3	17.0	0.18	5.065	0.3/	0.004	1.0	. 4	! 1.004 !	0.147		· -0.051 *
*	5001 !	8.3	17.0	2.00	5.065	0.37	0.044	10.9	i 4	! 1.137 !	0.1/6		-0.033 ×
*	5WW2 !	8.3	17.0	1 0.18	5.065	0.37	0.004	1.0	! 4 ! •	! 1.729 ! ! 1.450 !	0.201	-0.333	
*	5WW2 !	8.3	17.0	! 2.00	5,065	0.37	0,044	10.9	! 4	! 1+458 !	0.213	-0.220	
*	5003 !	8.3	17.0	0.18	5.065	0.37	0.004	1.0	! 4	! 1./91 !	0,210	-0.140	
*	5003 !	8,3	17.0	1 2.00	5.065	0.37	0.044	10.9	! 4	! 1.61/ !	0.198	-0.122	· -0.084 *
*	5WW4 !	8.3	17.0	! 0.20	4.991	0,38	0,004	! 1.1	! 4	! 2.187 !	0.288	-0.195	· -0.084 *
*	5WW4 !	8.3	17.0	! 1,98	! 4.991	0+38	! 0.044	! 11.0	! 4	! 1.777 !	0,179	-0.103	:0.065 ×

****	********* PRESSURE! TAPPING ! HOLE ! CODE ! !	********** FULL SCALE AVERAGE WIND SPEED (M/S)	(********** FULL SCALE OBSERVA -TION TIME (MINS)	************* SCALE EQUIVA ! -LENT ! AVERAG- ! ING TIME! ! (SECS)	**************************************	*********** WIND TUNNEL OBSERVA -TION TIME (MINS)	************ WIND TUNNEL AVERAG- AVERAG- ING TIME (SECS) 	(*********** WIND ! TUNNEL ! SAMPLING! INTERVAL! (mS) !	(*************************************	MAXII	######################################	MDDE	**************************************
*	! • • • • • • • • • • • • • • • • •	المراجعة والمراجعة والمراجعة والمراجع		: 	 		: المراجع المراجع	: Be alle alle alle alle alle alle alle al	HVERHUEL		: به عله عله عله عله عله عله عله عله عله عل	بالمحاد والدوارد والدوارد والدوارد والدوارد	*
**	********	*******	*********	********	********	********	*********	********	******	*********	******	********	********
*	5WW5 !	8,3	17.0	! 0,20	4,991	0+38	! 0.004 !	1.1 !	4	2+169 !	0,287	-0.150	· -0.053 *
*	5005 !	8.3	17.0	! 1.98	4.991	0.38	1 0.044	11.0	4	1,706	0.178	-0.080	! -0.069 *
*	5006 !	8.3	17.0	! 0.20	4.991	0.38	0.004 !	1.1 !	4	2.326 !	0.233	-0.234	-0.101 *
*	5006 !	8,3	17.0	1.98	4.991	0.38	! 0.044 !	11.0	4	1.747 !	0.153	-0.095	! -0.055 *
*	5007 !	8.3	17.0	! 0.20 !	5,020	0.37	! 0.004 !	1,1 !	4 !	1.981 !	0.168 !	-0.498	! -0.159 *
*	5WW7 !	8.3	17.0	! 1.99 !	5.051	0.37	! 0+044 !	10.9 !	4!	1.754 !	0.192 !	-0.235	! -0.111 *
*	3EW1 !	8.3	17.0	! 0.20 !	5.020	0.37	! 0.004 !	1.1 !	4 !	0.038 !	0.046 !	-1.071	! -0.125 *
*	3EW1 !	8.3	17.0	! 1.79	5.051	0.37	! 0.044 !	10.9 !	4 !	-0.026 !	0.044 !	-1.008	! -0.134 *
*	3EW2 !	8.3	17.0	! 0.20 !	5.020	0.37	! 0.004 !	1.1 !	4 !	0.003 !	0.054 !	-1.126	! -0.179 *
*	3EW2 !	8.3	17.0	! 1.99	5.051	0.37	! 0.044 !	10,9 !	4!	-0.054 !	0.031 !	-1.025	-0.117 *
*	3EW3 .!	8.3	17.0	! 0,20	5.020	0.37	! 0.004 !	1.1	4 !	0.022 !	0.039 !	-1.154	· -0.080 *
*	3EW3 !	8.3	17.0	! 1,99 !	5,051	0.37	! 0.044 !	10.9 !	4 !	-0.073 !	0.049 !	-1,072	-0.093 *
*	3EW4 !	8.3	17.0	1 0.20	5.020	0,37	! 0.004 !	1.1 !	4	0.029 !	0.044 !	-1.025	-0.130 *
*	3EW4 !	8.3	17.0	1,99	5.051	0.37	! 0.044 !	10.9 !	4 !	-0.034 !	0.047 !	-0.963	! +0.122 *
*	3EW5 !	8.3	17.0	! 0.20	5.010	0.38	1 0.004 1	1.1 !	4 !	0.090 !	0.052 !	-1.212	! -0.197 *
*	3EWS !	8.3	17.0	1.99	5.010	0.38	1 0.044 !	11.0 !	4 !	-0.064 !	0.042	-1.042	! -0.135 *
*	SEW1 !	8.3	17.0	0.20	5.010	0.38	1 0.004	1.1	4	0.041	0.059	-1.074	-0.147 *
*	SEW1 !	8.3	17.0	1.99	5.010	0.38	0.044	11.0 !	4	-0.016 !	0.040 !	-1.011	0.117 *
*	5EW2 !	8.3	17.0	0.20	5.010	0.38	1 0.004 1	1.1 1	4	0.016 !	0.051 !	-1.119	! -0.142 *
*	5EW2 !	8,3	17.0	1.99	5.010	0.38	0.044	11.0 !	4	-0.079 !	0.034	-ì.095	! -0.092 *
*>	********	********	******	******	*****	*******	*********	*********	********	********	********	********	*******

STOP --

. .

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN 0.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-A, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 21 TAPPINGS ROOF PITCH 15 DEG, OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND BETWEEN SCANI AND TAPPING BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

•

*	******	********	******	********	******	******	*****	******	*********	*******	********	********	*******
*	PRESSURE!	FULL	! FULL	! FULL	! WIND	! WIND	WIND !	WIND !	NUMBER !	EXTREM	E PRESSUR	E COEFFIC	CIENTS *
`*	TAPPING !	SCALE	SCALE	SCALE	I TUNNEL	I TUNNEL	TUNNEL	TUNNEL !	OF !				*
*	HOLE !	AVERAGE	! OBSERVA	! EQUIVA	! MEAN	I DBSERVA	AVERAG-	SAMPLING	SAMPLING		!		*
*	CODE !	WIND	-TION	I -LENT	! WIND	! -TION	ING TIME!	INTERVAL	INTERVAL!	MAXI	MA !	MIN	AINA *
*	i	SPEED	I. TIME	! AVERAG-	! VELOCITY	! TIME	! (SECS) !	(mS) !	OVER !		!		*
*	· · · · · ·	(M/S)	(MINS)	! ING TIME	(M/S)	! (MINS)	!		WHICH !	MODE !	DISPER- !	MODE	DISPER- *
*	i		!	! (SECS)	ļ	!	!		DATA WAS!	!	SION !		SION *
*	!		!	!	!	!	!		AVERAGED!	1			*
*	********	********	********	********	*******	*******	**********	**********	*********	*****	********	********	*********
*	3WW1 !	12.4	! 17.0	! 0.19	1 4.867	! 0.58	0.006	1.6	4	1.182 !	0.202	-0.516	-0.068 ×
*	3WW1 !	12.4	! 16.9	! 1.98	4.867	0.57	0.067	8.4	8 !	0.677 !	0.105	-0.347	-0.056 *
*	3002 !	12.4	! 17.0	! 0.19	! 4.867	! 0.58	0.006	1.6	4 !	1.431 !	0,188	-0.382	-0.06/ *
*	3WW2 !	12.4	! 16.9	! 1.98	! 4.867	0.57	0.067	8.4	8 !	1.078.1	0.152 !	-0.254	! -0.056 *
*	3003 !	12.4	! 17.0	! 0.19	1 4.867	! 0.58	0.006	1.6	4 !	1.605 !	0.185 !	-0.278	! -0.065 *
*	3003 !	12.4	! 16.9	! 1.98	1 4.867	! 0.57	0.067	8.4	8 !	1.199 !	0.192 !	-0.196	-0.060 *
*	3004 !	12.4	! 17.0	! 0.19	1 4.867	! 0.58	0.006	1.6	4 !	1.758 !	0.210	-0.254	-0.062 *
*	3004 !	12.4	! 16.9	1 1.98	4.867	! 0.57	0.067	8.4	8 !	1.352 !	0.109	-0.172	-0.083 *
*	3005 !	12.4	17.0	! 0.19	4.867	0.58	0.006	1.6	4 !	1.943 !	0.192	-0.316	! -0.182 *
*	.3005 !	12.4	1 16.9	1.78	4.867	! 0.57	0.067	8.4	8 !	1.473 !	0.134 !	-0.124	! -0.128 *
*	3006 !	12.4	17.0	0.19	! 4.876	0.58	0.006	1.6	4 !	2.061 !	0.302 !	-1.027	! -0.304 *
*	3006 !	12.4	! 16.9	! 1,98	1 4.876	! 0.57	0.067	8.4	8 !	1.658	0.242 !	-0.301	! -0.194 *
*	3WW7 !	12.4	! 17.0	! 0.19	! 4.876	! 0.58	0.006	1.6	4 !	2.224 !	0.351 !	-1.147	! -0.200 *
*	3007 !	12.4	16.9	1.98	1 4.876	1 0,57	0.067	8.4	8 1	1.729 !	0.199	-0.646	! -0,268 *
*	5WW1 !	12.4	17.0	! 0.19	4.876	! 0.58	0.006	1.6	4	1.435 !	0.156	-0.551	! −0,067 *
*	5WW1 !	12.4	16.9	! 1.98	1 4.876	1 0.57	0.067	8.4	8 !	0.972 !	0.161	-0,398	! -0.052 *
*	5WW2 !	12.4	! 17.0	! 0.19	1 4.876	0.58	0.006	1.6	4	1.683 !	0.222	-0.469	! -0.077 *
*	5002 !	12.4	16.9	1.98	4.876	1 0.57	! 0,067	8.4	8 !	1.117 !	0.195	-0.316	! −0.060 *
*	5003 !	12.4	! 17.0	! 0.19	4.876	! 0.58	0.006	1.6	4 !	1.667 !	0.238	-0.286	· -0.068 *
*	5003 1	12.4	16.9	1 1,98	1 4.876	1 0.57	. 0.067	8.4	8 !	1.394 !	0.141	-0.164	! -0.066 *
*	5004	12.4	17.0	0.19	4.980	0.56	0.006	1.6	4 1	2.014 !	0.244	-0.257	-0.086 *
*	5WW4 !	12.4	16.9	1.78	1 4.980	0.56	0.066	8.2	. 8 1	1.606 !	0.232	-0.170	! -0.075 *

RESSUR	E!	FULL !	FULL	I FULL	! WIND	1	WIND	1	WIND .	!	WIND	! N	IUMBER !	EXTRE	ME PRESSU	RE COEFFI	CIENTS
* 401 C	, : 1	AUERAGEI	ORGERUA		1 MEAN	i i	DESERVA	:	AUERAG-	1	CAMPLITIC	1 0				1	
K CODE	1							1	TNG TIME	; i	INTERUAL	, υ Γ Τ	NTERVAL	МАХ	TMA	I MT	NIMA
k	i	SPEED !	TIME	I AVERAG-	I VELOCITY	÷ ·	TIME	i	(SECS)		(nS)	īâ	IVER			!	
*	i	(8/5)	(MINS)	I ING TIME	1 (M/S)	i	(MINS)	i		i	(in O)	 	нтсн і	MODE	DISPER-	MODE	! DISP
K	i	1		(SECS)	1	i		i		i		1 1	ATA WAS!		SION	!	! SIO
*	i	i		!	1	i		i		i		! A	VERAGED!		1	1	!
*******	(**	*******	*******	*******	*******	**	*******	(**	*******	k**	******	***	*******	******	*****	******	*****
k 5WW5	1	12.4 !	17.0	0.19	! 4.980	1	0,56	!	0.006	1	1.6	ļ	4 !	1.996	9.154	-0.355	! -0.
K 5WW5	1	12.4 !	16.9	1.98	! 4,980	İ	0.56	1.	0.066	1	8.2	1	8!	1.561	! 0.191	-0.171	! -0.
k 5WW6	1	12.4 !	17.0	! 0.19	4.980	!	0.56	1	0.006	1	1.6	!	4 1	2.193	9.164	-0.772	! -0.
K 5WW6	!	12.4 !	16.9	1.78	4,980	1	0.56	1	0.066	ł	8.2	!	8!	1.799	! 0.192	-0.306	! -0.
< 5WW7	1	12.4 !	17.0	0.19	4.980	1	0.56	1	0.006	!	1.6	!	4!	2,350	0.311	-1.240	! -0.
5WW7	1	12.4 !	16.9	1.78	4.980	!	0.56	1	0.066	1	8.2	!	8!	1.852	! 0.194	-0.581	! -0.
4 3EW1	1	12.4	17.0	9.19	! 4,980	Ŧ	0.56	!	0.006	!	1.6	!	4 !	-0.076	0.045	-1.162	! -0.
3EW1	1	12.4 !	16.9	! 1.98	! 4,980	!	0.56	1	0.066	1	8.2	1	8!	-0.148	9.037	-1.033	! -0.
< 3EW2	1	12.4 !	17.0	! 0.19	4,968	i.	0.57	Į.	0.006	1	1.6	I	4 !	-0.121	! 0.049	-1.240	! -0.
¢ 3EW2	1	12.4 !	16.9	! 1,99	1 5.134	1	0.54	i	0.064	1	8.0	1	8!	-0.175	! 0.029	-1.110	! -0.
< 3EW3	• I	12.4 !	17.0	! 0.19	4.968	1	0.57	!	0.006	1	1.6	i	4 !	-0.099	! 0.044	-1.306	! -0.
K JEW3	1	12.4 !	16.9	1 1.99	! 5.134	i	0.54	ł	0.064	ł	8.0	!	8!	-0.161	0.029	-1.162	! -0.
k 3EW4	1	12.4 !	17.0	! 0.19	4,968	1	0.57	1	0.006	!	1.6	!	4 !	-0.036	0.038	-1.269	! -0.
k 3EW4	!	12.4 !	16.9	1.99	5.134	!	0.54	1	0.064		8.0	1	8 !	-0.150	0.044	-1.040	! -0.
3EW5	ł	12.4 !	17.0	0.19	4,968	!	0.57	1	0.006	1	1.6	!	4 !	0.010	0.034	-1.232	! -0.
K JEW5	!	12.4	16.9	! 1.99	1 5.134	!	0.54	!	0.064	!	8.0		8 1	-0.095	1 0.028	-1.000	: -0.
K SEW1	!	12.4	17.0	! 0.19	4,968	1	0.5/	!	0.008	!	1.6	1	4 !	-0.094	1 0.032		· -0.
K SEW1	1	12.4 !	16,9	1.99	1 0.134	!	0.34	1	0.064	1	8.0	!		-0.101	9 0.042		· -0•
K SEW2	!	12.4 !	17.0	9 0.19	1 4.937	1	0.37	!	0.008	1	1.0	1 .	4 !	-0.144	1 0.033	1 -1 177	· -0.
¥ 36W2	!	12.4	16,9	1,78	4.937	!	0.5/	1	0.066	1	8.3	1	σ!	-0+104	. 0.030	-1+12/	-0.

