

THE ELECTRICITY COLINCIE RESEARCH CENTRE

COMPARISON OF CALCULATED AND MEASURED VALUES OF HEAT LOSS IN A WELL INSULATED HOUSE

by J.P. Edwards

Job No. 7/4238

September, 1980

THE ELECTRICITY COUNCIL RESEARCH CENTRE

COMPARISON OF CALCULATED AND MEASURED VALUES OF HEAT LOSS IN A WELL INSULATED HOUSE

by

J. P. Edwards

SUMMARY

With the aid of the North of Scotland Hydro-Electric Board, heat loss measurements have been made in an unoccupied house at Kemnay, Aberdeenshire.

Constructional details of this well insulated house are given. Recordings of energy and temperatures over two heating seasons are analysed and discussed. Short term ventilation measurements by gas decay method are also reported. Wind measurements show this house to be rather sheltered, as average wind speeds above 5 m/s are rare. This to some extent will account for the extremely low air infiltration rates measured.

The calculated value of fabric heat loss at 2.2 kWh/day ${}^{O}C^{*}$ is low for a house of this size. Analysis of results shows the average measured value of 2.3 kWh/day ${}^{O}C$ concurring with the calculated figure. The insulation in this house is therefore effective.

ECRC thermal calibration tests are usually made with individually controlled fan convector units with a high degree of air recirculation. Check tests were made during the course of these experiments to see if the conventional natural convector panel heaters behaved in the same way and produced the same energy consumption.

*kWh/day ^OC - This is the Fabric Heat Loss Coefficient

It did not matter whether fan or natural convective heaters were used for heating, and there was no significant difference between them in terms of the energy used.

This house has no south facing windows and minimal glass area, and therefore the solar heating is low.

This Memorandum is published as part of the Electricity Council's Research Programme and any technical query on the contents or requests for permission to reproduce any part of it should be addressed to the Author.

September 1980

•

CON	ITENTS	Page No
1.	INTRODUCTION	1
2.	HOUSE PLANS, CONSTRUCTIONAL DETAILS AND TEST APPARATUS	1
	2.1 Site Plan	1
	2.2 Construction and House Plan	1
	2.3 Instrumentaion and Heating Methods	2
3.	EXPERIMENTAL PROCEDURES AND RESULTS	2
	3.1 Ventilation Measurements	2
	3.2 Solar Measurements	3
	3.3 Heat Loss Measurements	4
4.	DISCUSSION	5
5.	CONCLUSION	6
6.	REFERENCES	7
7.	ACKNOWLEDGEMENTS	7
	TABLES 1 - 9	8-23
	FIGURES 1 - 16	
	APPENDIX I - Theoretical Ventilation and Fabric Heat Loss	i
	APPENDIX II - Estimation of Solar Heating	iv
	APPENDIX III - Statistical Analysis of Results	v

1. INTRODUCTION

An unoccupied, pre-fabricated, detached house of Scandinavian design has been the subject of detailed measurements. The house is situated at Kemnay, some 15 miles North-West of Aberdeen. It is of timber construction, with very high levels of thermal insulation, including double glazing and is well sealed. The total floor area is approximately 109 m^2 .

The object of the measurements was twofold:-

- (a) To see if the measured values of heat loss of a well insulated house agree with the calculated ones.
- (b) To identify if the type of heating system affects heat loss by comparing natural convector panels and fan convector heaters.

This report gives details of heat losses, both calculated and measured. Ventilation rates and solar heating data are also reported.

2. HOUSE PLANS, CONSTRUCTIONAL DETAILS AND TEST APPARATUS

2.1 Site Plan

This house is one on an estate of several hundred similarly constructed dwellings, situated on fairly open land in the bend of a river, Figure 1. Figure 2 shows a site plan with the anemometer, Stevenson screen and solarimeter identified.

2.2 Construction and House Plan

The house is of prefabricated timber construction with 100 mm of mineral wool in the external walls, 150 mm in the loft space and under the suspended ground floor. Constructional details are shown in Figure 3. The windows are double-glazed and weatherstripped. The house has a floor area of 101 m², excluding the front porch and w.c. The dining room and

- 1 -

kitchen are only partially separated by the use of kitchen units. Figure 4 shows internal floor plans, while Figure 5 shows external elevations.

2.3 Instrumentation and Heating Methods

Figures 4 and 6 show the position of fan and panel heaters used as the means of supplying energy into the house during test periods. The panel heaters are fitted into the houses as the normal form of heating and are electronically controlled, with an internal thermistor as the temperature sensor. The fan heaters are controlled by ordinary ON/OFF room thermostats mounted on stands in the position shown in Figure 6.

Temperatures were monitored in the first instance by chart recording thermographs. Later, these were supplemented and finally replaced by a data logging system using type 'T' (Cu/CuNi) thermocouples as the temperature sensors. The thermocouples were placed in a similar position to the thermographs. The data fed into the logger was recorded on magnetic tape and processed by computer.

Power was measured on a half-hourly printing kWh meter. Wind speed/ direction and solar radiation were measured and recorded.

3. EXPERIMENTAL PROCEDURES AND RESULTS

3.1 Ventilation Measurements

The pressurization method described by Dickson⁽¹⁾ is used in order to find an equivalent leakage area for the house. The trace obtained on an 'x-y' plotter is compared with a family of calibration curves (Figure 7). Figure 8 shows an example of a trace obtained for this dwelling. When overlaid on the calibration curves it can be seen that this house has an equivalent leakage area of approximately 0.075 m^2 . The procedure was repeated in a range of weather conditions, without any substantial change in leakage area being detected. This method of measuring equivalent

- 2 -

leakage areas becomes less effective as wind speed increases. As the wind speed approaches 5 m/s the results become meaningless because of the wild fluctuations of the trace on the 'x-y' plotter.

It is shown in the IHVE Guide⁽²⁾ that the air change rate of a dwelling can be determined by the decay of a tracer gas, which has been thoroughly mixed with the air in that dwelling. Using carbon dioxide as the tracer gas, a series of measurements was conducted with all the exterior doors, windows and ventilators closed. The details of the precise methods used are fully explained by Dickson⁽¹⁾. The results are shown in Table 1. Unfortunately, because of low wind speeds during the test period, less than 5 m/s, insufficient data is available from which a precise formula for calculating ventilation rates can be extrapolated. However, from the results available a simplified expression of N = 0.011 Δt + 0.079 S Cos θ + .004 may be derived.

where N = ventilation rate in a.c.h.

S = wind speed in m/s

 θ = angle between the wind and the normal to the front or back of the house, whichever is facing the wind.

3.2 Solar Measurements

For a two week period during the early part of winter, the house was left unheated. Internal temperatures were recorded on thermographs placed in each room and shielded from direct sunlight. External temperature was also recorded on a thermograph placed in the Stevenson screen. The temperatures were initially averaged over a 24 hour period midnight to midnight, Table 2. Daily solar radiation on a horizontal plane was measured. Using Basnett's curves⁽³⁾, Figures 9 and 10 to estimate the solar radiation on a vertical surface, the solar heating through the glass could then be calculated. In houses of standard construction it has been shown by Siviour⁽⁴⁾ that daily internal temperatures are not only affected by solar radiation of that day but also by the radiation of preceding days. With this in mind, the solar heating results shown (Table 3) are averaged for continuous periods of 5 and 7 days respectively.

- 3 -

3.3 Heat Loss Measurements

In the first instance the house was continuously heated with fan heaters controlled by room thermostats. Temperatures were monitored inside and out on thermograph chart recorders. The thermostat controls in each room were set to give average temperature of 18°C. The thermograph readings were checked against selected mercury-in-glass thermometers and adjusted as required. All exterior doors, windows and ventilators were closed, while interior doors were kept open. Solar radiation was measured, wind speed and direction were also recorded. Energy was measured half-hourly using a printed aggregate from a kWh meter. All data obtained was collated over a daily period from midnight to midnight. This base data is shown in Table 4. For the second half of the year, February to May, the same procedure was repeated using panel heaters originally installed as the source of energy. The panel heaters have their own internal thermistor control. With this system of control it is more difficult to obtain preselected room temperature without a prolonged period of adjustment. The control settings were estimated and the room temperatures allowed to settle without further adjustment. Table 5 shows the daily averages.

For the third section of these tests a combination of the previous two heating methods was used. The panel heaters were the source of heating with the fans of the fan heaters providing only the means of air circulation. It was for this period of tests, October to May 1979, that a new automatic logging system of monitoring temperatures was introduced. This system used type 'T' thermocouples as the sensors which were placed adjacent to the thermographs. The data is recorded at selected intervals, on magnetic tape cassette and processed by computer. This removes all the time-consuming and tedious process of chart analysis. It also eliminates the human error inevitably associated with this type of analysis. For the first two months of tests the thermograph charts were analysed and compared with computed results. The difference in results proving negligible, the thermographs were then discarded. Daily averages are shown in Table 6.

With the three forms of heating used the daily results were reduced to weekly averages. Solar heating through the windows was calculated from the horizontal solar radiation. Ventilation heat loss was calculated from

- 4 -

temperature difference and wind speed and direction. Tables 7, 8 and 9 show the weekly averages from which the graphs used for analysis were plotted.