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L REPORT 1213/77 B.R.E. RECORD A38-B, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF WIND TUNNEL,21 TAPPINGS ROOF PITCH 10 DEG, OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND BETWEEN SCANI AND TAPPING BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

*	********	*******	********	*********	******	******	******	*********	*******	*********	*******	********	*****
*	PRESSURE	FULL	! FULL	! FULL	I WIND	! WIND	WIND	WIND !	NUMBER	EXTRE	YE PRESSUR	E COEFFI	CIENTS *
`*	TAPPING !	SCALE	I SCALE	SCALE	I TUNNEL	I TUNNEL	I TUNNEL !	TUNNEL !	OF	!			*
*	HOLE !	AVERAGE	I OBSERVA.	I EQUIVA	MEAN	9 OBSERVA	! AVERAG- !	SAMPLING	SAMPLING	!	1		*
*	CODE !	WIND:	-TION	! -LENT	I WIND	I -TION	ING TIME!	INTERVAL!	INTERVAL	I MAXI	IMA I	MI	NIMA *
*	!	SPEED	! TIME	! AVERAG-	VELOCITY	I TIME	! (SECS) !	(mS) !	OVER	!			*
*	1	(M/S)	(MINS)	ING TIME	! (M/S)	(MINS)	!!!	1	WHICH	MODE	DISPER-	MODE	! DISPER- *
*	i		!	! (SECS)	1	1	! !	!!!	DATA WAS	!	SION		! SION *
*	1		I	1	!	!	1 1	!	AVERAGED	!	!		*
*	*******	*******	********	*********	********	******	******	**********	*********	*********	*********	*********	*******
*	3WW1 !	11.3	! 17.0	1 0.20	4.988	0.51	! 0.006 !	1.5 !	4	! 1.164	! 0.155 !	-0.541	! -0.051 *
*	3WW1 !	11.3	16.9	1.99	4,988	0.51	0.060 1	7.5 !	8	0.704	0.097	-0.357	! -0.039 *
*	3WW2 !	11,3	! 17.0	0.20	4.988	! 0.51	! 0.006 !	1.5 !	4	! 1.479	0.184	-0.354	! -0.069 *
*	3WW2 !	11.3	! 16,9	1.99	4.988	! 0.51	0.060	7.5 !	8	1.083	0.158	-0.259	! -0.050 *
*	3003 [11.3	17.0	! 0.20	4.988	! 0.51	0.006	1.5 !	4	! 1.584	! 0.169	-0,333	! −0.078 *
*	3003 !	11.3	16.9	1.99	4,988	! 0.51	0.060	7.5 !	8	! 1.320	0.133	-0.174	! -0.068 *
*	3004 !	11.3	! 17.0	! 0.20	4.988	9.51	0,006	1.5 !	4	! 1,845	! 0.199	-0.300	! -0.092 *
*	3004 1	11.3	16.9	1 1.99	4,988	0.51	! 0.060 !	7.5 !	8	1.378	0.128	-0.125	! -0.058 *
*	3005 !	11.3	1 17.0	0.20	4.988	0,51	0.006	1.5 !	4	! 1.950	0.220	-0.303	! -0.145 *
*	3005 !	11.3	! 16.9	1.99	4,998	0,51	0.060	7,5 !	- 8	! 1.515	! 0.141	-0.114	! -0.096 *
*	3006 1	11.3	! 17.0	0.20	4.983	0,51	! 0.006 !	1,5 !	4	1.946	. 0.183	-0.838	! -0.365 *
*	3006 1	11.3	! 16.9	1.98	4.983	0,51	0.060	7.5 !	8	1.641	0.154	-0.331	! -0,170 *
*	3007 !	11.3	17.0	0.20	4,983	0.51	0.006	1.5 !	4	! 1.950	. 0.263	-1.099	! -0.275 *
*	3007 !	11.3	! 16.9	1.98	4.983	0.51	0.060	7.5 !	8	! 1.740	! 0.193	-0.524	! -0.179 *
*	5WW1	11.3	17.0	0.20	4.983	0.51	0.006	1,5 !	4	! 1,330	0.152	-0.540	! -0.069 *
*	5WW1 !	11.3	16.9	! 1.98	4,983	0.51	0.060 1	7.5 !	8	0.846	9.164	-0.370	! -0.055 *
*	5002 1	11.3	1 17.0	. 0.20	4.983	0.51	1 0.006	1.5 !	4	1,703	0,278	-0.432	! -0.062 *
*	5WW2 !	11.3	1 16.9	1,98	4.983	0.51	0.060	7,5 !	8	! 1.193	0.166	-0.345	! -0.055 *
*	5003 !	11.3	! 17.0	! 0.20	4.983	0.51	1 0.006	1.5 !	4	! 1.765	! 0.343	-0.217	! -0.056 *
*	5003 !	11.3	! 16.9	! 1,98	1 4.983	! 0.51	0.060	7.5 !	8	! 1.389	! 0,137	-0.199	! -0.053 *
*	5WW4 !	11.3	! 17.0	1 0,19	4.855	0.53	! 0,006	1.5 !	! 4	1.866	! 0.233	-0.309	! -0.094 *
*	5WW4 !	11.3	! 16.9	! 1.98	4.855	! 0.52	! 0.062	7,7 !	8	! 1.593	! 0.191	-0.171	! -0.103 *

**************************************	********** ! FULL ! SCALE ! AVERAGE ! WIND ! SPEED	**************************************	**************************************	**************************************	*********** ! WIND ! TUNNEL ! OBSERVA ! -TION ! TIME	**************************************	*********** WIND ! TUNNEL ! SAMPLING! INTERVAL! (mS) !	*********** NUMBER OF SAMPLING INTERVAL OVER	**************************************	**************************************	**************************************	************ CIENTS * * NIMA * *
*	! (M/S) !	(MINS)	ING TIME!	(M/S)	! (MINS)	!		WHICH	MODE	DISPER-	MODE	! DISPER- * ! SION *
*	!	I	1		I	i i		AVERAGED		0100		1 *
********	*********	********	**********	*********	********	*********	*********	*******	*********	*********	*******	*********
* 5WW5	11.3	17.0	! 0.17 !	4.855	! 0.53	0.006 !	1.5 !	4 !	2.074 !	0.265	-0.338	! -0.107 *
* 5005	11.3	16.9	1,78	4,855	0.52	0.062	7.7 !	8 !	1.627 !	0.161	-0,149	! -0.032 *
* 5006	1 11.3	17.0	0,19	4.855	0.53	0.006	1.5 !	4 !	2.140 !	0.246	-0.898	! -0.307 *
* 5006	1 11.3	16.9	1.98	4.855	0.52	0.062	7.7 !	8 !	1.669 !	0.185	-0.362	! -0.228 *
* 5007	11.3	17.0	0,19	4.855	0.53	0.006	1.5 !	4 !	2.364	0.250	-1.167	! -0.127 *
* 5007	11.3	16.9	1.98	4,855	0.52	0.062	7.7 !	8 1	1,805 !	0.166	-0.684	! -0.257 *
* 3FU1	1 11.3	17.0	0.20	4.965	0.52	0.006	1.5	4 !	-0.072 !	0.044	-1.161	! -0.141 *
* 3EW1	11.3	15.9	1.78	4.965	0.51	0.060	7.5 !	8 !	-0,126 !	0.040	-1.008	! -0.121 *
* 3EW2	1 11.3	17.0	0,20	4,965	0.52	0.006	1.5 !	4 !	-0.096 !	0.044	-1.283	! -0.159 *
* 3EW2	1 11.3	16.9	1,98	4.965	0.51	0.060	7.5 !	8 !	-0.154 !	0.027	-1.086	! -0.100 *
* 3EW3	11.3	17.0	0.20	4.965	0.52	0.006	1.5 !	4	-0.091 !	0.032	-1.208	! -0.107 *
* 3EW3	1 11.3	16.9	! 1.98 !	4.965	! 0.51	0.060	7.5 !	8 !	-0.156 !	0.035	-1.129	! -0.093 *
* 3EW4	11.3	17.0	! 0.20 !	4.965	0.52	! 0.006 !	1.5 !	4 !	-0.037	0.026	-1.265	! -0.081 *
* 3EW4	11.3	16.9	! 1.98 !	4,965	0.51	! 0.060 !	7.5 !	8 1	-0.122	0.031	-1.040	! -0.117 *
* 3EW5	1 11.3	17.0	! 0.20 !	4.965	0.52	! 0.006 !	1.5 !	4	0.027 !	0.051	-1.222	! -0.099 *
* 3EW5	! 11.3	16.9	! 1,98 !	4.965	! 0,51	0.060	7.5 !	8 !	-0.086	0.040	-0,938	! -0.105 *
* 5EW1	11.3	17.0	0.20	4.959	0.52	! 0.006 !	1.5 !	4	-0.094	0.040	-1.222	! -0.099 *
* 5EW1	11.3	16.9	! 1.97 !	4.959	0.51	0,060	7.5 !	8 !	-0.134	0.030	-1,049	! -0.111 *
* 5EW2	11.3	17.0	1 0.20	4,959	0.52	1 0.006	1.5 1	4	-0.108	0.046	-1.261	! -0.085 *
* 5EW2	! 11.3	16.9	! 1.97 !	4.959	0.51	! 0.060	7.5 !	8	-0.128	0,046	-1.157	! -0.098 *
********	********	*******	*********	*********	******	********	********	******	*********	*********	*******	*****

STOP --

i.

.

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

.

WIND SIMULATION AS DESCRIBED IN D.U.E.L. REPORT 1213/77 H.R.E.RECORD A38-C, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 21 TAPPINGS ROOF PITCH 5 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND RETWEEN SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

*****	********** PRESSURE! TAPPING ! HOLE ! CODE !	********** FULL ! SCALE ! AVERAGE! WIND !	********* FULL SCALE OBSERVA -TION TIME	************* ! FULL ! SCALE ! EQUIVA ! -LENT ! AUERAG-	**************************************	********* WIND TUNNEL OBSERVA -TION TIME	************* ! WIND ! TUNNEL ! AVERAG- ! ING TIME! ! (SECS)	**************************************	XXXXXXXXXXXXX NUMBER DF SAMPLING INTERVAL DVFR	**************************************	PRESSUR	E COEFFIC	:#####################################
****	 	(M/S)	(MINS)	ING TIME (SECS)	(M/S)	(MINS)			WHICH DATA WAS AVERAGED	MODE 	DISPER- 1 SION 1	MODE	DISPER- * SION *
×	********	*******	*******	******	*******	*******	*****	**********	*******	*****	*******	*********	ነጥጥጥጥጥጥጥጥጥ ነ
*	3WW1 !	11.1	17.0	0.19	5.018	0,50	0.006	1.4	4	1.093 !	0.181 !	-0.376	-0.081 *
*	3WW1 !	11.1	16.9	1.98	5.018	0,50	0.058	7.3	8	0,756	0.115 !	-0.389	-0.050 ×
*	3WW2 !	11.1	17.0	0,19	5.018	0.50	1 0,006	1.4	4	1 1 441	0.197 !	-0.375	-0.052 *
*	3WW2 !	11.1	16.9	! 1,98	5,018	0.30	0.058	7.3	8	1.139	0.181 1	-0,252	-0.082 *
*	3003 !	11.1	17.0	0.19	5.018	0.50	! 0.006	1.4	4	1.566 !	0.185 !	-0.297	-0.074 *
*	3003 !	11.1	16.9	! 1,98	5.018	0.50	0.058	7.3	8	! 1.298	0.134 !	-0.155	-0.067 *
*	3004 !	11.1	17.0	0.19	5.018	0,50	1 0.006	1.4	4	! 1.781 !	0.169 !	-0.263	-0.059 *
*	3004 !	11.1	16.9	1.98	5.018	0.50	1 0.058	7.3	8	1.410 !	0.179 !	-0.164	1 -0.060 *
*	3005 !	11.1	17.0	0.19	5.018	0.50	! 0,006	1.4	4	1.911	0.218 !	-0,273	! -0.118 *
*	3005	11.1	16.7	1.98	5.018	0.50	1 0.058	7.3	8	! 1.500 !	0,150 !	-0.095	! -0.070 *
*	3006	11.1	17.0	0,19	5,009	0.50	0.006	1.4	4	2.121	0.255 !	-0.871	-0.406 *
*	3004	11.1	16.9	1.90	5.009	0.50	0.058	7.3	8	1.611	0.167 !	-0.307	! -0.251 ¥
*	3442 1	11.1	17.0	0.19	5.009	0.50	1 0.006	1.4	4	2,100 !	0.295 !	-1.151	-0.229 ×
*	3667	11.1	14.9	1 1.99	5.009	0.50	1 0.058	7.3	8	1,667 1	0.243 !	-0.585	-0.213 *
*	5001	11.1	17.0	0.19	5.009	0.50	1 0.006	1.4	4	1.373	0.224 1	-0.548	! -0.081 *
*	5001 1	11.5	14.9	1,98	5,009	0.50	1 0.058	7.3	8	0.872 !	0.127 !	-0.344	· -0.045 *
÷	SUUD 1	44 4 4	17.0	1 0.19	5,009	0.50	1 0.006	1.4	4	1 1.610 /	0.254	-0.473	-0.064 *
Ĵ	- JWWZ :	44 4 4	42.0	1 1 20		0.50	1 0.059	7.3	R	1.141 1	0.187	-0.286	-0.036 *
*	! 		17 0	1 0 10	5 009	0.50	1 0.006	1.4	. 4	1.630	0.186	-0.266	-0.084 *
*			1/10	; 0417		0.50	1 0 050			1,340 1	0.131	-0.191	1 -0.090 *
*	2003	11+1	10+7	1 1.70	3,007	0+30	1 0 000				0.197 1	-0.237	1 -0.079 ¥
*	5WW4 !	11+1	17.0	0.19	! 4,936	0.51	1 0.008	1+4	. 4	· · · · · · · ·	01177 :	_0 109	
*	5WW4 !	11.1	16.9	1 1,97	4.936	0.51	1 0.059	! /•4	. 8	1 1.041 !	V•248 :	-0,100	: -VIV- 7

******	*****	****	*******	:**:	******	* *:	*******	:**	*******	**	*******	**	********	**	********	***	*****	**	******	**>	********	***>	*****	**
* PRESSUR	E! FUL	L	! FULL	!	FULL	ł	WIND	I	WIND	ļ.	WIND	ł.	WIND	!	NUMBER !		EXTRE	IME	PRESSU	RË	COEFFIC	CIE	NTS	*
* TAPPING	! SCA	LE	I SCALE	1 9	SCALE	i	TUNNEL	ļ	TUNNEL	Į.	TUNNEL	İ.	TUNNEL	!	0F !									-*
* HOLE	! AVE	RAGE	I OBSERVA	1 1	EQUIVA	!	MEAN	ł	DBSERVA	!	AVERAG-	I.	SAMPLING	ļ	SAMPLING!					!				*
* CODE	I WIN	D	! -TION	1 .	-LENT	1	WIND	!	-TION	!	ING TIME	ł	INTERVAL	!	INTERVAL!		MAX	IM	A	!	MIM	1I M	A	*
*	! SPE	ED	! TIME	1 1	AVERAG-	ţ	VELOCITY	' I	TIME	ļ	(SECS)	!	(mS)	Į.	OVER !					!				-*
*	! (M	/S)	(MINS)	1 1	ING TIME	E I .	(M/S)	!	(MINS)	!		!		ļ	WHICH !	1	IODE	!	DISPER-	!	MODE	D.	ISPER-	*
*	1		! .	!	(SECS)	1		!		!		!		ļ	DATA WAS!			i.	SION	!		! !	SION	¥
*	ļ		!	!		ļ		!		!		!		!	AVERAGED!			1		!	1	!		×
*******	*****	****	******	**	*******	k#:	*******	**	*******	**	*******	**	********	**	******	***	*****	(**	******	**>	*******	***	*****	**
* 5005	! 11	• 1	1 17.0	!	0.19	i	4.936	!	0.51	!	0.006	!	1.4	Į.	4!		2.016	ţ	0.157	!	-0.353	! -	-0.157	*
* 5WW5	! 11	• 1	16.9	1	1.97	I	4.936	!	0.51	!	0.059	!	7.4	!	8!		1.627	!	0.190	!	-0.124		-0.078	*
* 5WW6	! 11	• 1	! 17.0	1	0.19	i	4,936	1	0.51	!	0.006	ł	1.4	1	4 !		2.141	!	0.236	ł	-0.804	<u> -</u>	-0.423	*
* 5WW6	1 11	• 1	16.9	1	1.97	ļ	4,936	!	0.51	1	0.059	!	7.4	!	8!		1.725	!	0.198	!	-0.256	! •	-0.187	*
* 5WW7	! 11	. 1	! 17.0	1	0.19	!	4,936	1	0.51	ļ	0.006	I	1.4	Ŀ	4 !		2.207	!	0.222	!	-1.141		-0.294	*
* 5007	! 11	. 1	1 16.9	!	1.97	1	4.936	!	0.51	İ	0,059	!	7.4	1	8 !		1.759	!	0,199	!	-0.634	ļ •	-0.212	*
* 3EW1	! 11	•1	! 17.0	!	0.19	!	4.997	ļ	0.50	1	0.006	1	1.4	1	4!	-	0.027	1	0.053	!	-1.200		-0.124	*
* 3EW1	! 11	• 1	! 17.0	!	2.00	ļ	4.997	!	0.50	t i	0.059	!	7.4	ł	8!	-	0.112	!	0.037	!	-1.053	•	-0.155	*
* 3EW2	! 11	• 1	! 17.0	!	0.19	1	4.997	!	0.50	!	0.006	!	1.4	!	. 4 !	-	0.092	Į.	0.037	!	-1.302		-0.138	*
* 3EW2	! 11	• 1	17.0	E	2.00	ļ	4.997	ł	0.50	1	0.059	!	7.4	!	8!	-	0.136	1	0.042	ļ	-1.128	- 1	-0.133	*
* 3EW3	! 11	• 1	1 17.0	1	0.19	İ	4.997	ł	0.50	!	0.006	Ŀ	1.4	!	4 !	-	860.0	1.	0.052	!	-1.241	-	-0.118	*
* 3EW3	! 11	• 1	17.0	1	2.00	1	4.997	Į	0.50	!	0.059	1	7.4	!	8!	-	0.148	1.	0.042	!	-1.027		-0.067	*
* 3EW4	1 11	.1	1 17.0	1	0.19	1	4.997	1	0.50	!	0.006	!	1.4	l	4 !	-	0.038	!	0.029	!	-1.185	- 1	-0.142	*
* 3EW4	11	•1	17.0	1	2.00	!	4.997	!	0.50	Ł	0.059	I.	7.4	!	8!	-	0.117	!	0.043	!	-0.971	- 1	-0.077	*
* 3EW5	! 11	.1	! 17.0	1	0.19	!	4,997	Į.	0,50	1	0.006	ļ	1.4	!	4!		0.030	i	0.040	!	-1.119		-0.118	*
* 3EW5 .	! 11	.1	17.0	1	2.00	!	4.997	1	0,50	!	0.059	I	7.4	ł	8!	-	0.067	!	0.037	ļ	-0.940	! ·	-0.139	*
* 5EW1	! 11	.1	17.0	!	0.19	ļ	4.969	1	0.51	!	0.006	!	1.4	!	4 !	-	0.048	!	0.048	!	-1.232	! •	-0.108	*
* 5EW1	1 11	.1	! 17.0	1	1.99	i	4.969	!	0.51	!	0.059	!	7.4	I.	8!	-	0.120	ł	0.029	!	-1.033	•	-0.087	*
* 5EW2	1 11	• 1	! 17.0	1	0.19	1	4.969	1	0.51	!	0.006	!	1.4	I.	4 !	-	-0.088	ļ	0.046	!	-1.250		-0.099	*
* 5EW2	! 11	• 1	! 17.0	i	1.99	!	4.969	1	0.51	!	0.059	Į.	7.4	!	8!	-	-0.146	i	0.045	ļ	-1.074	! •	-0.114	*
*******	*****	****	********	***	******	**	*******	**	******	**	********	**	********	**	********	(***)	******	***	*******	**>	*******	** *	*****	××
STOP																								

PITOT 10 M ABOVE ANEMOMETER SITE

MANHOLE

-

PROCESSED DATA :-

. . .

PRESSURE!	FULL	! FULL	! FULL !	ωτνή !	WIND	l
	SPEED ()	TIME (M	AVERAG-	VELOCITY! ()	TIME ()	(
: '3		:				
	1	1	1	ì		
		,	;		I	
2!			!!	ļ		!

1

1

•21

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-B, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 11 TAPPINGS ROOF FITCH 10 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND BETWEEN SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

*	******	*******	*****	******	*****	******	*****	*********	******	*********	*******	*****	******
*	FRESSURE!	FULL !	FULL	! FULL	. WIND	WIND	I WIND	WIND	NUMBER	EXTREM	E PRESSUR	E CDEFFI	CIENTS *
*	TAPPING !	SCALE !	SCALE	! SCALE	I TUNNEL	I TUNNEL	I TUNNEL	TUNNEL !	OF				*
*	HOLE !	AVERAGE!	OPSERVA	! EQUIVA	! MEAN	0BSERVA	I AVERAG-	SAMPLING	SAMPLING	!	!		*
*	CODE !	WIND !	-TION	! -LENT	I WIND	-TION	! ING TIME	INTERVAL!	INTERVAL	! MAXI	(MA !	МІМ	* AMI
*	1	SPEED !	TIME	! AVERAG-	I VELOCITY	I TIME	! (SECS)	(mS) !	OVER		!		*
*	!	(M/S) !	(MINS)	! ING TIME	! (M/S)	(MINS)	!	!!!	WHICH	MODE !	DISPER- !	MODE	DISPER- *
*	1	!		! (SECS)	!	Į	!	! !	I DATA WAS	!!!	SION !		SION *
*				!	!	!	1		AVERAGED	!	!		*
*:	********	********	*******	********	********	********	*********	*********	*********	**********	*******	********	********
*	5EW3 !	11.3 !	17.0	1 0.20	! 5.021	0.51	! 0.006		4		0.034 !	-1+261	
*		11.3 !	17.0	2.00	1 2+021		1 0.080		. 8			-1+099	
*		11.3	17.0	1 0.20	9 3.021			· ···	· ·			-0 057	· -0 ·1/3 *
- * -		11+3 1	17.0	2,00	9 3+021 1 E A21	0.51		· /•J ·		· -0.084 ·	0.044	-0.733	· -0.06J *
*	SEWJ !	11.3	17.0	1 2 00	1 5 021	1 0+51		1+J ! 75	· ·			-1.400	
*	JEWJ !	11.3	17.0	1 0 20	1 5 021	0,01		· /•J !			0.741	-7.046	-0.078 *
1	35W1 1	11.3	17.0	1 7 00	1 5 021	· 0.51				· · · · · · · · ·		-1 280	-01230 *
*	3501 1	11.3 !	17.0	2+00	1 5.021	! 0+01	1 0.080			! I+344 ! 4 770 !		-2 002	
*	35₩2 !	11+3 !	17.0	1 2 00	! 5+021	9 0,51 1 0,51			. 4	1 1 7 9 0 1		-1 307 1	
*	35WZ !	11.0	17.0	2.00	9 0.021 1 E 000			1 5 1				-1 140	
*	3503 1	11.3 !	1/.0	1 1 00	! 3.002 I A 070	· 0.51		· ·····		1,243		-1,1707	-0.217 *
*	3583 1	11.3 !	17 0	1 0.70	1 5 007	0.51	1 0.004	1.5		0.480	0.139	-0.737	-0.067 *
÷	33W4 !	11 7 1	14 0	1 1 00		0.51		1,5	: 7 I 9		0,096 1	-0.548	
Ĵ	5004 f	11.3	17 0	1.70	1 5.007	0.51	1 0.004	1.5		1,909	0.747	-2.139	-0.272 *
÷	5501 1	11.7	14.0	1 1.98	1 A.979	0.51	0.040	7.5		1.519	0.228	-1.526	-0.261 *
÷	5542 1	11.3	17.0	1 0.20	1 5,002	0.51	1 0,006	1.5	1 4	1.768	0.261	-2.195	-0.391 *
*	55W2 I	11.3	16.9	1,98	1 4.979	0.51	1 0.060	7.5	. 8	1.442	0.215	-1.547	-0.230 *
×	3042	11.3	17.0	0.20	5.002	0.51	1 0.006	1.5	i 4	0.006	0.030 !	-1,220	-0.150 *
*	3NW1 1	11.3	16.9	1 1.98	4,979	0.51	1 0.060	7,5	8	-0.079	0.033	-0.932	-0.124 *
*	3NW2 1	11.3	17.0	1 0.20	4.985	0.51	1 0.006	1.5	. 4	0.025	0.033	-1.091	-0.128 *
*	3NW2 1	11.3	16.9	1 1.99	4.985	0.51	0.060	7.5	. 8	-0.044	0.040 !	-0.910	-0.121 *
*	*****	********	*******	******	*******	*****	******	********	*******	******	******	********	*******

.

ESP026

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-A, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 11 TAPPINGS ROOF PITCH 15 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND BETWEEN SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

*	PRESSURE! TAPPING !	FULL ! SCALE !	FULL SCALE	************ ! FULL ! ! SCALE !	WIND TUNNEL	WIND TUNNEL	************** ! WIND ! ! TUNNEL !	WIND ! TUNNEL !	************ NUMBER OF !	EXTREM	E PRESSUR	************* E COEFFIC	*********** CIENTS * *
* * *	HOLE ! CODE !	AVERAGE! WIND ! SPEED !	OBSERVA -TION TIME	I EQUIVA ! I -LENT I AVERAG- !	MEAN WIND VELOCITY	DBSERVA -TION TIME	! AVERAG- ! ! ING TIME! ! (SECS) !	SAMFLING! INTERVAL! (mS) !	SAMPLING! INTERVAL! OVER !	MAXI	MA	MIN	* * NIMA * **
*	!	(M/S) !	(MINS)	ING TIME!	(M/S)	(MINS)	!!!	!	WHICH !	MODE !	DISPER-	MODE	DISPER- *
*	!	!					: ' ! !	:	AVERAGED!	1	5104		STOK *
*:	*******	*******	********	*********	*********	*********	*********	*********	**********	********	********	<**********	********
*	5EW3 !	12.4 !	17.0	0.19 !	4,978	0.56	0.006	1.6 !	4 !	-0.061 !	0.032	-1.577	-0.180 *
*	5EW3 !	12.4 1	17.0	! 2,00 !	4.978	0.56	! 0.066 !	8.3 !	8 !	-0.159 !	0.034	-1.141	-0.089 *
*	5EW4 !	12.4 !	17.0	! 0,19 !	4,978	0.56	0.006	1.6 !	4 !	-0.036 !	0.036	-1.520	-0.281 *
*	5EW4	12.4 !	17.0	2.00	4,978	0.56	! 0.066 !	8.3 !	8 !	-0.102 !	0.044	-1.106	-0.110 *
*	5EW5 !	12.4 !	17.0	0,19	4.978	0.56	! 0.006 !	1.6 !	4 !	0.018 !	0.047	-1.556	-0.198 *
*	5EW5 I	12.4 !	17.0	! 2.00 !	4.978	0.56	! 0.066 !	8.3 !	8 !	-0.115 !	0.029	-1.091	-0.115 *
*	3SW1 !	12.4 !	17.0	! 0.19 !	4.978	0.56	! 0.006 !	1.6 !	4 !	1.937 !	0.200	-1.946	-0.285 *
*	35W1 !	12.4 !	17.0	2.00 !	4.978	0.56	0.066 !	8.3 !	8!	1,500 !	0.205	-1.308	-0.213 *
*	3SW2 !	12.4 !	17.0	0.19 !	4,978 !	0.56	! 0.006 !	1.6 !	4 !	1.796 !	0.282	-1.842	-0.252 *
*	3SW2 !	12.4 !	17.0	2.00 1	4,978	0.56	0.066	8,3 !	8!	1.385 !	0.225	-1.326	-0.164 *
*	3SW3 !	12.4 !	17.0	! 0.19 !	4,988 !	0.56	! 0.006 !	1.6 !	4 !	1.306 !	0.202	-1.055	-0.259 *
*	3SW3 !	12.4 !	16.9	1.98	4.988	0,56	0.066	8.2 !	8!	0.990 !	0.118	-0.668	-0.157 *
*	3SW4 !	12.4 !	17.0	! 0.19 !	4,988 !	0.56	! 0.006 !	1.6 !	4 !	0.691 !	0,159	-0.760	-0.112 *
*	3SW4 !	12.4 !	16.9	! 1.98 !	4.988	0.56	! 0.066 !	8.2 !	8 !	0.408 !	0.066	*-0,572	-0.057 *
*	5SW1 !	12.4 1	17.0	! 0.17 !	4,988 !	0.56	0.006 !	1.6 !	4 !	1,925 !	0.289	-2.109	-0.280 *
*	5SW1 !	12.4 !	16.9	1.78 !	4,988 !	0.56	! 0.066 !	8.2 !	8 !	1.580 !	0.281	-1.616	-0.195 *
*	55W2 !	12.4	17.0	0.19	4.988 1	0,56	0.006 !	1.6	4 !	1.759 !	0.250	-2,195	-0.452 *
*	5SW2 !	12.4 !	16.9	1.78	4.988	0.56	0.066	8.2 !	8 !	1.437 !	0.203	-1.586	-0.241 *
*	3NW1 1	12.4 1	17.0	0.19	4,988	0.56	0.006	1.6 !	4 !	-0.000 !	0,035	-1.180	-0.175 *
*	3NW1 I	12.4	16.9	1.78	4.988	0.56	0.066	8.2	8 !	-0.067 !	0.027	-1.002	-0.123 *
*	3842 1	12.4 1	17.0	0.20	5.072	0.55	0.006	1.6	4 1	0.029 !	0,032	-1.118	-0.139 *
*	3842 1	12.4 1	17.0	1,99	5.072	0.55	0.065	8.1	8 !	-0.070 !	0.038	-0.979	-0.167 *
*	*******	*******	*****	********	*******	******	*****	********	******	********	******	********	*******

.

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-G, WIND DIRECTION 248 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 11 TAPPINGS ROOF PITCH 22.5 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBE BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