Calculations of U values and fabric heat loss are shown in Appendix I.

4. DISCUSSION

The pressurization method of measuring the leakage area showed this house to have an equivalent leakage area of 0.075 m^2 . This value is similar to the best of the houses tested at Capenhurst which are some 25% less in volume. The leakage area per unit volume of the Kemnay house is amongst the best yet tested. The low figure obtained as the leakage area of the house is supported by the results of the tracer gas tests. They show an average air change rate of less than 0.25 ac/h at an average wind speed of 2.1 m/s and Δt of 9.1°C. It is possible that the superior tightness of these houses is helped by the all wooden construction, the windows, doors and wall all expanding and contracting at a similar rate. Whereas in a dwelling of standard brick construction the windows, door and frames, usually of wood or metal, move at a different rate from that of the brick structure, thereby causing varying cracks at these joints.

The solar heating in this house is lower than one would normally expect for a dwelling of this size. The obvious reason is that the window area, which is about 10% of the floor area, is less than average. Also there are no south facing windows in this particular house.

The weekly averages shown in Tables 7, 8 and 9 were plotted out graphically to aid analysis. Figures 11 to 13 show plots of input energy, including solar heating through the windows, against inside to outside temperature difference. The tests using the panel heaters with fans were conducted over a whole heating season, whilst the panel heaters and fan heaters were tested independently during part of the heating seasons only. The results tend to suggest that part season testing is not altogether suitable when weekly averages are being considered.

- 5 -

With the fan heaters only being used during the first half of a heating season, most of the results are at similar levels of energy input. The computed line of this analysis has a projected intercept at 16.5 kWh/d with a correlation of 0.76 from 12 points. The range of data obtained for the panel heaters only, during the second half of the heating season, was only slightly better so a further three weeks at the beginning of the following season were devoted to testing. The extra points obtained were all below 30 kWh/d and are included in Figure 12. This analysis has a projected intercept at 5.4 kWh/d with a slightly improved correlation of 0.79 from 17 points. Using the panel heaters with fans over a full six months produced a graph with a much improved correlation of 0.92 from 28 points.

Further graphical analysis of Figures 14 and 15 showed that the experimental fabric heat loss coefficient varied from 2.19 to 2.41 kWh/day ^OC. This compares extremely well with the calculated value of 2.2 kWh/day ^OC affirming that the insulation in this house is acting as predicted. The variation in experimental value of only 0.22 kWh/day ^OC with various heating arrangements demonstrates that it does not matter which type of heating system is used to calibrate a dwelling. It was not possible to plot the results of fan heaters only because of the limited range of data, all at low levels of solar gain. However, when fan heater data was added to that of the panel heaters the graphical analysis was not changed by an significant amount. There is a much greater scatter of points in Figure 14 than in Figure 15, which is reflected in the correlation. A possible explanation is the more widely varying temperatures, Figure 16, of the first test period compared with those of the second period, having a delay effect on the power requirements of a well insulated house. A second explanation is that the house was disturbed on many more occasions in the first year than in the second, including periods of intensive ventilation measurements when the windows and doors were deliberately left open.

5. CONCLUSION

The ventilation rate of this house is very low having a whole house air change rate of approximately 0.25 ac/h, measured with average atmospheric conditions during the winter.

- 6 -

It has been shown that the measured and calculated values of fabric heat loss in this well insulated house compare closely, the average measured value, over two heating seasons, of 2.3 kWh/day ^OC being less than 5% higher than the calculated value.

The type of system used, either convective or fan heating, has not affected the measured heat loss by any significant amount. The difference between the systems of $0.22 \text{ kWh/day/}^{\circ}$ C is well within the limits of error of this type of measurement.

6. REFERENCES

2) IHVE Guide

- 1) Dickson, D.J. Ventilation Measurements. ECRC (to be published).
 - Book A (4-3), 1970.
- 3) Basnett, P. Estimation of solar radiation falling on vertical surfaces from measurements on a horizontal plane. ECRC/M846, 1975.
- 4) Siviour, J.B. Solar heating in unoccupied houses. ECRC/N840, 1975.

7. ACKNOWLEDGEMENTS

The author wishes to acknowledge the help given by J.B. Siviour and D.J. Dickson, also the aid given by M.C. Hardy and colleagues of NSHEB.

The author would like to thank E.B. Edwards for his tireless efforts in the analysis of results.

Appendix III was supplied by J.F. Waddington.

REF.	WIND SPEED m/s	WIND* DIRECTION degrees	TEMPERATURE DIFFERENCE Δt ^O C	VENTILATION - RATE ac/h
1	1.0	150	6	.12
2	0.5	v	9	.13
3	0.8	330	9	.14
4	1.2	140	5	.14
5	1.5	345	8	.14
6	3.1	160	5	.14
7	1.2	210	12	.16
8	1.0	230	13	.17
- 9	1.9	150	7	.17
10	3.3	150	4	.17
11	0.1	v	12	.19
12	0.2	v	14	.19
13	4.0	140	4	.25
14	4.8	240	7	.36
15	2.9	100	12	.43
16	4.0	90	13	.47
17	4.0	80	15	.48

TABLE 1 - MEASURED VENTILATION RAT	D VENTILATION RATES	2 1 - MEASURED
------------------------------------	---------------------	----------------

*Wind direction at 100° is directly towards house front. V means variable direction.

1977 DAY	HORIZONTAL SOLAR RADIATION	AVERAGE OUTSIDE	AVERAGE INSIDE	AVERAGE	AVER	AGE WIND
No. +	kWh/m ² /day	TEMP. °C	TEMP. °C	°C	SPEED m/s	DIRECTION* degrees
277	1.15	8.8	13.2	4.5	0.73	190
278	1.53	7.0	11.7	4.7	1.3	180
279	0.24	8.2	11.2	3.0	1.81	49
280	0.11	10.3	11.5	1.2	3.91	64
281	1.04	8.8	11.6	2.8	0.71	112
291	. 0.77	10.1	13.3	3.2	1.3	170
292	1.49	12.1	13.6	1.5	1.68	166
293	0.97	13.6	15.0	1.4	2.46	168
294	1.38	13.1	15.5	2.4	1.03	124
295	1.15	12.8	16.1	3.3	1.83	156
296	1.57	11.3	15.5	4.3	1.87	188
297	0.73	12.7	15.1	2.4	2.93	177

TABLE 2 - SOLAR HEATING DATA

/The day number referred to in this and subsequent tables is the day of the year, January 1st being day number one of each year, and proceeding arithmetically through to December 31st. *Wind direction at 100° is directly towards house front. TABLE 3 - ESTIMATE OF SOLAR HEATING

Middle day number (1977)		279	294
Number of consecutive days		5	7
Average daily solar radiation on a hor surface kWh/m ² /day	izontal	0.81	1.15
Vertical solar heating through glass:	North	0.08	0.091
	East and We s t	2.56	3.73
	Total kWh/day	2.64	3.82
Temperature difference inside/out	°C	2.3	2.6

Glazing area: North 0.28 m^2 East and West 8.2 m^2 . Transmission coefficient: 0.65. An allowance of 10% has been made for ground reflection.

Day No.	solar radiation kWh/m ² /d _{ay}	outside temp.	inside	Δt			
201		°C	temp. C	°c	Speed m/s	Direction [*] degrees	Energy kWh/day
304 305 306 307 308 309 310	0.56 1.38 1.12 0.88 0.85 0.26 0.59	7.0 5.0 5.5 3.0 6.0 5.5 8.0	17.9 18.3 18.4 18.0 17.9 17. 9 18.1	10.9 13.3 12.9 15.0 11.9 12.4 10.1	1.58 1.3 0.35 1.21 3.04 1.93 3.69	210 70 90 90 46 45	20.0 32.4 26.2 34.0 32.4 36.4 30.4
311 312 313 314 315 316 317	0.56 1.17 0.71 0.51 1.04 0.66 0.77	10.0 7.5 8.5 12.5 10.5 6.5	18.2 17.8 13.0 18.1 18.1 18.0 17.9	8.2 10.3 9.5 5.6 7.6 11.5 11.4	3.23		22.4 29.0 31.4 22.8 24.4 39.2 41.0
318 319 320 321 322 323 324	0.35 0.54 0.38 0.31 0.89 0.45 0.10	7.0 6.5 4.0 4.5 4.5 7.5 2.5	17.9 17.8 17.8 17.9 17.9 18.0 17.9	10.9 11.3 13.8 13.4 13.4 10.5 15.4	DATA NOT AVAILABLE	DATA NOT AVAILABLE	38.6 40.4 42.2 45.0 43.6 37.4 45.4
325 326 327 328 329 330 331	0.51 0.42 0.65 0.50 0.22 0.51 1.05	4.5 6.5 5.0 5.5 3.0 -0.5	17.8 17.8 17.9 17.8 17.8 17.8 17.8 17.7	13.3 11.3 11.4 12.8 12.3 14.8 18.2			45-8 41.8 36.2 44.4 42.0 42.6 42.9
332 333 334 335 336 337 338	0.87 0.39 0.44 0.27 0.15 0.24 0.15	-1.5 4.0 2.0 2.5 4.0 6.5 8.5	17.7 17.7 17.8 17.8 17.8 17.8 17.8	19.2 21.7 15.8 15.3 13.8 11.3 9.4		×	54.9 46.8 44.6 48.8 46.4 45.2 39.6
339 340 341 342 343 344 345	0.10 0.12 0.31 0.21 0.07 0.06 0.14	6.0 4.5 2.0 3.0 5.0 8.5 .7.5	17.8 17.7 17.5 18.1 18.2 18.1 18.2	11.8 13.2 15.5 15.1 13.2 9.6 10.7	3.04 3.54 3.0(1.61 1.55 4.7 3.6	110 90 80 V 160 130 145	45.0 51.6 63.0 45.6 38.6 35.0 33.2
			iable dire		ly towards ho	use front	