********	********	********	******	********	*********	*********	******	*******	*******	*******	*********	*********
* PRESSURE	FULL	! FULL	I FULL I	WIND	WIND	I WIND I	WIND !	NUMBER !	EXTREM	E PRESSUR	RE COEFFIC	CIENTS *
* TAPPING	SCALE	SCALE	SCALE	TUNNEL	TUNNEL	TUNNEL !	TUNNEL !	0F !				*
* HOLE	AVERAGE	0BSERVA	EQUIVA	MEAN	OBSERVA	AVERAG-	SAMPLING	SAMPLING				*
* CODE	WIND:	-TION	-LENT	WIND	-TION	ING TIME!	INTERVAL!	INTERVAL!	MAXI	MA	MIN MI	IMA *
*	SPEED	TIME	AVERAG-	VELOCITY	TIME	(SECS)	(mS) !	OVER !				*
*	(M/S)	(MINS)	ING TIME	(M/S)	(MINS)		1	WHICH !	MODE !	DISPER-	MODE	DISPER- *
*		1	(SECS)				1	DATA WAS!	1	SION		SION *
*		ļ					1	AVERAGED!	!	1	!	*
*********	********	********	*********	*********	********	*******	*******	*******	*****	*******	*********	*******
* 5EW3	8.3	! 17.0	! 0.19 !	4.893	0.38	0.004 !	1.1 !	4!	-0.048 !	0.042	-1.509	-0.162 *
* 5EW3	8.3	! 17.0	2.00	4.893	0.38	0.045 !	11.3 !	4!	-0.152 !	0.038	-1.229	-0.113 *
* 5EW4	8.3	17,0	! . 0.19 !	4.893	0.38	0.004 !	1.1 !	4 !	-0.022 !	0.050	-1.528	-0.298 *
* 5EW4	8.3	17.0	2.00	4.893	0.38	0.045 !	11.3 !	4!	-0.142 !	0.042	-1.150	-0.132 *
* 5EW5	8.3	17.0	0.19	4.893	0.38	0.004 !	1.1 !	4!	0.042 !	0.037	-1.388	-0.125 *
* 5EW5	8.3	17.0	2.00	4.893	0.38	0.045 !	11.3 /	4 1	-0.108 !	0.035	-1.052	-0.130 *
* 3SW1	8.3	17.0	0.19	4,893	0.38	0.004 !	1.1 !	4 !	1.852 !	0,291	-1.768	-0.325 *
± 35₩1	8.3	17.0	2.00	4.893	0.38	0.045 1	11.3 !	4!	1.481 !	0,156	-1.272	-0.118 *
★ 35₩2	8.3	17.0	0.19	4.893	0.38	0.004	1.1 !	4 !	1.543 !	0.173	! -1.927	-0.266 *
* 35W2	8.3	17.0	2.00	4.873	0.38	0.045 !	11.3 !	4!	1.400 !	0.259	-1.341	-0.330 *
* 3543	8.3	17.0	0.20	5.017	0.37	0.004	1.1 !	4!	0.771 !	0.127	-1.703	-0.181 *
* 35W3	8.3	17.0	1.99	5.017	0.37	0.044	11.0 !	4!	0,574 !	0.091	-1.262	-0.185 *
* 3SW4	8.3	17.0	0.20	5,017	0.37	0.004 !	1.1 !	4 !	0.392 !	0.079	-1.039	-0.191 *
* 35W4	8.3	17.0	1.99	5.017	0.37	0.044	11.0 !	4!	0.200 !	0.076	! -0,757	! <u>∽</u> 0.133 *
* 5SW1	8.3	17.0	0.20	5.017	0.37	0.004 !	1.1 !	4 !	1.400 !	0,288	-2.513	-0.442 *
* 5SW1	8.3	17.0	1.99	5.017	0.37	0.044	11.0 !	4 !	1.183 !	0.191	! -1.985	-0.395 *
± 55⊌2	8.3	1 17.0	0.20	5.017	0.37	0.004	1.1 !	4 !	1.174 !	0.162	-2.503	! -0,295 *
* 5502	8.3	1 17.0	1,99	5.017	0.37	0.044	11.0 !	4!	1.019 !	0,185	! -1.974	-0.206 *
* 3NW1	8.3	17.0	0.20	5.017	0.37	0.004	1.1 !	4 !	0.000 !	0.049	-1.682	-0.230 *
* 3NH1	8.3	1 17.0	1 1.99	5.017	0.37	0.044	11.0	4 !	-0.089 !	0.038	! -1.390	! -0.225 *
	8.3	1 17.0	0.18	5.052	0.37	0.004	1.0	4 !	0.017 !	0.039	! -1.798	-0.387 *
* 3NU2	8.3	1 17.0	1,99	5.052	0.37	0.044	10.9	4 !	-0.067 !	0.043	1.338	-0.156 *
~ JITW2 ********	*********	**********	******	*******	*******	******	*******	*********	*******	*******	*********	******
~~~~~~~~~	ኮ ጥ ጥ ጥ ጥ ጥ <b>ጥ ጥ</b> ጥ	ጥ ጥ ጥ ጥ ጥ ጥ ጥ <b>ጥ ጥ</b> ጥ	ም ቁም ቁም <b>ቁም ቁም ቁም ቁም ቁም ቁም የ</b>		•							

#### DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E.RECORD A38-G, WIND DIRECTION 248 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 20 TAPPINGS ROOF PITCH 22.5 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBE BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

PROCESSED DATA :-

*	********	******	********	********	*********	********	**********	**********	**********	*********	*********	**********	*********
*	PRESSURE!	FULL	! FULL	! FULL	WIND	WIND	I WIND	WIND	NUMBER	EXTREM	IE PRESSU	RE COEFFI	CIENTS *
*	TAPPING !	SCALE	! SCALE	! SCALE	! TUNNEL	TUNNEL	I TUNNEL	TUNNEL !	OF I				*
*	HOLE !	AVERAGE	! OBSERVA	! EQUIVA	! MEAN	OBSERVA	! AVERAG-	SAMPLING	SAMPLING			!	*
*	CODE !	WIND	I -TION	! -LENT	I WIND	-TION	ING TIME	INTERVAL!	INTERVAL	MAXI	(MA	I MIN	* AMIN
*	!	SPEED	! TIME	! AVERAG-	! VELOCITY	TIME	(SECS)	(mS) !	OVER				*
*	1	(M/S)	(MINS)	I ING TIME	! (M/S)	(MINS)	I	· [	WHICH !	MODE !	DICPER-	MODE	! DISPER- *
*	!		!	! (SECS)	!		I		DATA WAS	!!!	SION	L I	SION *
*	!		!	!	!		!	!	AVERAGED		l	L .	! *
*	******	*******	*****	********	******	******	*****	*********	******	*****	******	*********	*****
*	WRIA !	8.3	17.0	1 0.20	4.980	0.38	0.004	1.1 !	4	0.782 !	0.178	-2.080	! -0.323 *
*	WR1A !	8.3	1 17.0	2.00	4.980	0.38	0.044	11.1	4	0.363 !	0.099	-1.441	! -0.105 *
*	WR1B I	8.3	1 17.0	0.20	4.980	0.38	0.004	1.1	4	0.718 !	0.184	-2,261	! -0.194 *
*	WR1B I	8.3	1 17.0	1 2.00	4.980	0.38	0.044	11.1	4	0.378 !	0.135	-1,508	! -0.162 *
*	WR1C !	8.3	1 17.0	1 0.20	4.980	0.38	0.004	1.1	4	0.716	0.189	-2.282	! -0.283 *
*	WRIC I	8.3	1 17.0	1 2.00	4,980	0.38	0.044	11.1	4	0.224	0.086	-1.560	· -0.172 *
*	WRIF I	8.3	1 17.0	1 0.20	4.980	0.38	0.004	1.1	4	0.777	0.229	-1.817	1 -0.236 *
*	WRIE I	8.3	1 17.0	2.00	4.980	0.38	1 0.044	11.1	4	0.527	0.132	-1,223	! -0.130 *
		0 7	1 17.0	1 0.70	1 4.990	0.39	1 0.004	1.1	i A i	0.485 1	0.196	-7.748	1 -0.376 ×
Ĵ		0.3	1 17 0	1 7 00			1 0.044	11.1		0.028	0.055	-1.432	-0.184 *
Ĵ	WAIE 1	0.3	1 17.0	1 2,00						0,020	0.129	-1.539	1 -0.243 *
*		8.3	1 17.0	· · · · · · · ·	1 F 001								· -0.131 *
*	WKZC I	8.3	1 17.0	1 1.77	5,001	0,30	0.044	11.0					1 -0.734 *
*	WRZE !	8.3	1 17.0	1 0.20	! 4+772   E 001	0.38	0.004					1 _0 974	-0.114 *
*	WR2E !	8+.3	! 17.0	1 1.99	9.001	0.38	0.044	11.0	4		0.072		· -0.110 *
*	WR3A !	8.3	1 17.0	1 0.20	4.992	0.38	0.004	1.1	4		0.110		· -0.205 *
*	WR3A !	8.3	17.0	1 1.99	5.001	0.38	0.044	11.0	4	0.523	0.077		· -0.203 *
*	WR3B I	8.3	! 17.0	1 0.20	4,992	0,38	0.004	1.1	4	0.661	0.139	-0.82/	· -0.132 *
*	WR3B !	8.3	! 17.0	! 1.99	! 5,001	0.38	0.044	11.0	4	0,446 !	0.086	-0.538	-0.0/2 ×
*	WR3C !	8.3	17.0	! 0.20	4.992	0.38	! 0.004	1.1	4	0.616	0.101	-0.815	! -0.149 <b>*</b>
*	WR3C I	8.3	1 17.0	1.99	5.001	0.38	1 0.044	11.0 !	4	0.415 !	0.079	-0.572	! -0.083 *

HOLE	, , ! !	AVERAGE!	OBSERVA -TION		IVA NT	MEAN		OBSERVA -TION	 	AVERAG- ING TIME	I SAM	PLING		SAMPLING! INTERVAL!		MAX	IMA		! !	MII	NI	MA
	1	(M/S) 1	(MINS)		TIME	: VELUCII   (M/S)	1 2	(MING)	i	(32037		137	: :	141CH 1		MODE		SPEP-	! !		1 1	
	i	1	(1121(0))	1 (5)	FCS		i	(11110)	i		1		1 1	NATA WASI		nobe			: 1	HODE	: 1	STON
	i			1	2007	I	i		i		•		i	AUFRAGEDI			: .	101	: 		:	0104
*******	***	*********	*******	· *****	*****	******	***	******	**:	*****	*****	*****	**	*****	**	******	: ****	******	***	******	: **	******
	1	8.3 1	17.0	1 0	.18	5.094	1	0.37	1	0.004	1	1.0	1	Δ 1		0.549	1	0.109	1	-1.013	4	-0.167
- MR3D	- i	8.3 1	17.0	1 1	.99	5.094	i	0.37	i	0.043		<b>1.</b> 8	i	Δ Ι		0.324	:	0.058		-0.609	i	-0.066
WR3E	i	8.3	17.0	i	.18	5.094	i	0.37	i	0.004	1	1.0	i	4 1		0.563	i	0.119	1	-0.915	1	-0.028
WRITE	i	8.3	17.0	i i	.99	1 5.094	i	0.37	i	0.043	i 1	0.8	i	4 1		0.275	1	0.047	1	-0.603	i	-0.044
	i	8.3	17.0	i ō	.18	1 5.094	i	0.37	i	0.004	1	1.0	i	4 1		0.673		0.116	1	-0.781	i	-0.107
WR4C	i	8.3	17.0	i 1	.99	5.094	i	0.37	i	0.043	i 1	5.8	i	4 1		0.358	i	0.077	I	-0.575	i	-0.085
FRIA	i	8.3	17.0	i õ	.18	1 5.094	i	0.37	1	0.004	 i	1.0	1	4 i		0.068	i	0.056	I	-1.897	i	-0.259
FRIA	i	8.3	17.0	i 1	.99	5.094	i	0.37	i	0.043	1 1	0.8	i	4 1		-0.099	i	0.034	i	-1.305	i	-0.173
FRIR	i	8.3	17.0	i ō	.18	1 5.094	i	0.37	i	0.004	; -	1.0	i	4 1		0.005	i i	0.057	1	-1.684	i	-0.179
FRIR	i	8.3	17.0	1 1	.99	5.094	i	0.37	i	0.043	I 1.	5.8	i	4 1		-0.135	i	0.020	I	-1.199	i	-0.145
ER2A	i	8.3 1	17.0	i õ	.19	5.147	i	0.37	i	0.004	î	1.0	i	4 1		0.059	i	0.055	1	-1.764	i	-0.199
ER2A	i	8.3	17.0	i i	.99	5.147	i	0.37	i	0.043	I 1	5.7	i	4 1		-0.100	;	0.035		-1.376	i	-0.209
ER2B	Ì	8.3 1	17.0	1 0	.17	5,147	i	0.37	1	0.004	- -	1.0	i	4 1		-0.001	1	0.037	i	-1.693	1	-0.273
ER2B	Ì	8.3	17.0	1 1	.99	5.147	i	0.37	i	0.043	! 1:	5.7	i	4 1		-0.094	•	0.024	i	-1.458	i	-0.192
ER3A	Ì	8.3 1	17.0	i ō	.19	5.147	i	0.37	i	0.004	i –	1.0	i	4 1		0.002	i	0.055		-2.049	i	-0.393
ER3A	i	8.3	17.0	1 1	.99	5.147	i	0.37	Ì	0.043	! 1	0.7	1	4 1		-0.103	1	0.027	1	-1.730	i	-0.350
ER3B	- i	8.3	17.0	i ō	.17	5,147	Ì.	0.37	i	0.004	i -	1.0	1	4 1	•••	-0.015	i	0.044	1	-1.674	Ľ	-0.245
FRIB	i	8.3	17.0	1 1	.99	5.147	i	0.37	i	0.043	1	0.7	1	4 1		-0.111	Ì	0.035	÷	-1.231	!	-0.148

;

# DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E.RECORD A38-A, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 20 TAPPINGS ROOF PITCH 15 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBE BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

#### FROCESSED DATA :-

** *	********* PRESSURE TAPPING	**** ! Fi ! S(	***** JLL CALE	(**   	******* FULL SCALE	:** ! !	******* FULL SCALE	** ! !	******* WIND TUNNEL	*** ! !	******** WIND TUNNEL	*: ! !	********* WIND   TUNNEL	()   	********* WIND ! TUNNEL !	******** NUMBER DF	**	********** EXTREN	**: ME	******** PRESSU	**: RE 	********** COEFFIC	(** )IE	****** NTS	** * *
*	HOLE !	I A	VERAGE	1	OBSERVA	!	EQUIVA	!	MEAN	I	OBSERVA	I	AVERAG- !		SAMPLING!	SAMPLIN	G!				!				*
*	CODE	! W) 1 SP	END .	!	-TION TIME	!	-LENT	1	WIND	Y I	-TION TIME	!	ING TIME!	1	INTERVAL!			MAX 1	IM/	A 	! !:	41M 	11M	1A	*
*			(M/S)	i	(MINS)	i	ING TIME	ļ	(M/S)	1	(MINS)	i	(02007)	I	1	WHICH	!	MODE	! ]	DISPER-	1	HODE !	E	ISPER-	*
*		!		!		1	(SECS)	1		1		1	!	l	!	DATA WA	S !	ļ	!	SION	!	!		SION	*
*	********	! ****	*****	! ****	*******	! ***	*******	! **	*****	*** 	k skrake skrake skrake skrake	.! 		Frai	<u>!</u> *********	AVERAGE	D ! **	*****	! **	*******	1 44	*******	Frank 14	******	**
*	WR1A !	! :	12.4	ļ	17.0	1	0.20	!	5.110	!	0.55	ļ	0.006 !	- <b></b>	1.6 !	4	 !	0.504 !	! !	0,178	i.	-2.908 !	· • •	-0.292	. ×
*	WR1A	! :	12.4	I	16,9	!	1.98	!	5.110		0.55	!	0.064 !		8.0 !	8	!	-0,067	!	0.100	!	-2,053 !	;	-0.198	*
*	WR1B	! :	12.4	!	17.0	1	0.20	!	5.110	ļ	0.55	i	0.006 1	i.	1.6 !	4	ļ	0.361 !	ļ	0.148	!	-2.993 !		-0.407	*
· *	WR1B	1 :	12.4	!	16.9	!	1.98	!	5.110	1	0.55	ł	0.064 !	í.	8.0 !	8	!	-0.083 !	!	0.092	!	-2.145 !		-0.215	. *
*	WR1C	! :	12.4	!	17.0	1	0.20	!	5,110	1	0.55	!	0.006 !	í.	1.6 !	4	!	0.227	İ.	0.149	!	-2.572		-0.173	*
*	WR1C	! :	12.4	1	16.7	!	1.98	!	5.110	1	0.55	ļ	0,064 !	i	8.0 !	8	ļ	-0.186	!	0.094	ļ	-2.023 !	:	-0.255	. *
*	WR1E I	1 1	12+4	1	17.0	1	0.20	!	5.110	1	0.55	Į	0.006 1		1.6 !	4	1	0.396 !	ţ	0.132	!	-2.385 !		-0.182	*
*	WR1E	1 3	12.4	Ł	16.9	1	1.98	!	5.110	1	0.55	ļ	0.064 !		8.0 i	8	!	0,141 !	i	0.061	!	-1.826 !		-0.199	*
*	WR1F	1 :	12.4	1	17.0	1	0.20	!	5.110	!	0,55	ł	0.006		1.6 !	4	1	0.035 !	!	0.078	!	-2,629 !		-0.265	*
*	WR1F !	! :	12.4	1	16.9	1	1,98	1	5.110	!	0.55	Ł	0.064 1	i.	8.0 !	8	ļ	-0.234	!	0,048	!	-1.780 !		-0.243	*
*	WR2C !	1 :	12.4	1	17.0	ļ	0.20	Į.	5.054	!	0.56	1	0.006 1		1.6 !	4	!	0.487 !	I	0,125	!	-2.264 !		-0.260	*
*	WR2C !	! :	12.4	1	16.9	!	1,78	1	5.054	ļ	0.55	!	0.065 !		8.1 !	8	ļ	0.125 !	!	0.082	!	-1.527 !		-0.190	*
*	WR2E	1 1	12.4	!	17.0	!	0.20	!	5.054	1	0.56	I	0+006		1.6 !	4	!	0.380	ŧ –	0.078	!	-1.914 !		-0.260	*
*	WR2E I	1 1	12.4	ļ	16.9	<b>١</b> .	1.98	!	5,054	1	0.55	ļ	0.065 !		8.1 !	8	1	0.166 !	ļ	0.072	!	-1,480 !		-0.206	*
*	WR3A I	1 1	12.4	!	17.0	1	0.20	!	5.054	!	0.56	!	0.006 !		1.6 !	· 4	!	0.424 !	!	0.088	!	-3.083		-0,430	*
*	WR3A !	! 1	12+4	1	16.9	!	1.98	!	5.054	i	0.55	!	0,065 !		8.1 !	8	ļ	0.149 !	ļ	0.068	!	-2.169 !		-0.218	*
*	WR3B I	! :	12+4	1	17.0	1	0.20	i –	5.054	1	0.56	I	0.006 1		1.6 !	<u>4</u>	!	0.368 !	Į	0.060	!	-1.434 !		-0.332	*
*	WR3B	1 1	12.4	ł.	16.9	1	1,98	!	5.054	ļ	0.55	I	0.065 !		8.1 !	8	1	0,083 !	!	0.038	!	-0.963 !		-0.322	*
*	WR3C !	1 :	12.4	1	17.0	!	0.20	!	5.054	!	0.56	I	0.006 !		1.6	4	ļ	0.193	!	0.066	!	-1.277 !		-0.202	*
*	WR3C !	! :	12.4	1	16.9	Į.	1.98	I -	5.054	!	0,55	ļ	0.065 !		8.1 !	8	!	0.041	!	0.046	!	-0.881 !		-0.146	*

*********	********	*****	*********	********	*******	*********	**********	*********	**********	*******	********	******
* PRESSURE!	FULL	I FULL	I FULL	WIND	WIND	I WIND !	WIND !	NUMBER	EXTREMI	E PRESSUR	E COEFFIC	IENTS *
* TAPPING !	SCALE	SCALE	SCALE	TUNNEL	I TUNNEL	I TUNNEL !	TUNNEL !	1 OF		** *** *** *** *** *** *** ***		*
* HOLE	AVERAGE	0BSERVA	! EQUIVA	MEAN	0BSERVA	I AVERAG- !	SAMPLING	SAMPLING	1	1		*
* CODE	WIND	-TION	I -LENT	WIND	-TION	I ING TIME	INTERVAL	INTERVAL	MAXII	MA I	MIN	√IMA *
*	SPEED	TTME	1 AUERAG-	UFLOCITY	TIME	(SECS)	(mS) 1	OVER		!		*
* I	(M/G)	I (MTNG)	I TNG TIME	(M/S)	(MINS)	1 1	1	WHICH	MODE 1	DISPER- 1	MODE	DISPER- *
* : *	1 11/3/	1	1 (GECG)	1	1	1		DATA WAS		STON I		STON *
** : *- :		1	1 (32007		I	1 1		L AUFRAGEDI		01010		t x
*	ا بو ماه ماه ماه ماه ماه ماه ماه ماه ماه	: 	: **********	: 6444444444	**********		************	***********	, , ,	*********	*****	******
<b>ቅቅቅቅቅ</b>	የቅቅቅ የ	ጙኆኆጥጥጥጥጥጥ	ጥጥጥጥጥጥጥጥጥጥ/ 	• • • • • • •	• • • · · · ·	****	• • • • • • • • • • • • • • • • • • •	*****	· · · · · · · · · · · · · · · · · · ·	^ ^ ^ ^ ·	1 / 7 7	A 351 ¥
* WR3D !	12.4	17.0	1 0.20	4.824	0.58	0.007	1.7	4	0.158 !	0.089 1	-1.602	· · · · · · · · · · · · · · · · · · ·
* WR3D !	12.4	! 16.9	1.98	4.824	0.58	0.068	8+5	8	-0.031	0.033 1	-1.003	-0.098 *
* WR3E	12.4	17.0	1 0.20	4.824	0,58	1 0.007	1.7	4	0.196 !	0.094	-1.376	· · · · · · · · · · · · · · · · · · ·
* WR3E !	12.4	16.9	! 1,98	1 4.824	0.58	1 0.06B	8.5	8	0.013 !	0.040	-0.884	-0.073 ×
* WR4C !	12.4	1 17.0	! 0.20	4.824	0,58	1 0.007	1.7	4	0.240 !	0.076 !	-1.204	-0.140 *
* WR4C !	12.4	16.9	1.98	4,824	0.58	! 0.068 !	8.5	8	0.010 !	0.038 !	-0.783	! -0.065 *
* FR1A	12.4	17.0	1 0.20	4.824	0.58	1 0.007 !	1.7	4	-0.076 !,	0.060 !	-2.359	! -0.243 *
* ER1A	12.4	16.9	1.98	4.824	0.58	1 0.068 1	8.5 1	8	-0.244 !	0.037 !	-1.577	-0.142 *
* ER18	12.4	1 17.0	0.20	4.824	0.58	1 0.007 1	1.7	4	0.040 !	0.070 !	-1.544	! <b>−0.</b> 170 <b>*</b>
* ER1B	12.4	16.9	1 1.98	4.824	0.58	1 0.068 1	8.5 !	. 8	-0.116 !	0.035 !	-1.087	-0.095 *
* ER2A	12.4	17.0	0.19	5.028	0.56	0.006	1.6	4	-0.070 !	0.093 !	-2.606	! -0.317 *
* ER2A	12.4	17.0	2.00	5.028	0.56	1 0.066 1	8.2 1	. 8	-0.277 !	0.050 !	-2.015	! -0.214 *
* 5828	12.4	1 17.0	1 0.19	5.028	0.56	1 0.006	1.6	4	0.060 !	0.051 !	-2,163	-0.173 *
* FROR	12.4	17.0	1 2.00	5.028	0.56	1 0.066	8.2	8	-0,160 !	0.028 !	-1.475	-0.122 *
* E07A	1 12.4	1 17.0	1 0.19	5.028	0.56	1 0.006	1.6	4	-0.090 !	0.065	-4.241	-0.471 *
* EDTA	1 12.4	1 17.0	1 2.00	5.028	0.56	1 0.066	8.2	8	-0.332	0.063 !	-3.234	-0.256 *
* CR3H	1 12.4	1 17.0	1 0.19	1 5.028	0.56	1 0.006	1.6	4	-0.199 !	0.059 !	-2.276	! -0.170 <b>*</b>
* ERJD	; <u>12</u> +4	1 17.0	1 7.00	1 5.020	1 0.54	1 0.044	8.2		-0.307	0.055	-1,742	0.192 *
* 5235	1 II. + 4 1 II. + 4		τ <u>∠</u> ≑∇V ΦΦΦΦΦΦΦΦΦΦΦΦ	********** : 1+070	*********	**********	***********	**********	******	******	********	*******
*******	****	*******	<b>ተ</b> ቶቶቶቶቶቶቶቶ	<u>ቅ</u> ጥ ጥ ጥ ጥ ጥ ጥ ጥ ጥ ጥ	ጥ ጥ ጥ ጥ ጥ <i>ጥ ጥ ጥ</i> <b>ጥ</b> ጥ	ጥ ጥ ጥ ጥ ጥ ጥ <b>ጥ ጥ ጥ ጥ</b> ጥ	ս անդալուտի դես դես դես դես դես դես դես դես դես դես	ه بله بله بله بله بله بله بله بله بله بل				

# DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-B, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 20 TAPPINGS ROOF PITCH 10 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBE BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMOMETER SITE

#### PROCESSED DATA :-

*	*******	*******	*****	******	*******	******	*******	******	*******	*******	*******	******	******
*	PRESSURE!	FULL	! FULL	! FULL	! WIND	! WIND	I WIND	! WIND	I NUMBER	! EXTREM	E PRESSU	RE COEFFI	CIENTS *
*	TAPPING !	SCALE	SCALE	! SCALE	I TUNNEL	I TUNNEL	I TUNNEL	I TUNNEL	! OF	!			*
*	HOLE !	AVERAGE	OBSERVA	! EQUIVA	! MEAN	0BSERVA	I AVERAG-	SAMPLING	SAMPLING	ļ		!	*
*	CODE !	WIND	-TION	-LENT	WIND	-TION	I ING TIME	INTERVAL	INTERVAL	MAXI	MA	I NI	NIMA *
*		SPEED	TIME	1 AVERAG-	I VELOCITY	TIME	(SECS)	(mS)	OVER				*
*	i	(M/S)	(MINS)	I ING TIME	(M/S)	(MINS)	1		WHICH	I MODE I	DISPER-	MODE	DISPER- *
*	i		1	I (SECS)	1	1	1	1	TATA WAS	t I	STON	1	I SION *
*			I	1	i	1			AVERAGED	I I	01011		*
*	*******	*******	********	**********	*******		***********	********	*****		*****	********	*****
*		11.7	። 17.ሰ	ተ ስ. ንስ	Ι Δ. 97A	^{*********}   በ.52	1 0.004	1.5	Δ	0.745	0.135	-4.330	1 -0.548 *
*		11.7	17.0	1 1.99	1 4.926	0.52	1 0.041	7.6	, , I B	-0.229	0.124	3.478	1 -0.317 ×
Ĵ		11 7	1 17 0	1 0 20	1 4 074	1 0 57	1 0.004	1 1 5			0.150	047 5- 1	1 -0.311 *
3		11 7	17.0	1 1 00	1 1 074	: 0132 I 050		1 7.4		-0.336	0.099	-2.988	1 +0.225 *
÷	UDIC I	11.3	17.0	1 0 70	1 4 0 7 4		1 0.004	1.5		-0.006	0.167	-2.734	1 -0.240 ×
Ĵ	WALC !	11.3	17.0	1 1 00	1 4 074	· V•J2	1 0 041	1,5		0.745 1	0.042	1 -2.240	1 -0.196 ¥
*		11.3	17.0	! 1+77	1 4.720		1 0 001				0.002	-2,200	
*	WRIE I	11+3	17.0	1 0.20	1 4,920		1 0.000		· 4		0.104	-2.730	
*	WRIE !	11.3	17.0	! 1.99	! 4.920	9 0.52	1 0.081	/+0			0.112	· -2.130	
ж	WR1F !	11.3	17.0	0.20	4.926	0.52	! 0.008	1.0	4		0.004	! -2+J73	· -0 272 *
*	WR1F !	11.3	17.0	1 1,99	4.926	0.52	! 0.061	7.6	8	! -0.221 !	0.03/	! -1,865	· · · · · · · · ·
*	WR2C !	11.3	17.0	0.19	! 5.030	0.51	1 0,006	1.4	. 4	1 0.317 !	0.090	! -2,851	· -0.304 *
*	WR2C I	11.3	16.9	1 1,98	1 5.030	0,51	1 0.059	/.4		-0.040 !	0.075	! -2.330	· -0.314 *
*	WR2E I	11.3	17.0	! 0.19	1 5.030	0.51	! 0.006	1.4	! 4	! 0.221 !	0.0/9	! -2.312	
*	WR2E !	11.3	! 16.9	1.98	! 5.030	0.51	0.059	7.4	1 8	! -0.015 !	0.081	! -1./39	· -0.291 *
*	WR3A !	11.3	! 17.0	! 0.19	1 5.030	! 0.51	1 0.006	! 1.4	1 4	0.276 !	0.131	! -3.413	1 -0.420 <b>x</b>
*	WR3A !	11.3	! 16.9	1.98	5.030	! 0.51	! 0.059	7.4	! 8	! 0.031 !	0.053	-2.404	! -0.21/ *
*	WR3B I	11.3	! 17.0	! 0.19	! 5.030	! 0.51	! 0.006	! 1.4	! 4	! 0.205 !	0.077	! -1.596	! −0,251 *
*	WR3B !	11.3	! 16.9	1.98	! 5.030	! 0.51	1 0.059	! 7.4	! 8	! 0.042 !	0.039	! -1.204	! -0.256 *
*	WR3C !	11.3	17.0	1 0.19	! 5.030	! 0.51	0.006	1.4	! 4	! 0.164 !	0.053	! -1.873	! -0.276 *
*	WR3C !	11.3	16.9	1.98	1 5.030	0.51	! 0.059	7.4	! 8	! 0.014 !	0.040	! -1.395	! -0.191 *

. *	* FRESSURE * TAPPING * HOLE * CODE	I FULL SCALE   AVERAGE!	SCALE OBSERVA -TION	I FOLL I SCALE I I EQUIVA I I -LENT I	TUNNEL MEAN WIND	I WIND I TUNNEL I OBSERVA I -TION	! TUNNEL ! AVERAG- ! ING TIME	! TUNNEL ! ! SAMPLING! ! INTERVAL!	OF ! SAMPLING! INTERVAL!	MAXI	MA	! MIN	
	*	SPEED	TIME	I AVERAG-	VELOCITY	TIME	(SECS)	! (mS) !	OVER !				
	*	! (M/S)	(MINS)	ING TIME	(M/S)	(MINS)	1	1 1	WHICH !	MODE !	DISPER-	MODE	1 DISPER-
	*	1	1	! (SECS)	l	!	1	!!	DATA WAS!	!	SION	1	I SION
	*	!!!	1	1 1	Ι.	!	!	E - 1	AVERAGED!	!		!	ļ
	********	*******	********	********	*********	*********	*********	*********	*******	*******	*******	*********	********
	¥ WR3D	! 11.3	17.0	1 0.19	! 5.044	! 0.51	! 0.006	1 1.4 !	4!	0.084	0.071	-2.095	! -0.269
	* WR3D	11.3	! 16.9	! 1.98	5,044	! 0.50	! 0.059	1 7.4 !	8!	-0.069	0.055	-1.549	! -0.178
	* WR3E	! 11.3	! 17.0	! 0.19	5,044	! 0.51	! 0.006	1.4	4!	0.127	0.079	-1.775	! -0.246
	* WR3E	! 11.3	! 16.9	! 1.98	! 5.044	! 0.50	! 0.059	! 7.4 !	8 !	-0.083	0.031	! -1.136	! ~0.117
	¥ WR4C	! 11.3	! 17.0	! 0.19	! 5.044	! 0.51	! 0.006	1 1.4	4!	0.260	0.049	! -1.276	! ~0,209
	* WR4C	! 11.3	1 16.9	! 1.98	1 5.044	! 0.50	1 0.059	1 7.4 1	8!	0.056	0.044	! -0.902	-0.146
	* ER1A	! 11.3	! 17.0	! 0,19	5.044	! 0.51	! 0.006	! 1.4 !	4 !	-0.014	0.054	-2.471	1 -0.252
	* ER1A	! 11.3	! 16.9	! 1.98	5.044	! 0,50	1 0.059	1 7.4 1	8 !	-0.213	0,057	! -1.614	! -0.194
	<b>*</b> ER1B	! 11.3	! 17.0	! 0.19	! 5.044	! 0.51	1 0.006	1.4 !	4 !	0.029 !	0.040	-1.165	! -0.115
	<b>*</b> ER1B	11.3	! 16.9	! 1.98	1 5.044	! 0.50	! 0.059	7.4	8!	-0.089 !	0.036	-0.905	! -0.061
	* ER2A	! 11.3	17.0	0.20	4.958	0.52	1 0.006	1.5 !	4 !	-0.049	0.086	! -2,477	-0.274
	* ER2A	! 11.3	! 16.9 -	! 1.97	4.958	! 0.51	! 0,060	1 7.5 1	8!	-0.264 !	0.041	! -1,925	! -0.182
	* ER2B	11.3	17.0	1 0.20	4.958	0.52	1 0.006	1.5 !	4 !	0.077	0.059	! -1.687	! -0.151
	* ER28	11.3	16.9	1.97	4.958	! 0.51	1 0.060	7.5	8 !	-0.076	0.030	! -1.318	! -0.121
	* ERJA	1 11.3	17.0	! 0.20	4,958	0.52	1 0.006	1,5 !	4 !	-0.222	0.049	! -3,715	! -0.366
	* ER3A	11.3	16.9	1.97	4.958	0.51	0.060	7.5 !	8 1	-0.342	0.060	-3.146	-0.235
	* ER3B	! 11.3	! 17.0	! 0.20	4.958	! 0.52	1 0.006	1.5	4 !	-0.140	0.048	-2,417	! -0.300
	* ER3B	! 11.3	16.9	1.97	4.958	! 0.51	0.060	1 7.5 1	8 !	-0.302	0.041	! -2.016	-0.151
	*******	********	******	******	******	*******	*******	**********	*******	*******	********	********	*******
	STOP												

## DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 B.R.E. RECORD A38-C, WIND DIRECTION 233 DEG. NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 20 TAPPINGS ROOF PITCH 5 DEG., OVERHANG FITTED PART MODEL ONLY IN WIND TUNNEL 20 CM TUBE BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE PITOT 10 M ABOVE ANEMMETER SITE

PROCESSED DATA :-

.

********	*******	******	*****	*****	*****	******	*******	********	******	*******	******	******
* PRESSURE	FULL	FULL	I FULL	! WIND	. WIND	! WIND	WIND !	NUMBER	I EXTREM	E PRESSUR	RE COEFFI	CIENTS *
* TAPPING	SCALE	SCALE	! SCALE	I TUNNEL	I TUNNEL	! TUNNEL	TUNNEL !	OF				*
* HOLE	! AVERAGE	1 ODSERVA	! EQUIVA	MEAN	OBSERVA	I AVERAG-	SAMPLING!	SAMPLING		1		*
* CODE	! WIND	-TION	! -LENT	. WIND	NOIT- !	ING TIME	INTERVAL!	INTERVAL	! MAXI	MA	MI MI	NIMA *
*	! SPEED	! TIME	! AVERAG-	VELOCITY	- TIME	(SECS)	(mS) !	OVER				*
*	! (M/S)	(MINS)	! ING TIME	! (M/S)	(MINS)	1		WHICH	I MODE I	DISPER-	MODE	! DISPER- ≭
*	!	!	! (SECS)	!	!	!!!	1	DATA WAS	!!!	SION		I SION *
*	1	!	1	!	!	!!!	!	AVERAGED	!!!	!		! *
********	*******	*******	********	*********	********	*********	*********	********	********	********	*********	*****
* WR1A	! 11.1	! 17.0	1 0.19	! 5,071	! 0.50	1 0.006	1,4 !	4	-0.148	0.073	-5,192	! -0.747 *
* WR1A	! 11.1	! 17.0	! 1.99	! 5,179	! 0.49	! 0.057	7.1 !	8	-0.367	0.080	-4.329	! -0.429 *
* WR1B	! 11.1	! 17.0	! 0.20	4,887	! 0.51	! 0.006	1.5 !	4	! -0,110 !	0.272	-4.465	! -0.508 *
# WR1B	! 11.1	16.9	! 1.98	4,887	! 0.51	0.060	7.5 !	8	! -0.551 !	0.099	-3,799	! -0.357 *
* WR1C	! 11.1	17.0	! 0.20	4.887	! 0.51	1 0.006	1.5 !	. 4	! -0.187 !	0.101	-3,288	! -0.418 *
* WR1C	! 11.1	16.9	! 1.98	4.887	1 0.51	! 0.060	7.5 !	8	-0.443	0.083	-2.840	! -0.280 *
* WR1E	1 11.1	! 17.0	1 0.20	4.887	0.51	1 0,006	1.5 !	4	! 0.125 !	0.102	-2,705	! -0.239 *
* WR1E	! 11.1	! 16.9	! 1.98	4.887	0.51	! 0.060	7.5 !	8	! -0.164 !	0.073	-2,251	! -0.183 *
* WR1F	! 11.1	! 17.0	! 0.20	4.887	0.51	0.006	1.5 !	4	0.046 !	0.077	-2.670	! -0.312 *
* WR1F	! 11.1	! 16.9	! 1.98	4.887	0.51	0.060	7,5 !	8	! -0.198 !	0.030	-1.811	! -0.205 *
* WR2C	! 11.1	! 17.0	! 0.19	4.944	! 0.51	1 0.006	1.4	4	0.252 !	0.081	-3.397	! -0.333 *
* WR2C	! 11.1	! 16.9	1 ,1,98	! 4.944	! 0.51	1 0.059	7.4 !	8	! -0.133 !	0.038	-2.806	! -0.280 *
* WR2E	! 11.1	! 17.0	! 0.19	4.944	! 0.51	1 0,006	! 1.4 !	4	! 0.146 !	0.108	-2.591	! -0.216 *
* WR2E	! 11.1	! 16.9	! 1.98	4.944	0.51	! 0.059	! 7.4 !	8	! -0.093 !	0.030	1 -1.882	-0.188 ¥
* WR3A	! 11.1	! 17.0	! 0.19	1 4.944	0.51	1 0.006	1.4 !	4	! 0.157 !	0.081	! -3.727	! -0.415 *
* WR3A	! 11.1	! 16.9	! 1.98	! 4,944	0.51	1 0.059	7.4 !	8	! -0.042 !	0.056	! -2,697	! -0.350 *