Table 4 Fan heaters - Daily Averages

Table 4 (continued) Fan heaters - Daily Averages

1977-78		Average	Average	Average	Avera	ge wind	England
Day No.	solar radiation kWh/m ² /day	outside temp. °C	inside temp. °C	∆t °c	Speed m/s	Direction* degrees	Energy kWh/d _{ay}
346 347 348 349 350 351 352	0.40 0.29 0.16 0.36 0.27 0.20 0.09	5.0 5.4 9.3 7.1 8.3 6.6 4.1	18.1 18.0 18.2 18.3 18.3 18.3 18.3 18.2	13.1 12.6 8.9 11.2 10.0 11.7 14.1	1.14 0.68 1.72 1.55 1.37 1.17 0.06	200 200 180 180 180 180 180 180	33.0 37.2 29.2 29.6 32.8 33.0 37.0
353 354 355 356 357 358 359	0.36 0.48 0.11 0.34 0.32 0.27 0.33	3.8 2.8 4.0 6.5 7.0 6.5 5.0	18.1 17.9 17.8 18.0 18.1 18.0 18.0	14.3 15.1 13.8 11.5 11.1 11.5 13.0	0.78 1.19 1.30 5.94 1.82 2.84 1.6	210 V 150 150 166 260 250	41.4 39.8 39.8 33.4 29.8 33.6 34.0
360 361 362 363 364 365 1	0.50 0.41 0.18 0.36 0.32 0.14 0.45	3.0 3.5 4.5 2.0 3.5 4.0	17.9 17.8 17.9 17.8 17.8 17.8 17.8 17.8	14.9 14.8 14.3 13.4 14.8 14.3 14.0	0.97 2.07 6.24 3.95 5.93 2.27 3.47	200 275 320 250 290 250 225	39.0 41.0 44.0 39.6 46.6 41.6 34.2
2 3 4 5 6 7 8	0.44 0.22 0.44 0.20 0.53 0.33 0.67	0.0 -1.0 -2.0 5.0 6.0 4.0 3.5	18.0 18.0 18.0 18.0 18.1 18.1 18.1	18.0 19.0 20.0 13.0 12.1 14.1 14.5	2.85 3.26 2.52 2.74 2.91 1.95 2.73	220 300 230 180 200 180 190	42.6 46.8 51.4 40.2 31.2 33.6 41.2
9 10 11 12 13 14 15	0.26 0.42 0.34 0.25 0.39 0.59 0.94	2.5 0.0 -0.5 7.0 1.0 -1.0	18.0 17.8 17.8 17.9 18.1 18.1 17.9	15.5 17.8 17.8 18.4 11.1 17.1 18.9	1.32 DATA NOT AVAILABLE 3.25 0.45 0.34	190 DATA NOT AVAILABLE 250 V V	39.2 50.2 49.8 53.0 41.3 / 41.3 / 41.3 /
16 17 18 19 20 21 22	0.28 0.58 0.98 0.13 0.27 0.31 0.18	1.5 -0.5 -2.0 1.0 1.0 0.5 2.5	17.9 17.9 17.9 17.9 18.0 17.9 17.9	16.4 18.4 19.9 16.9 17.0 17.4 15.4	1.04 1.02 0.82 2.19 0.58 2.43 2.0	280 250 160 150 V 140 170	41.3 7 41.3 7 47.6 48.0 42.8 47.8 41.6

Notes: # Average of 5 days #Wind direction at 100° is directly towards the house front V means variable direction

Table 5 Panel heaters - Daily averages

T

1978	Horizontal solar radiation	Average outside	Average	Average	Avera	ge wind	
Day No.	kWh/m ² /day	temp.	inside temp. C	Δt ^o c	Speed m/s	Direction * degrees	Energy kWh/day
23	0.18	1.5	19.1	17.6	1.38	120	77.0
24	0.36	3.0	20.1	17.1	2.9	300	58.0
25	0.56	2.0	22.5	20.5	2.35	270	55.2
26	0.81	-2.5	15.4	17.9	0.53	180	55.0
27	0.77	-2.0	18.3	20.3	1.32	120	79.0
28	0.20	2.0	19.4	17.4	2.1	V	61.4
29	0.27	1.5	19.5	18.0	4.93	330	59.2
30	0.69	0.0	16.1	16.1	2.32	280	29.8
31	0.39	-1.0	8.5	9.5	1.42	150	43.0
32	0.23	-0.1	18.2	18.3	2.13	100	70.4
33	0.11	2.5	18.8	16.3	1.18	90	58.2
34	0.57	0.0	17.0	17.0	1.77	180	43.6
35	0.95	2.5	17.1	14.6	2.52	180	42.0
36	0.20	3.2	17.6	14.4	0.37	V	38.0
,37	0.41	2.0	17.8	15.8	0.53	V	39.2
38	0.14	2.0	17.3	15.3	1.0	150	40.0
39	0.99	0.0	17.9	17.9	0.57	140	39.5
40	1.03	-3.5	17.6	21.1	0.2	V	41.6
41	0.15	-3.0	16.7	19.7	1.68	V	46.6
42	0.17	-4.5	16.2	20.7	1.4	30	47.6
43	0.20	-5.0	15.9	20. <u>9</u>	1.35	280	49.0
44	0.23	-0.5	16.6	17.1	2.25	320	44.2
45	0.93	-3.5	17.2	20.7	1.12	360	41.0
46	1.09	-10.0	16.4	26.4	0.25	V	46.0
47	1.11	-5.5	16.3	21.8	0.77	V	45.4
48	0.98	-7.0	16.3	23.3	0.82	V	47.4
49	1.03	-4.0	16.3	20.3	1.ŭ4	V	46.6
50	1.04	-5.5	16.9	22.4	0.51	180	45.0
51	1.86	-11.0	16.7	27.7	0.55	180	45.2
52	0.86	-5.0	16.9	21.9	2.08	180	43.6
53	0.44	-3.5	17.1	20.6	1.23	110	43.2
54	0.17	-0.5	17.3	17.8	3.84	120	39.8
55	0.85	1.0	17.1	16.1	3.06	180	30.4
56	0.37	0.5	18.1	17.6	1.66	150-90	33.2
57	0.43	0.5	18.2	17.7	1.31	150	32.4
58	1.67	3.0	18.9	15.9	0.81	V	27.2
59	1.86	5.5	19.1	13.6	1.51	200	25.4
60	0.47	5.5	18.4	12.9	3.42	120	33.4
61	2.18	6.0	18.6	12.6	3.15	130	26.0
62	1.51	6.0	18.6	12.6	1.22	130	29.4
63	2.17	3.5	19.9	16.4	2.03	270	31.0
64	1.52	3.0	18.8	15.8	0.86	180	40.6

Notes: *Wind direction at 100⁰ is directly towards house front V means variable direction

Table 5 (continued)