* WR39	! 11.1	! 17.0	1 0.19	4,944	! 0.51	1 0.006	1.4 !	4	! 0.155 !	0.040	! -2.054	! -0.325 *
* WR3B	! 11.1	16.9	! 1.98	4.944	! 0.51	0.057	7,4 !	8	! -0.015 i	0.053	-1.423	! -0.223 *
* WR3C	1 11.1	! 17.0	! 0.19	! 4.944	! 0,51	1 0.006	1.4 !	4	! 0.205 !	0.057	! -2.598	! -0.407 *
* WR3C	1 11.1	1 16.9	1.98	4.944	0.51	1 0.059	7.4 !	8	! 0.021 !	0.039	! -1.823	! -0.253 *

· •

.

.

PRESSURI	- !	FULL		FULL	1	FULL	!	WIND	! W	IND	!	WIND	i	MIND	! NI	UMBER !		EXTRE	ME	PRESSUR	RΕ	COEFFI	CIE	ENTS
TAPPING	!	SCALE	!	SCALE	1	SCALE	!	TUNNEL	! <u>T</u>	UNNEL	i	TUNNEL	1	TUNNEL	! 01	F !								
HOLE	1	AVERAGE	! I	OBSERVA	!	EQUIVA	!	MEAN	! 0	DBSERVA	!	AVERAG-	1	SAMPLING	! Si	AMPLING!				!				
CODE	!	WIND	!	-TIUN	1	-LENT	!	WIND	! -	TION	!	ING TIME	1	INTERVAL	! II	NTERVAL !		MAX	IM	A !		ні	111	MA
<u> </u>	!	SPEED !	!	TIME		AVERAG-	!	VELOCITY	! T	IME	i	(SECS)	!	(mS)	1 01	VER !				!				
¢ .	!	(M/S)	!	(MINS)	!	ING TIME	!	(M/S)	!	(MINS)	!		!		! WI	HICH !	i h	10DE	1	DISPER- !		MODE	i I	DISF
C	1		1		!	(SECS)	!		1		!		1		! D/	ATA WAS!			!	SION !			!	SIC
• • • • • • • • •	!		!		.!		!		1		!		1		! A'	VERAGED			1	!			!	
*******	***	********	**	*****	***	*******	**	******	***	*****	**	******	**	******	***	*******	(***	******	**	*******	<b>*</b> *	******	**>	****
WR3D	!	11.1	!	17.0	1	0.19	I	5.059	1.	0.50	ļ	0.006	!	1.4	!	4!		0.075	i	0.069 !		-2.459	!	-0
WR3D	i	11.1	!	17.0	1	2.00	!	5.059	!	0.50	ļ	0.058	!	7.3	!	8!	-	-0.119	!	0.045 !		-1.811	!	-0
WR3E	!	11.1	!	17.0	!	0.19	ļ	5.059	!	0.50	!	0.006	!	1.4	!	4!		0.077	ł	0.055 !		-1.847	!	-0
WR3E	!	11.1	!	17.0	ļ	2.00	!	5.059	!	0,50	1	0.058	!	7.3	!	8!	-	-0.141	!	0.032 !		-1.319	i	-0
WR4C	!	11.1	!	17.0	ļ	0.19	Į.	5.059	!	0,50	1	0.003	!	1.4	!	<u>'4</u> !		0.299	ł	0.077 !		-1.524	!	-0
WR4C	1	11.1	ļ –	17.0	ļ	2.00	!	5,059	!	0.50	!	0.058	1	7.3	!	8!		0.099	!	0.042 !		-0.953	ļ	-0
ER1A	!	11.1	!	17.0	!	0.19	i –	5,059	!	0.50	1	0.006	!	1.4	!	4 !		0.017	!	0.070 !		-2.484	!	-0
ER1A	i	11.1	!	17.0	!	2.00	!	5.059	!	0.50	1	0.058	ł	7.3	!	8!	-	-0.175	!	0.043 !		-1.527	!	-0
ER1B	ļ	11.1	!	17.0	ļ	0.19	!	5.059	!	0.50	i	0,006	1	1.4	!	4!		0.015	i	0.039 !		-1.152	!	-0.
ER1B	i	11.1	!	17.0	I	2.00	!	5.059	!	0.50	!	0.058	1	7.3	1	8!	-	-0.071	!	0.031 !		-0.924		-0
ER2A	1	11.1	!	17.0	!	0.20	!	4.909	ļ	0.51	ļ	0.006	1	1.5	!	4!	-	-0.070	!	0.071 !		-2.510	!	-0
ER2A	!	11.1	i	17.0	!	1.99	ļ	4,909	!	0.51	i	0.060	1	7.5	!	8!	-	-0.229	!	0,034 !		-1.823	!	-0-
ER2B	1	11.1	!	17.0	ļ	0.20	!	4.909	1	0.51	i	0.006	1	1.5	!	4 !		0.055	!	0.031 !		-1.572	!	-0.
ER2B	i	11.1	!	17.0	!	1.99	!	4.909	!	0.51	!	0.060	!	7.5	!	8!	-	-0.062	İ	0,030 !		-1.157	ļ	-0.
ER3A	1	11.1	ļ	17.0	ļ	0.20	ļ	4.909	!	0.51	I	0.006	1	1.5	i	4 !	-	-0.096	i	0.079 !		-3.267	!	-0.
ER3A	.!.	11.1	!	17.0	!	1.99	!	4.909	!	0.51	ł	0.060	1	7.5	1.	8 1	-	-0.326	1	0.059 !		-2.625	!	-0.
K ER3B	. I.	11.1	!	17.0	1	0,20	!	4.909	!	0.51	1	0.006	1	1.5	!	4 !		0.096	1	0.074 !		-1.879	ļ	-0.
ER3B	1	11.1	!	17.0	ļ	1.99	!	4.909	! '	0.51	!	0.060	1	7.5	!	8!	-	-0.130	!	0.036 !		-1.319	!	-0

## DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

LOW TURBULENCE WIND SIMULATION: MVP962 OLD TEST HOUSE, MOUNTED NEAR FRONT OF TURNTABLE, 16 TAPPINGS B.R.E. RECORD A32, WIND DIRECTION 265 DEG. FULL MODEL IN WIND TUNNEL BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS PITOT 10 M ABOVE ANEMOMETER SITE

.

* FRESSURI	I FULL	FULL			KXXXXXXXXX WIND U TUNNEN	*********** ! WIND ! ! TUNNE! !	WIND I	NUMBER	EXTREM	KXXXXXXXXXX 1E PRESSU	**************************************	LIENTS *
* HOLE	! AVERAGE	DESERVA	! EQUIVA !	MEAN	OBSERVA	AVERAG- 1	SAMPLING	SAMPLING			! !	*
* CODE	I WIND	I TIME	I AUEDAG- I	WIND	1 - 11UN	I ING IINE!	INTERVAL!	INTERVAL	! пнх. !	LUUH	: nir !	*108 *
*	I GFEED	I (MINS)	I ING TIME	(M/S)		: (3EUS/ : 	Cinca 2	UVER UHICH	MODE 1	DISPER-		DISPER- *
*	!	!	1 (SECS) 1			í i	ļ	DATA WAS		SION	1	SION *
*	T	1	1	a de sta sta de sta sta sta sta sta st	la ste ste ste ste ste ste ste ste ste	1	a ha dha dha dha dha dha dha dha dha dha	AVERAGED		ale de ale al est est alle de ale		*
* 3003	***************************************	**********	***************************************	**************************************	********* ! 0.64	***************************************	**************************************	4	***********	(********** 0.236	************	-0,059 *
* 3WW3	1 14.3	16.9	! 1.98 !	5.081	0.63	0.074 !	9.3	8	1.341	0.096	0.002	-0.036 *
* 3WW4	14.3	! 17.0	1 0.19 !	5.081	0.64	0.007 1	1.8 !	4	1.797 !	0.307	9 -0.130	-0.045 *
* 3WW4	! 14.3	16.9	! 1.98 !	5.081	0.63	1 0.074 1	9.3 !	8	1,281 !	0.054	0.006	-0.047 *
* 5WW3	! 14.3	17.0	1 0.19 1	5.081	0.64	1 0.007 !	1.8 !	4	2,006 !	0.158	-0.110	-0.046 *
* 5WW3	1 14.3	! 16.9	1 1,98 !	5.081	! 0.63	! 0.074 !	9.3	8	1.576 !	0.108	0.015	-0.032 *
* 5WW7	1 14.3	17.0	1 0,19 1	5.081	0.64	! 0.007 !	1.8 !	4	1.668 !	0.166	9.557	-0.075 *
* 5WW7	1 14.3	! 16,9	1 1.78 !	5.081	0.63	0.074 !	9.3 !	8	1.209 !	0.127	! -0.205 !	-0.056 *
* 3EW1	1 14.3	17.0	0.19	5.081	9.64	! 0.007	1.8 !	4	0.007 !	0.030	! -1.092	-0.104 *
* 3EW1	14.3	16.9	! 1.78 !	5.081	0.63	0.074 1	9.3	8	-0.056 !	0.027	-0.833	-0.084 *
* 3EW3	! 14.3	17.0	0.20 /	4.920	0.66	0.008	1.9	4	0.000 !	0.026	9.0.905	-0.076 *
* 3EW3	14.3	16.9	1.78	4.920	0.66	1 0.077 1	9.6	8	-0.070 !	0.019	-0,742	~0.055 *
* DEW1	1 14.3	! 17.0	1 0.20	4,920	0.66		1.9	4	0.037	0.041		
* 3641	1 14.3	1 10+7	1 1+78 1	4.920	0.30		7.0	8		0.020	· · · · · · · · ·	-0.102 *
* 35₩2	1 14 15	1 1/10	1 0.20 1	4+920	0,00		L+7 1	4 0		0.100	: -2+304 : _1 507 1	-0.170 *
* 33%2	1 14+3		1 1+70 1	4+740			7+0 !			0,133	: -1.J73 : 1.179	-0.149 *
* 3594	1 1410	1/+0	1 1 00 1	4.720			1+7 ! 0 / I	44 13		0.042		~0.081 *
* 3007	1 14.3	1 17.0	1 0.20 1	A.920	0.46	1 0.008 1	1.9		-0.032	0.039	-2.296	~0.292 *
* 311/2	1 14.3	14.0	1.09	4,920	0166		9.6	-7 		0.037	1 -1.554	-0.184 *
* UR14	1 14.3	17.0	1 0.20 1	4.961	0.65	0.008	1.9	4	0.513	0.085	-2.272	-0.210 *
* 10010	1 14.3	1 16.9	1 1.99	5.039	0.64	0.075	9.4 1	8	-0.007 1	0.076	-1.661	-0.101 *
* UR1F	1 14.3	1 17.0	1 0.20	4.961	0.35	0.008	1.9	4	0.436	0.204	-2.178	-0.184 *
* WRIE	1 14.3	1 16.9	1 1.99 1	5.039	0.64	1 0.075 1	9.4	8	-0.052	0.060	1 -1.438	-0.120 *
* WR3A	1 14.3	17.0	0.20	4.961	0.65	0.008	1.9	4	0.467	0.048	-0.781	-0.100 *
* WR3A	1 14.3	16.9	1 1.99	5.039	0.64	0.075 1	9.4	8	0.261	0.044	-0.548	-0.049 *
* ER1B	1 14.3	17.0	1 0.20 1	4.961	0.65	0.008	1.9	4	-0.037 1	0.030	1 -1.743 !	-0.289 *
* ER1B	1 14.3	16.9	1 1.99	5.039	0.64	0.075 1	9.4	8	-0.138 !	0.026	! -0.985 !	-0.098 *
* ER2A	1 14.3	! 17.0	1 0.20 1	4.961	0.65	9.008	1.9 !	4	0.027 !	0.034	-1.159	-0.118 *
* ER2A	1 14.3	16.9	1 1.99 1	5.039	0.64	1 0.075 1	9+4 1	8	-0.113 !	0.025	-0.906 !	-0.077 *
* ER3A	! 14.3	17.0	1 0.19 !	5.071	0.64	0.007 1	1.8 !	4	-0.021 !	0.031	! -1.071 !	-0.100 *
* ER3A	! 14.3	16.9	1.78	5.071	0.64	1 0.074 1	9.3 !	8	-0.095 !	0.028	! -0.951 !	-0.145 *

.

#### DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE ****

.

HIGH TURBULENCE WIND SIMULATION: MVP965 OLD TEST HOUSE, MOUNTED NEAR FRONT OF TURNTABLE, 16 TAPPINGS B.R.E. RECORD A32, WIND DIRECTION 265 DEG. FULL MODEL IN WIND TUNNEL BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPING PITOT 10 M ABOVE ANEMOMETER SITE

*****	******	***	******	*******	*****	*****	*****	*********	********	******		******	*****
A PRES	SURE! FULL	-	I FULL	I FULL	I WIND	WIND THE	I WIND I		NUMBER	EXINCI	ne rkessur	NE CUEFFI	LICNIS A
* IAPP	ING I SCAL	E 	SUALE	I SCALE	IUNNEL	IUNNEL	I IUNNEL	IUNNEL 1					×
* HULE	! AVER	AGE	UBSERVA	I EUUIVA	MEAN	UBSERVA	! AVERAG-	SAMPLING	SAMPLING				*
* CODE	I WIND		-TION	! -LENT	! WIND	-TION	I ING TIME	INTERVAL	INTERVAL	MAX.	IMA	MII	NIMA *
*	! SPEE	D	! TIME	! AVERAG-	! VELOCITY	TIME	! (SECS) !	(m.S) !	OVER				*
*	! (M/	S)	! (MINS)	! ING TIME	! (M/S)	(MINS)	!!!	ļ	WHICH	I MODE	! DISPER-	I MODE	! DISPER- *
*	!		1	! (SECS)	!		1	!	DATA WAS		I SION	!	! SION *
* .	1		ļ	!	1	!	!!!	. !	AVERAGED	!	1	ļ	! *
*****	******	***	********	(**********	*********	*******	********	********	*********	*********	*********	*********	******
* 3003	! 14.	3	! 17.0.	! 0.19	! 5.156	0.63	! 0.007	1.8	4	2.185	! 0.371	-0.408	! -0.106 *
* 3003	! 14.	3	! 17.0	! 1.99	! 5.156	0.63	! 0.074	9.2	8	1.642	! 0.179	-0.292	! -0.069 *
* 3WW4	! 14.	3.	! 17.0	! 0.19	5.156	0.63	! 0.007	1.8 !	4	2.131	0.325	-0.495	! -0.119 *
* 3WW4	! 14.	3	17.0	! 1,99	5.156	0.63	! 0.074 !	9.2 !	8	1.621	0.244	-0.304	! -0.097 *
* 5WW3	! 14.	3	! 17.0	! 0,19	5.050	0.64	! 0.007 !	1.8 !	4	2.597	! 0.322	-0.433	! -0.083 *
* 5WW3	! 14.	3	! 17.0	! 1,99	! 5.050	0.64	! 0.075 !	9.4 !	8	1.910	! 0,181	-0.314	! -0.083 *
<b>≭</b> 5₩₩7	! 14.	3	17.0	0.19	! 5.050 !	0.64	! 0.007 !	1.8 !	4	2,380	! 0.275	-0.948	! -0.192 *
* 5WW7	! 14.	3	! 17.0	! 1,99	1 5,050	0.64	! 0.075 !	9.4 !	8	1.603	9.181	-0.500	! -0.089 *
* 3EW1	! 14.	3	! 17.0	0.19	1 5.050	0.64	! 0.007 !	1.8 !	4	0,104	0.042	-1.424	! -0.174 *
* 3EW1	! 14.	3	! 17.0	! 1.99	5.050	0.64	1 0.075 1	9.4	8	0.050	. 0.049	-1.175	! -0.138 *
* 3EW3	! 14.	3	17.0	0.19	! 5.050	0.64	1 0.007 !	1.8 !	4	0.116	0.034	-1.287	! -0.174 *
* 3EW3	1 14.	3	17.0	1.99	5.050	0.64	1 0.075 1	9.4	8	0.017	! 0.031 !	-1.183	! -0.152 <b>*</b>
* 5EW1	1 14.	3	1 17.0	0.19	5.050	0.64	! 0.007 !	1.8 !	4	0.136	0.050	-1.418	! -0.148 *
* 5EW1	1 14.	3	1 17.0	1 1.99	5.050	0.64	1 0.075	9.4 !	. 8	0.018	0.034	-1.262	0.148 *
* 35W2	1 14.	3	1 17.0	0.19	5.330	0.61	0.007	1.7 1	4	0.777	0.149	-2.923	0.267 *
* 3SW2	1 14.	3	17.0	1.79	5.330	0.61	0.071	8.9 !	8	0.677	! 0.175	-2.118	! -0.227 *
<b>*</b> 35₩4	! 14.	3	17.0	0.19	1 5.330	0.61	1 0.007	1.7	4	0.282	! 0.061 !	-1.633	! -0.185 *
* 35W4	1 14.	3	17.0	1.79	5.330	0.61	1 0.071 1	8.9 !	8	0.125	! 0.051 !	-1.180	! -0.192 *
* 3NW2	1 14.	3	1 17.0	0.19	5.330	0.61	! 0.007	1.7 !	.4	0,251	9.178	-2.826	! -0.472 *
* 3NW2	14.	3	1 17.0	1.99	5.330	0.61	! 0.071	8.9 !	8	0.082	9.140	-2.141	! -0,230 *
* WRIA	14.	3	1 17.0	0.19	5.330	0.61	! 0.007 !	1.7 !	4	0,866	0.215	-3,197	! -0.518 *
X WRIA	1 14.	3	17.0	1.99	5.330	0.61	! 0.071 !	8,9 !	8	0,194	! 0.122 !	-2.397	! -0.369 *
* WR1F	1 14.	3 /	17.0	0.19	5.330	0.61	! 0.007 !	1.7 !	4	0.792	! 0.249 !	-2.917	! -0.340 <b>*</b>
* WR1F	1 14.	3	1 17.0	1 1.99	5.330	0.61	1 0.071	8.9 !	8	0.162	9.213	-2.101	· -0.226 *
* UR34	1 14.	3	1 17.0	0.19	5,158	0.63	0.007	1.8	4	0.804	! 0.121	-1.718	! -0.325 *
* 4834	1 14.	3	1 17.0	1 1.99	5.158	0.63	0.074	9.2	8	0.421	0.083	-1.055	0.308 *
* # #810	1 14.	3	1 17.07	0.19	5.158	0.63	0.007	1.8	4	0.067	0.054	-2.318	! -0.404 *
* 5819	1 1 1 1 1	3	1 17.0	1 1.99	5.158	0.63	1 0.074	9.2 1	8	-0.050	0.033	-1.351	-0.103 *
* E074		с т	1 17.0	1 0 19	1 5,158	0.43	1 0.007	1.8	4	0.119	0.039	-1.871	-0.219 *
- # ERZH		7	1 17 0	1 1 00	1 5 150	0.67	1 0.074	9.7	, Я	-0.030	0.041	-1.522	-0.270 *
		ວ 7	17.0	: 1+77 I 0 10	: J+130 I 5 150 I	· · · · · · · · · · · · · · · · · · ·	1 0.007	1.8	Δ I	0.054	0.034	-2.408	-0.577 *
* EKJA		ט ד	1 17 0	1 1 00	1 5,159		1 0.074	. 0.2 I	 	-0.028	0.044	-1.971	-0.411 *
A ERJA	1 14.	J	: 1/+V	1 477	: 1+170	i V+03	: 01077	/ • *	U U				

_____

# DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 21 TAPPINGS B.R.E. RECORD A38-, WIND DIRECTION 233 DEG. BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS PITOT 10 M ABOVE ANEMOMETER SITE OVERHANG FITTED FOR THIS RUN ROOF PITCH 22.5 DEG.

#### PROCESSED DATA :-

1