Panel Heaters - Daily Averages

1978	Horizontal	Average	Average	Average	Averaç	ge wind	Energy
Day No.	solar radiation kWh/m ² /day	outside temp. °C	inside temp. C	Δt ^o c	Speed m/s	Direction degrees *	kWh/day
65 66 67 68 69 70 71	0.68 1.19 2.46 1.31 1.82 1.21 1.52	5.6 7.5 4.6 9.0 8.5 7.4 4.9	19.5 20.3 21.0 20.4 19.7 19.4 19.1	13.9 12.8 16.4 11.4 11.2 12.0 14.2	1.71 2.33 3.13 0.5 1.35 2.08 2.28	180 180 270 V V 180 220	48.0 47.2 33.8 44.8 23.4 22.4 26.2
72 73 74 75 76 77 78	2.34 1.17 0.45 1.14 2.79 2.20 0.87	7.0 8.5 1.5 4.5 4.5 6.0 6.0	18.8 18.8 18.6 17.9 18.1 18.3 17.8	11.8 10.3 17.1 13.4 13.6 12.3 11.9	1.72 1.33 1.9 4.6 2.6 1.58 3.36	180 150-90 270 360 360 210 200	27.0 26.8 31.0 37.6 32.6 32.8 35.4
79 80 81 82 83 84 85	2.84 3.33 0.99 3.31 3.28 2.29 3.47	4.5 3.5 4.5 5.5 5.5 5.0	18.5 19.6 18.0 18.8 19.3 18.8 18.5	14.0 16.1 13.5 14.3 13.8 13.3 13.5	1.82 2.74 1.62 1.9 2.98 2.26 2.3	240 180 180 180 180 180 200	27.8 25.6 33.8 23.3 ≠ 23.3 ≠ 23.3 ≠ 23.3 ≠
86 87 88 89 90 91 91	3.36 1.73 4.39 2.25 3.19 0.27 0.52	5.0 6.0 7.5 3.5 5.0	19.0 18.3 18.8 18.9 19.0 18.2 18.3	14.0 12.3 11.8 12.4 15.5 12.7 12.3	4.65 7.0 4.13 2.11 3.9 3.8 2.12	210 180 180 180 90 90 90	23.3 / 28.2 19.6 23.9 22.8 36.8 34.4
93 94 95 96 97 98 99	0.52 3.33 1.17 3.52 1.27 3.55 2.34	4.0 3.5 4.0 4.5 2.5 7.0 3.5	18.5 19.2 18.9 19.7 18.7 19.6 19.3	14.5 15.7 14.9 15.2 16.2 12.6 15.8	2.46 1.6 1.99 1.37 1.38 1.72 3.27	90 60 V V V V	34.4 22.2 30.2 18.4 31.2 19.0 24.6
100 101 102 163 104 105 106	4.72 4.09 4.21 2.31 4.19 3.54 4.73	-0.3 0.8 1.3 1.3 3.8 4.3 7.2	18.8 18.5 18.7 18.1 18.5 19.0 20.1	19.1 17.7 17.4 16.8 14.7 14.7 12.9	3.56 2.56 2.5 3.2 3.43 1.39 1.48	270 270 270 270 330 90 180	26.4 26.2 33.4 24.4 24.2 14.4

Notes: / Average of 5 days. V means variable direction *Wind direction at 100° is directly towards house front. - 14 -

Table 5 (continued)

Panel Heaters - Daily Averages

1978 Day No.	Horizontal solar radiation	Average outside	Average	Average	Avera	Average wind	
	kWh/m ² /day	temp. C	inside temp. C	Δt ^o c	Speed m/s	Direction degrees	Energy kWh/day
107 108 109 110 111 112 113	2.47 0.15 3.41 0.66 2.41 5.41 2.94	6.2 6.5 7.0 6.0 1.5 8.0 9.0	20.3 19.0 19.4 18.8 19.3 20.6 20.5	14.1 12.5 12.4 12.8 17.8 12.6 11.5	1.51 2.16 3.23 2.93 2.25 1.81 2.65	60 120 120 120 120 120 120 V	17.8 24.8 20.4 30.4 20.8 11.2 14.0
114 115 116 117 118 119 120	2.13 3.76 2.91 1.55 0.64 0.90 2.34	6.3 5.3 3.3 2.8 3.8 4.3 5.3	19.6 19.4 18.6 17.9 17.2 17.8 18.4	13.3 14.1 15.3 15.1 13.4 13.5 13.1	2.38 2.22 4.39 4.57 3.72 3.62 3.15	V 330 60 60 60 60 60	20.8 19.6 30.0 41.0 40.6 38.2 34.6

· · ·

Notes: *Wind direction at 100⁰ is directly towards house front V means variable direction

- 15 -

1978	Horizontal solar radiation	Average outside	Average inside	Average	Avera	ge wind	Energy
Day No.	kWh/m ² /day	temp.	temp.	Δt ^o c	Speed m/s	Direction degrees	kWh/day
303 304 305 306 307 308 309	1.26 0.33 1.09 1.29 1.06 0.88 0.88	13.0 10.3 6.5 10.4 9.9 9.5 13.2	18.7 18.3 17.1 18.1 17.8 17.4 18.3	5.7 8.0 10.6 7.7 7.9 7.9 5.1	2.38 1.5 3.85 2.15 3.14 1.77 1.9	180 200 180 230 230 210 V	12.6 15.0 23.6 16.0 17.6 19.2 14.4
310 311 312 313 314 315 316	1.16 0.77 0.77 0.47 0.27 0.96 0.39	9.6 9.4 10.9 11.2 9.4 8.7 9.5	18.1 17.7 17.7 17.5 17.3 17.4 17.4	8.5 8.3 6.8 6.3 7.9 8.7 7.9	2.16 3.16 3.26 4.02 2.94 1.95 4.33	180 180 180 180 180/330 180/330 180	16.0 18.2 18.0 19.6 20.6 20.4 20.0
317 318 319 320 321 322 323	0.56 0.82 0.27 0.84 0.41 0.67 0.39	5.0 10.0 6.9 5.4 9.7 10.4 6.0	16.5 16.9 16.7 16.5 16.6 17.3 16.9	11.5 6.9 9.8 11.1 6.9 6.9 10.9	3.4 6.38 3.45 3.97 3.92 2.65 1.72	230 210 240 210 180 210 240	31.6 24.2 25.0 31.8 25.6 20.4 24.4
324 325 326 327 328 329 330	0.36 0.77 0.69 0.55 0.53 0.62 0.86	4.7 8.9 10.8 4.3 1.5 0.3 1.1	16.3 16.4 16.8 17.4 16.7 16.4 16.3	11.6 7.5 6.0 13.1 15.2 16.1 15.2	3.3 2.81 4.36 1.46 1.3 2.64 3.28	180 180 240 180 240 240 270 300	35.0 25.4 19.8 28.8 35.2 41.6 40.2
331 332 333 334 335 336 337	0.47 0.64 0.29 0.26 0.36 0.25 0.08	0.2 1.1 1.9 2.7 2.1 3.7 6.0	16.2 16.0 16.1 16.4 16.3 16.3 16.5	16.0 14.9 14.2 13.7 14.2 12.6 10.5	4.33 1.35 2.11 1.85 2.01 3.65 3.3	330 270 180 180	44.2 41.2 41.4 38.2 39.2 38.4 30.4
338 339 340 341 342 343 344			NO TEST	IN PROGRESS			

Table 6 Panel heaters and fame - Daily Averages

Notes: * Wind direction at 100° is directly towards house front V means variable direction - 16 -

<u>Table 6 (continued)</u>

Panel Heaters and Fans - Daily Averages

1978-79	Horizontal solar radiation	Average outside	Average inside	Average	Avera	ge wind	Energy
Day No.	kWh/m ² /day	temp.	temp.	Δt ^o c	Speed m/s	Direction degrees	kWh/day
345 346 347 348 349 350 351			NO TEST	IN PROGRESS	:		
352	0.68	-2.2	16.4	18.6	0.56	V	48.8
353	0.35	1.0	16.5	15.5	1.35	180	45.8
354	0.51	-2.5	16.3	18.8	0.21	V	51.0
355	0.04	3.3	16.6	13.3	1.55	75	42.2
356	0.04	3.5	16.7	13.2	0.63	V	38.6
357	0.01	3.5	16.7	13.2	1.91	90	39.6
358	0.08	4.2	16.6	12.4	2.77	90	43.0
359	0.05	3.5	16.6	13.1	4.3	90	44.6
360	0.04	3.7	16.5	12.8	2.72	90	44.2
361	0.09	3.2	16.7	13.5	3.16	60	41.0
362	0.34	1.0	16.4	15.4	4.57	60	50.0
363	0.27	-1.7	16.3	18.0	3.47	60	53.8
364	0.40	-3.4	16.1	19.5	3.02	90	56.6
365	0.38	-6.2	16.1	22.3	2.02	0	60.6
1	0.28	-3.7	16.1	19.8	2.0	255	58.2
-2	0.68	-3.0	16.3	19.3	1.19	V	50.6
3	0.28	1.9	16.5	14.6	2.26	195	44.6
4	0.39	-0.3	16.4	16.7	1.46	180/240	47.2
5	0.46	-3.8	16.2	20.0	1.31	180	57.0
6	0.25	4.3	16.5	12.2	1.98	180	42.2
7	0.48	4.3	16.7	12.4	2.8	270	37.4
8 .9 10 .11 12 13 14	0.56 0.54 0.08 0.06 0.44 0.65 0.45	1.4 0.0 1.2 -0.7 -4.1 -8.0	16.6 16.5 16.4 16.7 16.7 16.2 15.8	15.2 16.5 16.4 15.5 17.4 20.3 23.8	1.88 1.88 2.22 3.02 2.59 1.65 0.69	240 240 360 330 V V V 180	42.3 46.6 46.6 41.6 47.8 48.0 63.2
15	0.39	2.7	16.4	13.7	1.88	180	41.6
16	0.47	2.8	16.8	14.0	2.99	270	42.2
17	0.63	1.7	17.6	15.9	1.55	V	48.6
18	0.33	2.1	17.2	15.1	1.89	60	44.8
19	0.09	2.5	18.0	15.5	4.79	90	58.8
20	0.14	3.1	18.0	14.9	4.95	90	59.0
21	0.09	- 3.3	18.8	15.5	1.95	90	54.4

Notes: *Wind direction at 100° is directly towards house front V means variable direction - 17 -