*:	*******	*******	******	****	*******	******	******	**	********	*********	******	*****	*******	********	*****
*	PRESSURE	FULL	! FULL	. !	FULL	! WIND	! WIND	!	WIND !	WIND !	NUMBER	EXTRE!	1E PRESSU	RE COEFF:	ICIENTS *
*	TAPPING !	SCALE	! SCALE	!	SCALE	I TUNNEL	I TUNNEL	!	TUNNEL	TUNNEL !	OF				*
*	HOLE !	AVERAGE	! OBSER	VA !	EQUIVA	MEAN	! OBSERVA	!	AVERAG-	SAMPLING	SAMPLING	!		!	*
*	CODE !	WIND	I -TION	· .	-LENT	! WIND	I -TION	!	ING TIME	INTERVAL	INTERVAL	I MAX:	IMA	! M:	INIMA *
*	!	SPEED	! TIME	!	AVERAG-	! VELOCITY	! TIME	!	(SECS)	(mS) !	OVER			!	*
*	i	(M/S)	'! (MIN	S) !	ING TIME	! (M/S)	! (MINS)	!	!	į	WHICH	MODE	DIGPER-	I MODE	! DISPER- *
*	!		!	!	(SECS)	Į	1	ļ	!	!	DATA WAS	•	SION	!	! SION *
*	1		ł	!		1,	1	!		!	AVERAGED		!	!	! *
*:	*******	******	******	****	*********	********	*******	**	********	*******	*******	*******	*********	********	****
*	3WW1 !	11.6	! 17.0	!	0.20	1 5,037	! 0.52	!	0.006	1.5	4	1,131	0,134	! -0.486	! -0.076 *
*	3001	11.6	1 16.9		1.98	! 5.037	! 0.52	ļ	0.061	7.6	8	0.706	0.107	9 -0.364	! -0.05/ *
*	3WW2 !	11.6	! 17.0		0.20	5,037	0.52	!	0.006	1.5 !	4	1.453	0.185	! -0.330	1 -0.06/ *
*	3WW2 !	11.6	! 16.9		1,98	5,037	0.52	!	0.061	7.6	8	1,128	0.155	! -0.241	! -0.034 <b>x</b>
*	3003 1	11.6	! 17.0	1	0,20	5.037	0.52	1	0.006	1.5	4	1.542	0.208	-0.240	! -0.051 *
*	3003 !	11.6	! 16.9		1.98	5.037	0.52	Į.	0.061	7.6	8	1.274	0.155	9 -0.164	! -0.059 ×
*	3004 !	11.6	1 17.0	!	0.20	5.037	0.52	!	0.006	1.5 !	4	1.700	0.252	! -0.263	· · · · · · · · · · · · · · · · · · ·
*	3WW4 !	11.6	1 16.9	!	1.78	5.037	0.52	!	0.061	7.6	8	1.3/8	0.180	! -0.123	· -0.078 *
*	3005 !	11.6	! 17.0	. !	0.20	! 5,037	! 0.52	Į	0.006	1.5	4	1,906	0.109	-0.249	! -0.156 <b>*</b>
*	3005 !	11.6	! 16.9		1.98	! 5,037	! 0.52	!	0.061	7.6	8	1.435	0,200	-0.086	1 -0.079 <b>*</b>
*	3006 !	11.6	! 17.0	!	0,19	! 4,981	! 0.53	ļ	0.006	1.5	4	1.924	0.285	! -0.770	! -0.3/4 *
*	3006	11.6	! 16.9	!	1.98	4 • 981	0.52	!	0.062	7.7 !	8	1.656	0.130	! -0,302	! −0,253 ×
*	3WW7 !	11.6	17.0	1	0,19	! 5,192	0.51	!	0,006	1.4 !	4	2.045	0.238	1 -0.982	1 -0.246 <b>*</b>
*	3WW7 !	11.6	1 17.0		1.99	! 5.192	0.51	ł.	0.059	7.4 !	8	1.615	0,158	-0.61/	1 -0.216 *
*	5WW1 !	11.6	! 17.0	i	0.19	! 5.192	! 0.51	Į.	0.006	1.4	4	1.253	0.121	1 -0.462	1 -0.055 K
*	5WW1 !	11.6	1 17.0	1	1.99	! 5,192	! 0.51	ļ	0,059	7.4	8	0.858	0.109	1 -0.329	! -0.049 ×
*	5WW2 !	11.6	1 17.0	!	0.19	5,192	! 0.51	!	0.006	1.4	4	1.443	0.156	-0.387	1 -0.086 ×
*	5WW2 !	11.6	! 17.0	!	1.99	5.192	! 0,51	1	0,059	7.4	8	1.151	0,182	! -0.270	! -0.053 *
*	5WW3 !	11.6	17.0	1	0.19	! 5.192	0.51	1	0.006	1.4	4	1.626	0,175	! -0.238	! -0.050 <b>*</b>
*	5WW3 I	11.6	! 17.0	- 1	1,99	! 5,192	0.51	!	0.059	7.4	8	1.342	0.214	· -0.163	-0.062 ×
*	5WW4 !	11.6	1 17.0		0.19	! 5,192	0.51	!	0.006	1.4	4	1.781	! 0.192	! -0.224	! -0.070 <b>*</b>
. *	5WW4 !	11.6	! 17.0		1.99	! 5,192	9.51	!	0.059	7.4	8	1.487	! 0.246	! -0.126	! -0.054 *

.

1

.

**************************************	**************************************	**************************************	************* ! FULL ! ! SCALE ! ! EQUIVA ! ! -LENT ! ! AVERAG- !	WIND TUNNEL MEAN WIND VELOCITY	**************************************	************* ! WIND ! ! TUNNEL ! ! AVERAG- ! ! ING TIME! ! (SECS) !	(************ WIND ! TUNNEL ! SAMPLING! INTERVAL! (mS) !	X********** NUMBER OF SAMPLING INTERVAL OVER	**************************************		RE COEFFICIENTS		
*	: (m/5) . t	(FILKS)	1 (SECS) 1 100 110E	(n/5)	(MINS)	: :	1	NAICH		I STON	nuue	1 GTAN ¥	
*	•	•	1			1		AVERAGED		5100		I 310K *	
********	*******	********	*********	**********	*******	*********	*********	********	**********	**********	********	*******	
*.5WW5	! 11.6	17.0	0.19	5,180	0,51	. 0.006	1.4	4	1.969 !	0.198	-0.329	! -0,162 *	
* 5005	! 11.6	! 16.9	! 1.98	5.180	0.50	0.059	7.4	8	1.633	0.212	-0.088	! -0.054 *	
* 5006	! 11.6	17.0	! 0,19	5,180	0.51	0.006	1.4	4	2.082 !	0.272	-1.041	! -0.380 *	
* 5WW6	! 11.6	! 16.9	1.78	5,180	! 0.50	! 0.059	7.4	8	1.665	0.159	-0,231	! -0.241 *	
* 5WW7	1 11.6	17.0	! 0.19	5.180	0,51	0.006	1.4	4	! 2,244 !	0.220	-1.083	! -0.326 *	
* 5007	1 11.6	16.9.	! 1.98	5.180	0.50	0.059	7.4 !	8	1.766	0.151	-0.741	! -0.167 *	
* 3EW1	11.6	17.0	0.19	5,180	0.51	0,006	1.4	4	-0.084	0.027	-1.155	1 -0.082 *	
* 3EW1	11.6	16.9	1.98	5.180	0.50	0.059	7.4	8	-0.128	0.030	-1.065	! -0.103 *	
* 3EW2	! 11.6	1/.0	0.19	5.180	0.51	0.006	1.4 !	4	-0.103	0.052	-1.248	i -0.092 *	
* 3EW2 * 7EU7	! 11+0 . ! 11 Z		1 1,98	5,180			7.4	8			-1.102	$1 -0.108 \times 108$	
* 3243	1 11.4	14.0	1 1 00	5 027 5 029			7 4 1	4			-1.177	1 -0.134 *	
* 3EWO	1 11.6	17.0	1 0.20	5.029	0.52		1.5			0.037	-1.275	1 -0.093 x	
* 3FW4	1 11.6	16.9	1 1.98	5.029	0.52	0.061	7.6		-0.130	0.051	-1.064	-0.116 <b>x</b>	
* 3EW5	1 11.6	17.0	0.20	5.029	0.52	0.006	1.5	4	0.025	0.045	-1.357	1 -0.157 *	
* 3EW5	11.6	16.9	1 1.98	5.029	0.52	0.061	7.6	8	-0.105	0.073	-1.082	1 -0.092 *	
* 5EW1	! 11.6	17.0	1 0.20	5.029	0.52	0.006	1.5	4	-0.086	0.056	-1.212	1 -0.081 *	
* 5EW1	11.6	16.9	1.78	5.029	0.52	0.061	7.6	8	-0.151	0.035	-1.076	1 -0.079 *	
* 5EW2	1 11.6	17.0	1 0.20	5.029	0.52	0,006	1.5	4	-0.118	0,036	-1.300	1 -0.091 *	
* 5EW2	11.6	16.9	! 1.98	5.029	0.52	0.061	7.6	8	-0.170	0.037	-1.159	! -0.101 *	
******	*******	******	********	********	******	******	*********	*********	********	********	*******	*******	
STOP													

### DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN O.U.E.L. REPORT 1213/77 NEW TEST HOUSE ,MOUNTED NEAR CENTRE OF TURNTABLE, 11 TAPPINGS B.R.E. RECORD A38-, WIND DIRECTION 233 DEG. BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBES BETWEEN TRANSDUCER AND SCANI AND SCANI AND TAPPINGS PITOT 10 M ABOVE ANEMOMETER SITE OVERHANG FITTED FOR THIS RUN ROOF PITCH 22.5 DEG

PROCESSED DATA :-

*******	***	******	*******	**	*******	**	******	***	******	*>	********	k¥	*******	********	********	**	*******	**:	*******	****	*****
* PRESSUR	₹E!	FULL	I FULL	!	FULL	!	WIND	ļ	WIND	Ł	WIND !		WIND I	NUMBER	! EXTRE	ME	PRESSUR	RE	COEFFI	CIENT	'S *
* TAPPING	3 !	SCALE	! SCALE	1	SCALE	!	TUNNEL	1	TUNNEL	ļ	TUNNEL !	1	TUNNEL !	OF	!						**
* HOLE	!	AVERAGE	I OPSERVA	!	EQUIVA	!	MEAN	!	OBSERVA	!	AVERAG- !		SAMPLING	SAMPLING	!			!			*
* CODE	. i	WIND	I -TION	1	-LENT	!	WIND	!	-TION	!	ING TIME!		INTERVAL	INTERVAL	! MAX	(IM	A I		MIN	AMIN	*
*	!	SFEED	! TIME	!	AVERAG-	1	VELOCIT	Y!	TIME	i	(SECS) !	!	(mS) !	OVER	!			! !			*
*	ţ	(M/S)	! (MINS)	1	ING TIME	i	(M/S)	1	(MINS)	!	!		!	WHICH	! MODE	ļ	DISPER-	ļ	MODE	i DIS	FER- *
*	İ		!	!	(SECS)	!		!		Ł		!		DATA WAS	ļ	!	SION	!		! 51	ON *
*	ļ		!	Į.		!		i		ļ	1	!	ļ	AVERAGED	!	!	!	1		!	*
*******	<b>**</b> *	*******	********	**	******	**	******	***	*******	*)	*********	k¥	*******	********	*********	***	*******	<b>*</b> *:	******	****	*****
* 5EW3	!	11.6	! 17.0	i	0.20	!	5.055	1	0.52	ļ	0.006 !	!	1.5	4	-0.072	ļ	0.036	!	-1.509	i - C	•173 *
* 5EW3	1	11.6	! 17.0	1	1.99	1	5.055	1	0.52	ļ	0.061		7.6	8	! -0,172	į	0.037	!	-1.181	! -0	•126 *
* 5EW4	1	11.6	! 17.0	1	0.20	!	5.055	1	0.52	I.	0.006	Į	1.5	4	! -0.051	!	0.049	ļ	-1.425	! -0	).205 *
* 5EW4	1	11.6	! 17.0	1	1.99	!	5.055	!	0.52	İ	0.061 !	!	7.6	8	! -0.139	1	0.030	!	-1.152	! -C	).111 *
* 5EW5	1	11.6	! 17.0	!	0.20	!	5.055	!	0.52	!	0.006		1.5	4	! 0.027	!	0.032	!	-1.317	! -C	•154 *
* 5EW5	1	11.6	1 17.0	1	1.99	!	5.055	1	0.52	ł	0.061	ł	7.6	! 8	! -0.096	i	0.035	!	-1.057	i -C	)+117 *
* 3SW1	!	11.6	! 17.0	1	0.20	!	5,055	!	0.52	1	0.006	!	1.5	4	! 1.963	!	0.242	!	-1,850	! -0	).218 *
* 3541	!	11.6	17.0	1	1.99	!	5,055	1	0.52	1	0.061	ļ	7.6	8	! 1.653	!	0.190	ļ	-1,253	! -0	)•201 <b>*</b>
* 3SW2	!	11.6	17.0	!	0.20	ļ.	5.055	1	0.52	Ł	0.006		1.5	4	1.774	1	0.159	!	-1.918	! -(	).280 *
<b>*</b> 3S₩2	!	11.6	! 17.0	!	1.99	!	5.055	!	0.52	ţ	0.061		7.6	8	! 1.399	!	0.144	!	-1.287	! -0	•160 *
* 3SW3	1	11.6	! 17.0	!	0.19	Į.	5.017	!	0.52	1	0.006	1	1.5	4	! 1.250	!	0.140	!	-1.025	! -0	).173 *
<b>*</b> 3S₩3	ļ	11.6	1 17.0	!	2.00	!	5.017	!	0.52	Į.	0.062	!	7.7	. 8	! 1.023	!	0.146	ļ	-0,566	! -0	).123 *
* 3SW4	!	11.6	1 17.0	1	0.19	!	5,017	1	0.52	1	0.006	!	1.5	4	! 0.619	1	0.127	!	-0.727	! -0	).075 ≭
* 3SW4	- I	11.6	17.0	!	2.00	!	5.017	1	0.52	!	0.062	1	7.7	8	! 0.418	1	0,068	!	-0.642	! -(	).071 *
* 5SW1	!	11.6	17.0	[	0.19	!	5.017	!	0.52	t	0.006		1.5	4	2.018	i	0.155	!	-2.170	! - 0	)+325 *
<b>≭</b> 55₩1	1	11.6	! 17.0	!	2.00	!	5.017	!	0.52	1	0.062 1	1	7.7	8	1.601	!	0,161	!	-1.533	! -C	+258 *
* 5SW2	!	11.6	17.0	!	0.19	!	5.017	ļ	0.52	ŗ	0.006	ł	1.5	4	! 1.738	i	0.187	Į	-1.935	! -0	)·263 *
<b>*</b> 5S⊌2	Ť	11.6	1 17.0	!	2.00	!	5.017	. !	0.52	ļ	0.062		7.7	8	! 1.435	1	0.110	!	-1.472	! -0	)•311 <b>*</b>
* 3NW1	!	11.6	17.0	!	0.19	!	5.017	1	0.52	İ.	0.006	Į	1.5	! 4	! 0.035	ţ	0.041	!	-1.227	! -0	).187 *
* 3NW1	Ì	11.6	17.0	I	2.00	1.	5.017	!	0.52	!	0.062		7.7	. 8	! -0.030	i.	0.041	!	-0,999	! -C	).167 *
* 3NW2	i	11.6	1 17.0	!	0.20	1	5.102	1	0.52	ŗ	0.006	!	1.5	! 4	! -0.004	1	0.029	!	-1.219	! -(	),178 *
* 3NW2	i	11.6	1 16.9	i	1,98	Ł	5.102	1	0.51	1	0.060	ļ	7.5	8	! -0.081	I	0.039	ļ	-1.146	! -C	•184 *
******	***	******	******	**	*****	**	******	***	******	*	******	k*	*******	*******	********	***	*******	**:	*******	*****	*****

٠

...

DESCRIPTION OF EXTREME PRESSURE COEFFICIENT DATA FILE

WIND SIMULATION AS DESCRIBED IN 0.U.E.L. REPORT 1213/77 NEW TEST HOUSE, MOUNTED NEAR CENTRE OF TURNTABLE, 19 TAPPINGS B.R.E.' RECORD A38-, WIND DIRECTION 233 DEG. BACK OF TRANSDUCER CONNECTED TO SITE REFERENCE MANHOLE 20 CM TUBE BETWEEN TRANSDUCER AND SCANI AND BETWEEN SCANI AND TAPPINGS PITOT 10 M ABOVE ANEMOMETER SITE OVERHANG FITTED FOR THIS RUN ROOF PITCH 22.5 DEG.

* PRESSUR	E! FULL	! FULL	I FULL	WIND	WIND	! WIND	WIND	NUMBER	EXTREM	IE PRESSU	RE COEFFI	CIENTS *	
* TAPPING	! SCALE	I SCALE	I SCALE	IUNNEL !	IUNNEL	I JUNNEL	I IUNNEL	UF				*	
* HULL			I -IFNT	110-PH 1111101		I TNG TIME	I INTERUAL	I INTERVAL	MAXIMA		. MINIMA		
*	I SPEED	I TIME	I AVERAG-	VELOCITY	TIME	(SECS)	(mS)	OVER			!	*	
*	(M/S)	(MINS)	I ING TIME	(M/S)	(MINS)	!	1	WHICH	MODE	DISPER-	MODE	DISPER- *	
*	1	1	! (SECS)			!		I DATA WAS		SION	!	I SION *	
*	!	1	!!!		1	!	!!!	AVERAGED	!!!		!	! *	
*******	*******	*******	********	**********	*******	******	*********	*********	**********	**********	*********	********	
* WR1A	! 11.6	! 17.0	0.20	5.036	0.52	0.006	1.5	! 4	0.893	0.122	! -2.026	! -0.327 *	
* WR1A	1 11.6	1 16.9	! 1,98	5.036	0.52	0,061	7.6	! 8	0.423		! -1.249	! -0.2/4 ×	
* WR1B	! 11.6	17.0	1 0.20	5.036	0.52	0.008		! 4			! -2.194	1 -0.208 ×	
* WR18	! 11+6	10.9	1 1,98	5.036	0.52						· -1.000	: -0.207 ×	
* WRIC	! 11.6	! 1/+0	1 1 00 1	5 074	0.52		1.0	· · ·		0.082	1 -1.484	$1 - 0.134 \pm$	
	! 11.0	1 17 0	1 0 20	5 076	0.52		1.5		0.811	C.174	1 -1.318	I -0.141 x	
* WALE	1 11.6	1 14.9	1 1.00	5.034	0.52	0.061	1 7.6		0.498	0.116	-0.933	-0.087 *	
	1 11.6	1 17.0	1 0.20	5.036	0.52	0.004	1.5	1 4	0.375	0.140	-2.216	0.341 *	
	1 11.6	1 14.9	1 1.98	5.036	0.52	0.041	7.6	i 8.	-0.050	0.036	! -1.455	0.190 *	
* 80.10	1 11.6	1 17.0	1 0.20	5.046	0.52	0.006	1.5	. 4	0,701	9,129	-1.603	! -0.304 *	
* WR2C	1 11.6	1 16.9	1.78	5.046	0.52	0.061	7.6	. 8	0.432	0.101	! -0.928	! -0.163 *	
* WR2E	1 11.6	17.0	0.20	5.046	0.52	0.006	1.5	! 4	0.666	0.118	! -1.423	! -0.193 *	