Table 6 (continued)

Panel Heaters and Fans - Daily Averages

1979	Horizontal solar radiation	Average outside	Average	Average	Avera	ge wind	F
Day No.	kWh/m ² /day	temp. c		Δt °c	Speed m/s	Direction degrees *	Energy kWh/
22 23 24 25 26 27 28	0.27 0.62 0.36 0.54 0.65 0.40 0.70	1.7 -0.5 1.3 -1.4 -1.1 -3.9 -2.5	18.4 16.5 17.4 16.4 16.3 16.2 15.9	16.7 17.0 16.1 17.8 17.4 20.1 18.4	0.66 0.67 2.06 1.11 1.26 1.7 2.06		39.6 45.2 48.4 46.2 47.0 45.6 54.4
29 30 31 32 33 34 35	0.30 1.05 0.92 1.18 0.76 1.18 1.27	1.8 0.7 3.5 -0.8 1.0 1.0 -1.3	16.3 16.6 16.7 16.5 16.2 16.5 16.5	14.5 15.9 13.2 17.3 15.2 15.5 17.8	1.47 1.04 2.0 1.9 2.97 3.39 1.25	V V 270 255 270 270	43.0 38.4 36.4 39.4 46.4 39.8 41.2
36 37 38 39 40 41 42	1.30 0.84 0.94 0.77 0.85 0.50 0.42	-0.8 -4.4 -3.0 0.3 -0.9 1.5 1.9	16.5 16.2 16.3 16.4 16.5 16.5	17.3 20.6 19.2 16.0 17.3 15.0 14.6	1.11 0.71 2.15 1.89 1.27 1.19 1.97	V 180 330 330 180/360 60 60	41.8 49.8 50.2 45.6 45.0 42.2 41.8
43 44 45 46 47 48 49	0.25 0.31 0.91 1.16 1.14 0.90 1.33	1.6 1.6 -3.0 -3.3 -0.9 -5.7 1.4	16.7 16.3 16.2 16.2 16.3 16.3 16.4	15.1 14.7 19.2 19.5 17.2 22.0 15.0	1.77 4.31 4.26 2.85 2.13 2.51 2.04	60 60 45 90 90 150	38.0 46.0 54.2 55.2 51.0 45.6 45.6
50 51 52 53 54 55 56	1.13 0.45 0.74 1.94 1.47 2.10 1.65	2.2 2.6 2.1 3.4 4.8 1.5 4.3	16.8 16.6 16.5 17.1 17.2 17.2 17.2	14.6 14.0 14.4 13.7 12.4 15.7 12.9	1.4 2.05 2.01 0.97 2.96 0.53 1.7	180 180 180 V 315 V V V	37.6 40.2 40.6 30.0 28.4 29.8 29.0
57 58 59 60 61 62 63	0.90 1.40 2.27 2.11 1.84 2.85 2.50	5.9 5.2 1.7 2.5 10.8 6.9 4.3	17.2 17.8 18.5 17.3 17.7 18.3 17.2	11.3 12.6 16.8 14.8 6.9 11.4 12.9	1.79 2.6 1.69 3.6 4.74 4.65 5.67	V 180 200 180 210 210 240	29.0 58.2 12.4 26.4 20.4 16.2 28.8

Notes: #Wind direction at 100[°] is directly towards house front V means variable direction - 18 -

Table 6 (continued)

Panel Heaters and Fans - Daily Averages

1979	Horizontal	Average	Average	Average	Avera	ge wind	Enorgy
Day No.	solar radiation kWh/m ² /day	outside temp. C	inside temp. C	∆t °c	Speed m/s	Direction* degrees	Energy kWh/day
64	2.10	6.8	17.2	10.4	5.54	195	27.4
65	1.30	5.5	17.0	11.5	5.31	180	29.2
66	1.93	2.4	17.4	15.0	2.41	270	29.8
67	0.76	5.0	16.8	11.8	4.86	180	36.8
68	2.45	2.6	17.2	14.6	5.28	240	30.2
69	2.62	2.9	17.2	14.3	3.37	210	32.0
70	2.65	4.1	17.3	13.2	4.07	240	25.8
71 72 73 74 75 76 77	2.62 1.91 2.23 2.18 1.71 1.62 3.38	5.6 4.0 3.1 1.8 2.0 0.3 1.6	17.4 17.5 17.2 17.1 17.0 16.8 17.2	11.8 13.5 14.1 15.3 15.0 16.5 15.6	6.05 2.94 4.7 3.15 4.18 4.89 2.69	240 V 330 30 0 45	25.2 29.6 33.4 35.6 40.8 33.6 32.8
78	4.00	-2.4	17.4	19.8	2.37	180	40.0
79	1.04	1.3	16.7	15.4	2.62	210	39.8
80	0.97	0.7	16.7	16.0	4.64	330	29.8
81	4.07	1.2	17.5	16.3	5.73	270	24.0
82	4.18	1.2	18.1	16.9	3.86	270	38.2
83	1.50	0.5	17.0	16.5	2.82	150	35.0
84	1.05	3.5	16.9	13.4	2.82	V	36.2
85	1.36	1.7	16.9	15.2	2.95	270	28.2
86	2.99	2.3	17.4	15.1	2.95	270	34.4
87	1.84	4.4	17.2	12.8	5.53	360	52.5
88	0.34	3.8 [,]	18.8	15.0	6.25	330	32.6
89	2.78	4.7	19.9	15.2	2.28	240	17.4
90	3.67	6.1	18.4	12.3	2.79	270	28.4
91	1.98	4.0	18.1	14.1	2.14	V	21.8
92	2.94	3.2	19.0	15.8	1.59	V	31.0
93	1.95	3.1	18.0	14.9	2.11	0	32.2
94	1.69	3.0	17.6	14.6	1.58	V	30.4
95	2.97	3.9	18.0	14.1	0.92	90	40.4
96	0.93	3.6	18.1	14.5	1.88	60	51.0
97	0.76	4.1	19.2	15.1	3.56	60	44.0
98	2.51	4.4	19.3	14.9	4.4	60	51.4
99 100 101 102 103 104 105	0.97 1.54 1.89 3.24 2.24 4.99 3.65	3.0. 5.1 7.4 7.6 8.0 7.9 - 8.0	19.5 20.1 22.4 20.7 19.7 21.0 21.1	16.5 15.0 13.1 11.7 13.1 13.1	2.21 1.0 1.25 2.3 3.43 2.28 2.26	60 V 90 120 180 V 300	25.6 26.6 62.6 31.0 22.2 27.8 23.0

Notes: #Wind direction at 100° is directly towards house front V means variable direction

<u>Table 6</u>	(continued)	Panel
----------------	-------------	-------

nel Heaters and Fans - Daily Averages Par

1979	Horizontal	Average outside	Average	Average	Averag	ge wind	· Enorgy
Day No.	solar radiation kWh/m ² /day	temp. C	inside temp. C	Δt °c	Speed m/s	Direction * degrees	Energy kWh/day
106 107 108 109 110 111 112	2.93 1.65 2.56 3.58 3.89 4.48 2.34	5.6 5.7 7.9 9.8 7.9 7.6 7.6	19.3 20.3 20.1 20.2 21.1 22.3 20.2	13.7 14.6 12.2 10.4 13.2 14.7 12.5	2.43 1.09 0.56 1.9 1.76 3.00 1.87	330 120 180 270 260 260	29.4 29.0 18.2 20.0 20.0 13.2 17.0
113 114 115 116 117 118 119	1.61 3.90 2.65 1.64 3.40 3.86 2.91	5.6 6.2 6.3 6.3 7.8 9.3 8.5	18.9 19.4 19.9 21.5 23.3 23.9 24.4	13.3 13.2 13.6 15.2 15.5 14.6 15.9	1.25 4.11 4.33 4.21 2.37 3.46 4.36	V 310 330 230 200 270	19.8 20.4 30.8 41.2 36.4 30.8 30.2
120 121 122 123 124 125 126	4.27 4.63 4.53 5.46 5.02 4.63 3.14	2.6 1.7 3.0 2.1 3.1 4.2 4.2	20.4 17.9 18.0 18.1 18.0 18.5 17.9	17.8 16.2 15.0 16.0 14.9 14.3 13.7	5.21 3.42 3.68 2.85 2.86 2.76 1.06	270 300 300 270 315 V	25.6 22.6 21.0 18.0 21.2 18.2 21.2
1 27 1 28 1 29 1 30 1 31 1 32 1 33	2.65 5.05 4.33 5.05 4.59 3.48 6.35	4.7 5.5 6.1. 4.7 11.0 12.9 17.9	17.6 19.2 19.0 18.9 19.3 19.8 22.9	12.9 13.7 12.9 14.2 8.3 6.9 5.0	0.75 1.5 2.02 2.66 1.55 1.79 3.67	120 V 0 or 360 150 V 240 210	25.8 13.2 11.4 11.4 9.2 5.8 1.2
134 135 136 137 138 139 140	2.48 4.85 0.86 2.33 3.86 5.54 5.26	15.8 12.2 8.7 8.1 6.1 5.9 8.7	22.6 21.9 19.3 18.1 18.3 19.0 18.6	6.8 9.7 10.6 10.0 12.2 13.1 9.9	3.38 1.66 0.97 2.02 2.43 2.22 3.15	195 V 45 V 330 180 150	0.4 0.6 8.6 15.2 14.8 10.2 11.8
141 142 143 144 145 146 147	3.07 5.81 2.24 4.94 3.58 6.32 2.76	9.9 9.7 8.7 10.1 8.1 9.4 9.0	18.7 20.1 18.8 19.6 19.7 20.5 19.4	8.8 10.4 10.1 9.5 11.6 11.1 10.4	1.7 2.65 1.46 1.76 0.92 1.28 1.85	180 180 90 180 V 120 300	12.4 4.2 11.6 5.8 5.8 4.8 7.6

Notes: #Wind direction at 100⁰ is directly towards house front V means variable direction - 20 -

Date W/C	Temp. diff ∆t °C	Power P kWh/day	Solar through windows S kWh/day	Vent heat loss V kWh/day	P + S kWh/day	P - V + S kWh/day	P ∆t kWh/day ℃	P - V <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u></u>	S Δt kWh/day C
<u>1977</u>									
31.10	12.3	30.26	2.85	.5.33	33.12	27.79	2.45	2.02	0.23
7.11	9.1	30.03	2.88	N/A	32.91	N/A	3.28	N/A	0.32
14.11	12.7	41.8	1.48	N/A	43.28	N/A	3.3	N/A	0.12
21,11	13.4	43.18	1.92	N/A	45.1	N/A	3.21	N/A	0.14
28.11	15.2	46.54	1.38	N/A	47.92	N/A -	3.06	N/A	0.09
5.12	12.7	44.57	0.66	9.27	45.23	35.96	3.51	2.78	0.05
12.12	11.7	33.11	0.91	3.7	34.02	30.32	2.84	2.52	0.08
19.12	12.9	35.97	1.19	6.85	37.16	30.31	2.79	2.26	0.09
26.12	14.5.	40.86	1.21	12.18	42.07	29.39	2.81	1.98	0.08
1978									
. 2.1	15.8	41.0	1.54	10.3	42.54	32.24	2.6.	1.95	0.1
9.1	16.6	45.17	1.66	8.51*	46.83	38.32	2.71	2.2	0.1
16.1	17.4	44.35	1.42	9.98	45.77	35.79	2.56	1.98	0.08

Table 7 Fan Heaters Summary - Weekly Averages

*Average over 4 days only

•

Date W/C	Temp. Diff. ∆t	Power P	Solar through windows S	Vent. heat loss V	P + S	P - V + S	P At	$\frac{P - V}{\Delta t}$	S At
1978	°c	kWh/day	s kWh/day		kWh/day	kWh/day	kWh/day C	kWh/day C	kWh/day C
23.1	18.4	63.54	1.45	13.59	64.99	51.4	3.46	2.72	0.08
30.1	15.2	46.43	1.15	8.52	47.58	39.06	3.06	2.5	0.08
6.2	18.8	43.37	1.57	10.61	44.94	34.33	2.31	1.74	0.08
13.2	21.7	45.09	3.16	13.22	48.25	35.03	2.08	1,47	0.15
20.2	19.9	38.26	2.52	13.3	40.78	27.48	1.92	1.25	0.13
27.2	14.3	30.43	5.78	7.52	36.21	28.69	2.13	1.61	0.41
6.3	13.1	35.11	4.89	6.49	40.0	33.51	2.68	2.18	0.37
13.3	12.9	31.89	5.48	6.09	37.37	31.28	2.47	2.0	0.42
20.3	14 . T	. 25.78	10.22	6.03	36.0	29.97	1.83	1.41	0.73
27.3	13.0	26.98	8.1	8.5	35.08	26.58	2.08	1.42	0.62
3.4	15.0	25.71	7.55	9.39	33.26	23.87	1.72	1.09	0.5
10.4	16.2	25.06	14.02	12.73	39.08	26.35	1.54	0.76	0.86
17.4	13.4	19.91	8.95	9.14	28.86	19.72	1.49	0.81	0.67
24.4	12.1	32.14	5.53	10.88	37.67	26.79	2.66	1.76	0.46
6.10	6.9	9.97	5.85	2.24	15.82	13.58	1.44	1.11	0.84
13.10	9.5	19.66	4.33	5.66	23.99	18.33	2.08	1.48	0.46
20.10	9.1	23.6	2,58	-	26.18	- ;	2.61	-	0.29

Table 8 Parel Heaters Summary - Weekly Averages

- 22 -

.

Date W/C	Temp. diff. ∆t	Power P	Solar through windows S	Vent. heat loss V	P + S	P -V + S	$\frac{P}{\Delta t}$	$\frac{P - V}{\Delta t}$	<u>s</u> At
	°c	kWh/day	s kWh/day	v kWh/day	kWh/day	kWh/day	kWh/day C	kWh/day C	kWh∕day ℃
1978									
30.10	7.6	16.91	3.52	2.69	20.43	17.74	2.23	1.87	0.46
6.11	7.8	18.97	2.51	2.41	21.48	19.07	2.44	2.13	0.32
13.11	9.1	26.14	2.2	4.69	28.34	23.65	2.86	2.35	0.24
20.11	12.0	32.29	2.49	7.14	34.78	27.64	2.67	2.08	0.21
27.11	13.8	39.0	1.14	7.52	40.14	32.62	2.84	2.24	0.08
18.12	15.0	44.14	0.92	7.79	45.06	37.27	2.94	2.42	0.06
25.12	16.4	49.38	0.69	13.67	50.51	36.84	3.04	2.21	0.04
1979									
1.1	16.4	47.46	1.47	9.31	48.93	39.62	2.89	2.32	0.09
8.1	17.9	48.06	1.91	11.33	49.97	38.64	2.69	2.05	0.11
15.1	14.9	49.91	0.88	11.64	50.79	39.15	3.34	2.56	0.06
22.1	17.6	46.63	1.78	10.53	48.41	37.88	2.65	2.05	0.1
29.1	15.6	40.69	3.71	10.54	44.4	33.81	2.6	1.93	0.24
5.2	17.4	45.2	2.9	9.81	48.1	38.29	2.61	2.04	0.17
12.2	16.8	47.94	2.99	13.12	50.93	37.81	2.85	2.07	0,18
19.2	14.0	33.66	5.02	6.5	38.68	32.18	2.41	1.94	0.36
26.2	12.4	27.34	8.2	6.78	35.54	28.76	2.21	1.66	0.66
5.3	13.0	30.03	7.28	8.38	37.31	28.93	2.32	1.67	0.56
12.3	14.6	33.0	8.02	9.92	41.02	31.1	2.26	1.58	0.55
19.3	16.3	34.71	9.23	13.3	43.94	30.64	2.13	1.31	0.57
26.3	14.2	30.77	7.08	10.76	37.85	27.09	2.16	1.41	0.5
2.4	14.8	40.06	6.56	9.3	46.62	37.32	2.7	2.07	0.44
9.4	13.9	31.26	8.97	8.13	40.23	32.1	2.25	1.66	0.65
16.4	13.1	20.97	10.14	7.27	31.11	23.84	1.61	1.05	0.78
23.4	14.5	29.94	9.18	11.72	39.12	27.4	2.07	1.26	0.63
30.4	15.4	21.11	15.29	13.03	36.4	23.37	1.37	0.52	0.99
7.5	10.1	11.14	15.06	4.86	26.2	21.34	1.11	0.62	1.5*
14.5	11.0.	8.8	11.65	4.58	20.45	15.87	0.8	0.38	1.06
21.5	10.3	7.46	13.3	4.11	20.75	16.64	0.73	0.33	1.29*