* WR2E	1 11.6	1 16.9	1.78	5.046	0.52	0.061	7.6	! 8	0.394	0.062	! -0,986	! -0.083 *	
* WR3A	1 11.6	1 17.0	1 0.20	5.046	0.52	0,006	1.5	! 4	0,736	0.174	! -2.557	! -0.398 *	
* WR3A	! 11.6	1 16.9	1 1,98	5.046	0.52	0.061	7.6	8	0.453 !	0.077	! -1.737	! -0.204 *	
* WR3B	! 11.6	17.0	1 0.20	5.046	0.52	0.006	1.5	! 4	0.577 !	0.091	! -1.289	! -0.387 *	
* WR3B	1 11.6	! 16.9	1.98	5.046	0.52	0.061	! 7.6 !	! 8	0.371	0.065	-0.717	! -0.155 *	
* WR3C	! 11.6	! 17.0	! 0.20	5.093	0.52	! 0.006	1.5	! 4	0,478	0.095	-0.852	! -0.167 *	
* WR3C	! 11.6	! 16.9	! 1.98	5.093	0.51	0.060	7.5	! 8	0.242	0.056	! -0.605	! -0.075 *	
* WR3D	! 11.6	17.0	0.20	5.093	0.52	0.006	1.5	! 4	0,423	0.110	! -0.993	! -0.129 <b>*</b>	
* WR3D	! 11.6	! 16.9	1 1,98	5.093	0.51	0.030	7.5	1 8	0,184	0.079	! -0.659		
*.WR3E	1 11.6	17.0	0.20	5.093	0.52	0.006	1.5	! 4	0.401	0.102	9 -0.880		
* WR3E	! 11.6	16.9	1.98	5.093	0+51	! 0.060	/.5	1 8	0.210	0.051	1 -0.629		
* WR4C	1 11.6	1 17.0	0.20	5.093	0.52	0.006	1.5	! 4				1 -0.134 x	
* WR4C	11.6	16.9	1.98	5,093	0.51	0.080	/+0				1 -7 779	· -0.145 *	
* ERIA	11.6	1 1/.0	1 0.20	1 5.073 1 F 007 1			! 1+J	· 4	=0.247	0.052	1 -1.713	-0.194 *	
* 5519	! 11.0	1 17 0	1 1.78	1 15 1 A A	0.51		: /•J		0.024	0.040	1.708	1 -0.224 *	
* ENIR	! 11+0	1 17 0	1 2 00		0.51		1 7.5	· 7		0.038	1.700	-0.108 *	
* 5518	! 11+0	1 17 0	1 2.00		0.51	1 0.004	1.5	ι Δ·	-0.110	0.040	-2.229	-0.273 *	
* ERZH	1 11 4	1 17 0	1 2 00	5 1 4 4 4 4	0.51	0.040	1 7.5	 . 8	-0.232	0.041	-1.881	-0.135 *	
* EKZH * ED70	1 11.4	1 17.0	1 0.20	5,146	0.51	1 0.006	1.5	i 4	-0.033	0.059	-2.136	-0.169 *	
* ER28	1 11.6	1 17.0	1 2.00	5.146	0.51	0.060	7.5	. 8	-0.218	0.054	-1.689	! -0.205 *	
* FRZA	1 11.6	1 17.0	1 0.20	5.146	0.51	0.006	1.5	1 4	-0.143	0.020	-3.347	! -0.345 *	
* ER3A	1 11.6	1 17.0	2.00	5,146	0.51	0.060	7.5	. 8	-0.238	0.042	-2.471	! -0.373 *	
* ER38	1 11.6	1 17.0	0.20	5.146	0.51	0.006	1.5	! 4	-0.094	0.033	-2.135	! -0.145 *	
* ER3B	1 11.6	17.0	! 2.00	5,146	0.51	0.060	. 7.5	! 8	-0.199 !	0.035	! -1.453	-0.136 *	

APPENDIX B

.

.

### TECHNIQUES OF SHORT TERM AVERAGING

M. E. Greenway

### Motivation for use of Short time averager

The interest in short-time averaged signals arises when considering extreme loads on, for example, a cladding panel. The extreme load on the panel is due to the maximum pressure which can be correlated over the whole panel. Correlation over a given distance can be related to the averaging time of the pressure measurement, either through the concept of eddy size or byconsidering coherence functions (Lawson 1976, Newberry, Eaton and Mayne 1973).

### Ideal Short-time averager

Suppose that x(t) forms the input to a device which measures a running time average, as shown schematically in the fig.

x (t) 
$$\longrightarrow \left| \frac{1}{T} \int_{t-T}^{t} x(\tau) d\tau \right| \longrightarrow y(t)$$

The output of such a device is  $y(t) = \frac{1}{T} \int_{t-T}^{t} x(\tau) d\tau$  (B1)

To determine the frequency response of such a device, we need to find the output corresponding to an input  $x(t) = e^{i\omega t}$ 

i.e. 
$$y(t) = F(\omega) e^{i\omega t} = \frac{1}{T} \int_{t-T}^{t} e^{i\omega \tau} d\tau$$

where  $F(\omega)$  is the frequency response function

$$\therefore F(\omega)e^{i\omega t} = \frac{1}{T} \frac{e^{i\omega t}}{i\omega} \Big|_{t-T}^{t} = \frac{1}{T}e^{i\omega t} \left(\frac{1-e^{-i\omega t}}{i\omega}\right)$$

$$f(\omega) = \frac{1 - e^{-i\omega t}}{i\omega T} = e^{-\frac{i\omega t}{2}} \frac{\sin\left(\frac{\omega T}{2}\right)}{\left(\frac{\omega T}{2}\right)}$$

$$F(\omega) = \frac{|\sin\left(\frac{\omega T}{2}\right)|}{\left(\frac{\omega T}{2}\right)}$$

(B2)

### TABLE BI

			ANALOG AVERAGING				
	ł	Algorithm	+				
	ÿ(n∆t) =	$= \frac{1}{m} \frac{m-1}{p=0} \overline{x}$	(n∆t-p∆t)	·F(ω) ≂	$\frac{1}{m} \left  \frac{\sin\left(\frac{m\omega}{2\omega}\right)}{\sin\left(\frac{\omega\pi}{2\omega}\right)} \right $	$y(t) = \frac{1}{T} \int_{t-T}^{t} x(\tau) d\tau$	
<u>mω</u> wmax	F(ω) m=2 (dB)	F(ω) · m=3 (dB)	F(ω) m=4 (dB)	F(ω) m=6 (dB)	F(ω) m=8 (dB)	F(ω) m=16 (dB)	$F(\omega) = \frac{ \sin \frac{\omega_{m\pi}}{2\omega_{max}} }{(\frac{\omega_{m\pi}}{2\omega_{max}})}$
0.01	0.00024	0.0003	0.00031	0.00033	0.00033	0.00033	0.00033
0.02	0.00111	0.00127	0.00135	0.0014	0.00142	0.00144	0.00144
0.05	0.0067	0.0079	0.00835	0.00866	0.00879	0.00889	0.00893
0.10	0.0268	0.0318	0.0335	0.0347	0.0352	0.0356	0.0357
0.20	0.1076	0.1275	0.1344	0.1394	0.1411	0.1428	0.1433
0.40	0.4359	0.5156	0.5435	0.5634	0.5703	0.5770	0.5792
.0.60	1.002	1.1829	1.2458	1.2905	1.3062	1.3213	1.3263
0.80	1.8409	2.1646	2.2767	2.3565	2.3843	2.4112	2.4201
1.0	3.010	3.5218	3.698	3.8230	3,8665	3.9085	3.9224
1.1	3.7491	4.3722	4.5861	4.7375	4.7903	4.841	4.8579
1.4	6.8591	7.8935	8.2438	8.4905	8.5762	8.6585	8.6859
2.0	108	111	112 ·	112	112	113	102.7
3.0	3.010	9.5424	11.3535	12.5527	12.9566	13.3389	13.464

.

Comparison of Digital and Analogue Frequency Response Functions

			ANALOG AVERAGING									
	₽ ÿ(n∆t) =	Algorithm = $\frac{1}{m} \sum_{p=0}^{m-1} \overline{x}$	(n∆t-p∆t)	Freque F(ω) =	$\frac{1}{m} \left  \frac{\sin\left(\frac{m\alpha}{2\alpha}\right)}{\sin\left(\frac{m\alpha}{2\alpha}\right)} \right $	$y(t) = \frac{1}{T} \int_{t-T}^{t} x(\tau) d\tau$						
<u>mω</u> ω _{max}	F(ω) m=2 (dB)	F(ω) m=3 (dB)	F(ω) m=4 (dB)	F(ω) m=6 (dB)	F(ω) m=8 (dB)	F(ω) m=16 (dB)	$F(\omega) = \frac{ \sin \frac{\omega_{m\pi}}{2\omega_{max}} }{(\frac{\omega_{m\pi}}{2\omega_{max}})}$					
0.01	0.00024	0.0003	0.00031	0.00033	0.00033	0.00033	0.00033					
0.02	0.00111	0.00127	0.00135	0.0014	0.00142	0.00144	0.00144					
0.05	0.0067	0.0079	0.00835	0.00866	0.00879	0.00889	0.00893					
0.10	0.0268	0.0318	0.0335	0.0347	0.0352	0.0356	0.0357					
0.20	0.1076	0.1275	0.1344	0.1394	0.1411	0.1428	0.1433					
0.40	0.4359	0.5156	0.5435	0.5634	0.5703	0.5770	0.5792					
0.60	1.002	1.1829	1.2458	1.2905	1.3062	1.3213	1.3263					
0.80	1.8409	2.1646	2.2767	2.3565	2.3843	2.4112	2.4201					
1.0	3.010	3.5218	3.698	3.8230	3.8665	3.9085	3.9224					
1.1	3.7491	4.3722	4.5861	4.7375	4.7903	4.841	4.8579					
1.4	6.8591	7.8935	8.2438	8.4905	8.5762	8.6585	8.6859					
2.0	108	111	112	112	112	113	102.7					
3.0	3.010	9.5424	11.3535	12.5527	12.9566	13.3389	13.464					
							·					

### Comparison of Digital and Analogue Frequency Response Functions

In order to compare this frequency response of an analog averager with that of a digital averager, it will be convenient to express the averaging time, T, in terms of the Nyquist sampling interval  $\Delta t$ , or equivalently in terms of the bandwidth,  $\omega_{max}$  (rad/s), of the input signal x(t). Suppose that the averaging time period, T, is made up of m intervals of duration  $\Delta t$ , i.e.

$$T = m \Delta t = \frac{m \pi}{\omega_{max}}$$

Then in terms of  $\omega_{max}$ , the frequency response function (2), can be expressed as

$$|F(\omega)| = |\sin\left(\frac{\omega m\pi}{2\omega_{max}}\right)|$$
(B3)  
$$\frac{\omega m\pi}{2\omega_{max}}$$

### Discrete Approximation to the Ideal Short-Time Averager

Suppose that a signal x(t) forms the input to a device which samples the signal periodically at discrete time intervals. With a digital computer and discrete samples of a signal, the obvious way to achieve an approximate short time average would be to perform a numerical integration. The common techniques of Simpson's rule or the Trapezium rule could be used but a simple "running average" will be shown to be satisfactory.

To perform any numerical integration, successive samples are multiplied by weighting factors and the resulting terms summed over the interval of interest. This can be represented by the difference equation

$$y(n\Delta t) = \sum_{p=0}^{m-1} L_p x [n\Delta t - p\Delta t]$$
(B4)

where the  $L_p$ , p = 0, 1, 2, ..., (m-1). are the weighting factors. This procedure is illustrated in figure B1.



FIGURE B1

Relationship between discrete sample averaging and analogue averaging

Now the behaviour of a digital filter can be expressed by a linear difference equation with a general form given by

$$y(n\Delta t) = \sum_{p=0}^{m-1} L_p x(n\Delta t - p\Delta t) - \sum_{p=1}^{r-1} K_p y(n\Delta t - p\Delta t)$$
(B5)

where the L_p, p = 0, 1, ... (m-1) and K_p, p = 1, 2, ..., (r-1), are constant weighting factors.

Clearly the difference equation (4) for the output of a numerical integrator is of the form (5), and so the integrator can be regarded as a digital filter. The frequency response of a digital filter can be systematically investigated either by use of the z transform or by the use of the discrete Fourier transform (D.F.T.) (Gold and Rader 1969). One of these methods would have to be used for the Simpson's rule and trapezium rule cases. However, the frequency response of the "running average" method illustrated schematically below



can be deduced from its difference equation representation, namely,

$$\overline{y}\left[(n+\frac{1}{2})\Delta t\right] = \frac{1}{m} \sum_{p=0}^{m-1} \overline{x} (n\Delta t - p\Delta t)$$
(B6)

by substituting  $x(t) = e^{i\omega t}$ , and performing the summation of the right hand side of (6)

B3

$$\overline{y}$$
 ( (n+ $\frac{1}{2}$ )  $\Delta t$ ) = F( $\omega$ ) e^{in $\omega \Delta t$}  =  $\frac{1}{m} \sum_{p=0}^{m-1} e^{i(n-p)\omega\Delta t}$ 

$$\cdot \cdot F(\omega) = \frac{1}{m} \sum_{p=0}^{m-1} e^{-ip\omega\Delta t} = \frac{1}{m} \frac{1 - e^{-im\omega\Delta t}}{1 - e^{-i\omega\Delta t}}$$

$$= \frac{1}{m} e^{-\frac{i(m-1)\omega\Delta t}{2}} \frac{\sin(\frac{m\omega\Delta t}{2})}{\sin(\frac{\omega\Delta t}{2})}$$

putting, as before  $\Delta t = \frac{\pi}{\omega_{\text{max}}}$ 

$$F(w) = \frac{1}{m} \left| \frac{\sin \frac{m\omega\pi}{2\omega_{max}}}{\sin \frac{\omega\pi}{2\omega_{max}}} \right|$$
(B7)

In terms of the averaging time T (T =  $m\Delta t$ ), equation (B7) may be expressed

$$|F(n)| = \left| \frac{\sin(n\pi T)}{m \sin(n\pi T/m)} \right|$$

as

where n is the frequency in Hz.

The frequency response functions (3) and (7) are tabulated in table B1 and plotted in fig.B2 in the form of attenuation in decibels vs the frequency ratio  $\frac{m\omega}{\omega_{max}}$ . It can be seen that provided the signal has a band limit of  $\omega_{max}$  (rad/s) the only region of interest is  $0 < \omega < \omega_{max}$  or  $0 < \frac{\omega}{\omega_{max}} < 1$ .
The digital (numerical) averager's frequency response approaches that of the ideal averager's frequency response for values of  $m \ge 4$ . The cut off frequency of the ideal averager's frequency response (defined by the 3dB point) is given by

$$\frac{m\omega}{\omega_{max}} = 0.885$$

...  $\omega_{\text{cut off}} = \frac{0.885}{\text{m}} \omega_{\text{max}} (\text{rad/s})$ 

^{$\omega$}cut off = 0.885  $\frac{\pi}{T} = \frac{2.78}{T}$  (rad/s)

ⁿcut off =  $\frac{0.44}{T}$  (Hz)







70

+ SR2B

NR2B

+ 3B

SR1B

NR1 +

+ SR2A

NR2A

+

3A

WG1 +











Key to estate house pressure tapping identification code.



Frequency Response Comparison for Digital and Analogue Averaging



Frequency Response Comparison for Digital and Analogue Averaging