Table 9 Summary - Panel Heaters and Fans - Weekly Averages

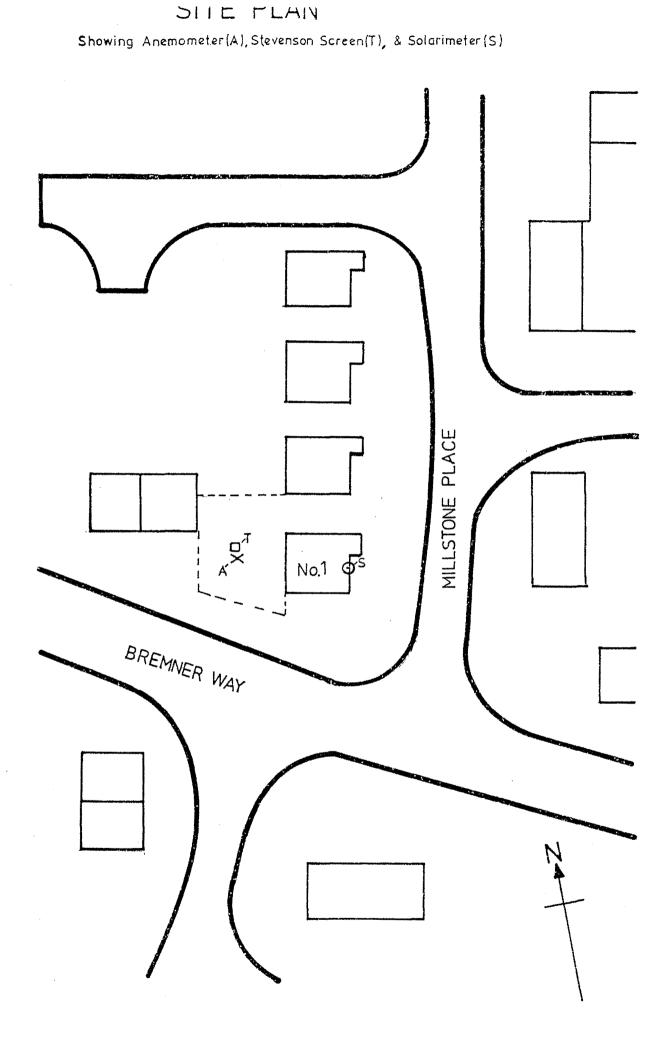

*Not shown in figure 15 but included in linear regression

FIGURE 1. "KEMNAY" TEST HOUSE

l

l

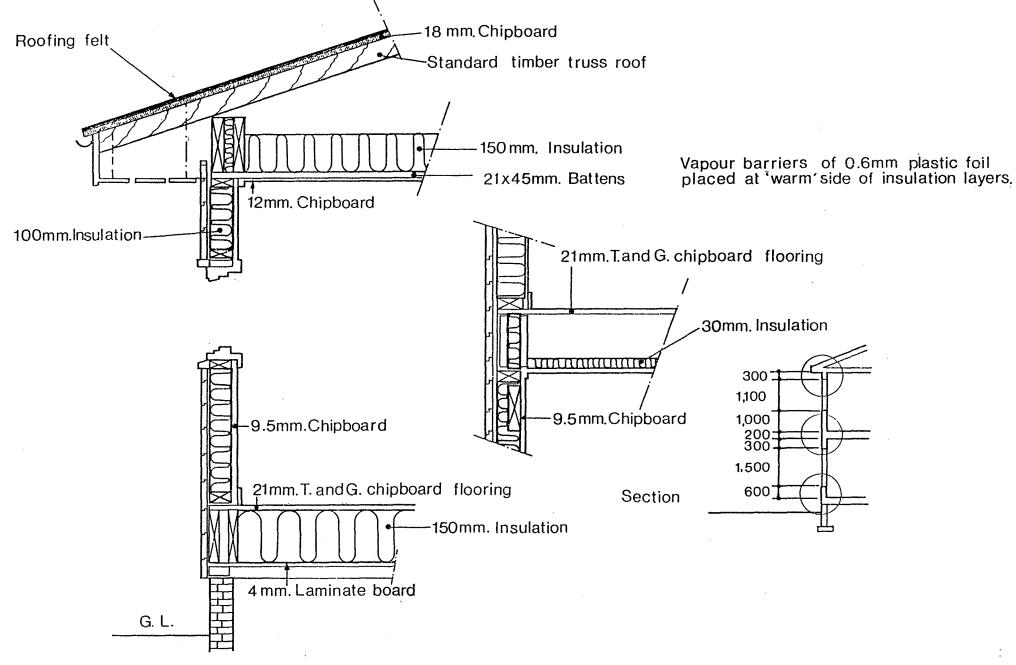
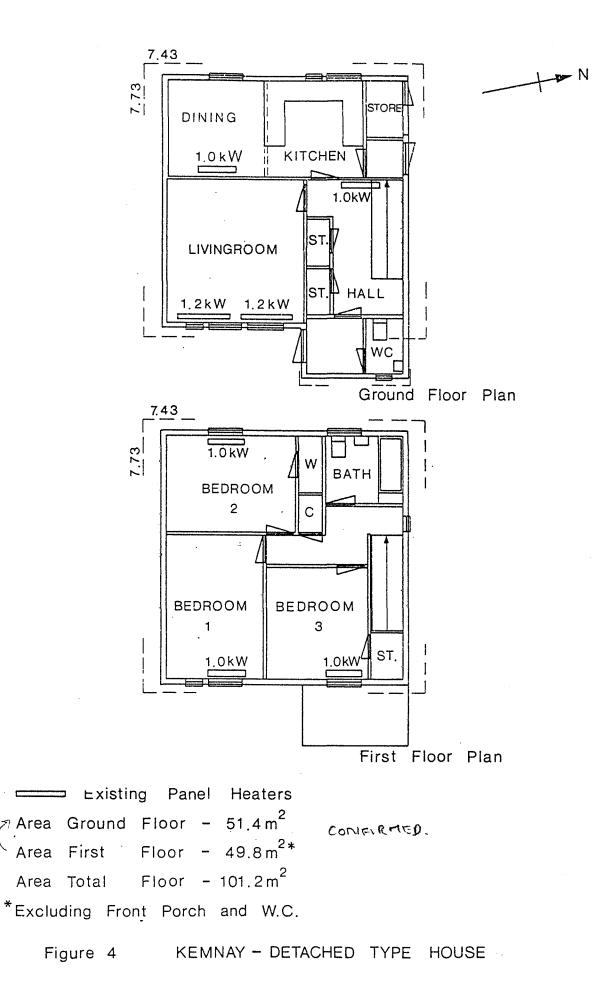



Figure 3. CONSTRUCTION DETAILS

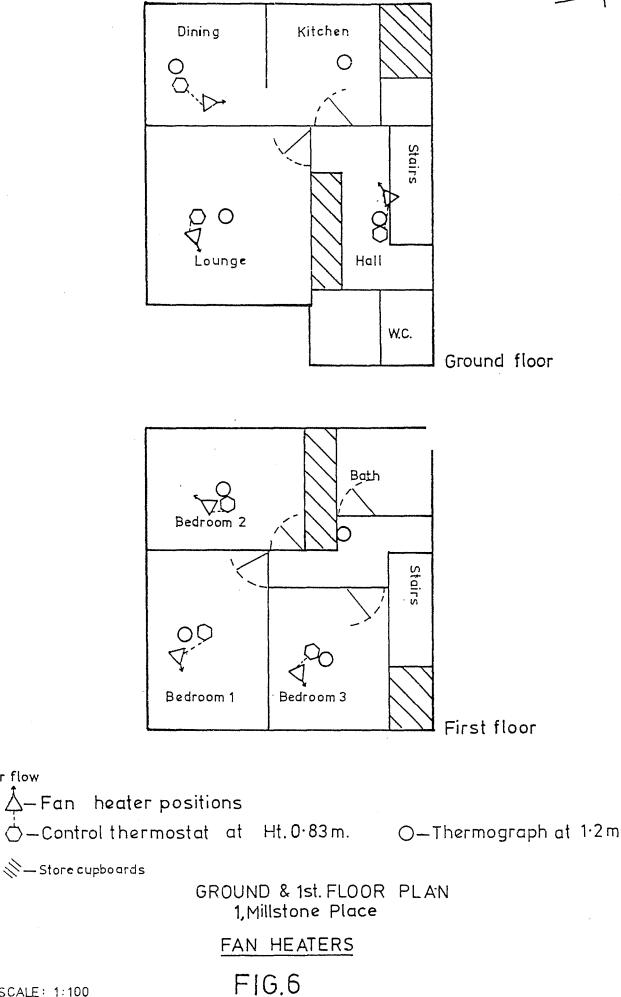



Figure 5. KENMAY - DETACHED TYPE HOUSE

ECRC/M1365

SCALE: 1:100

air flow

 $m/s = 8A(\Delta p)^{0.66}$ l/s = 71.8m/s

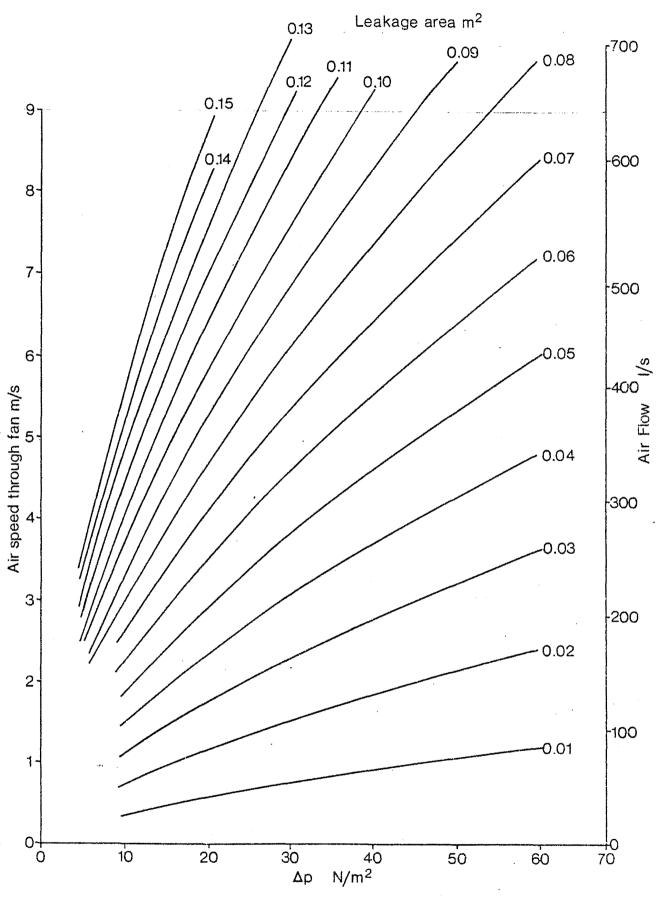
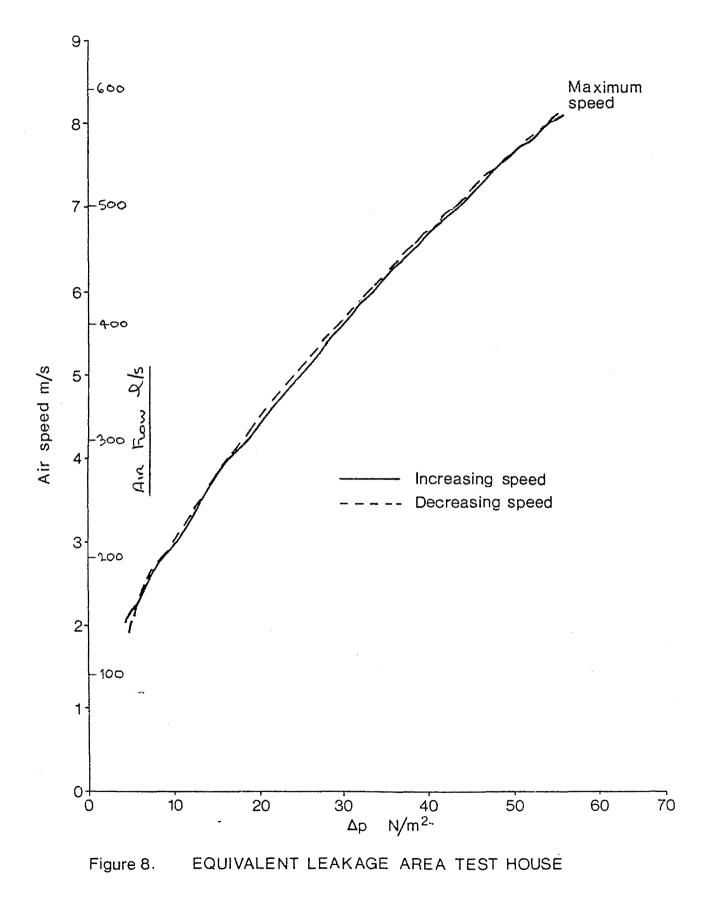
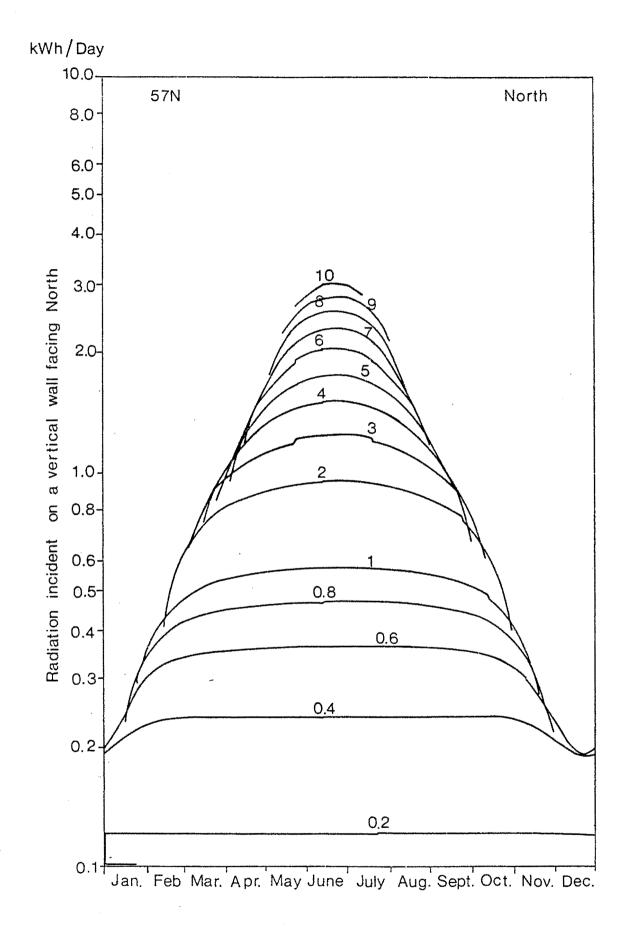




Figure 7. CALIBRATION CURVES - PRESSURISATION MEASUREMENTS.

ECRC/M1365

Figure 9. BASNETT'S CURVES.

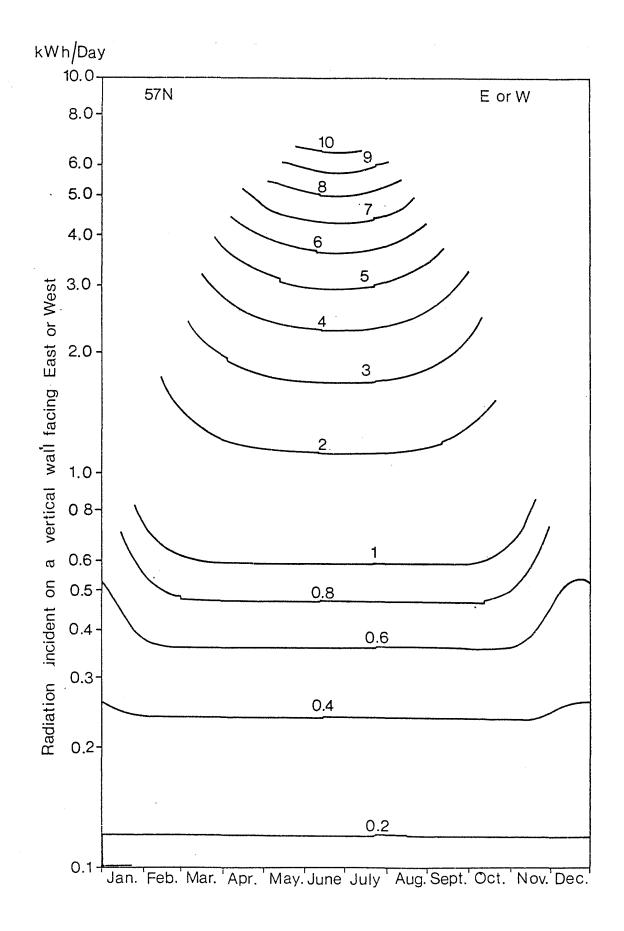
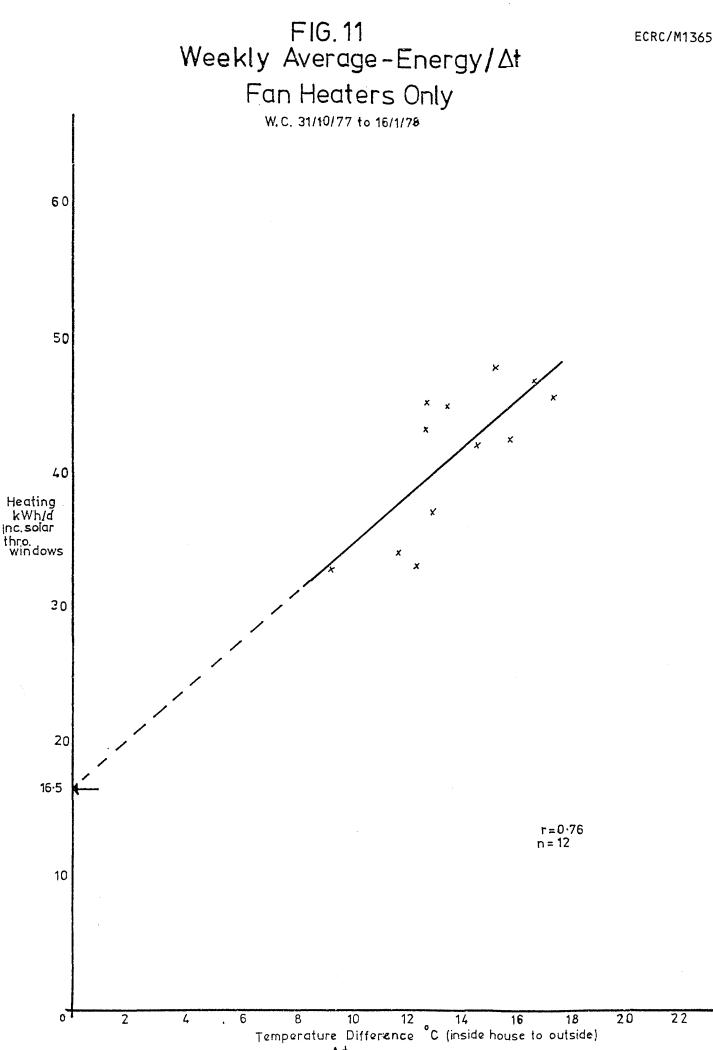
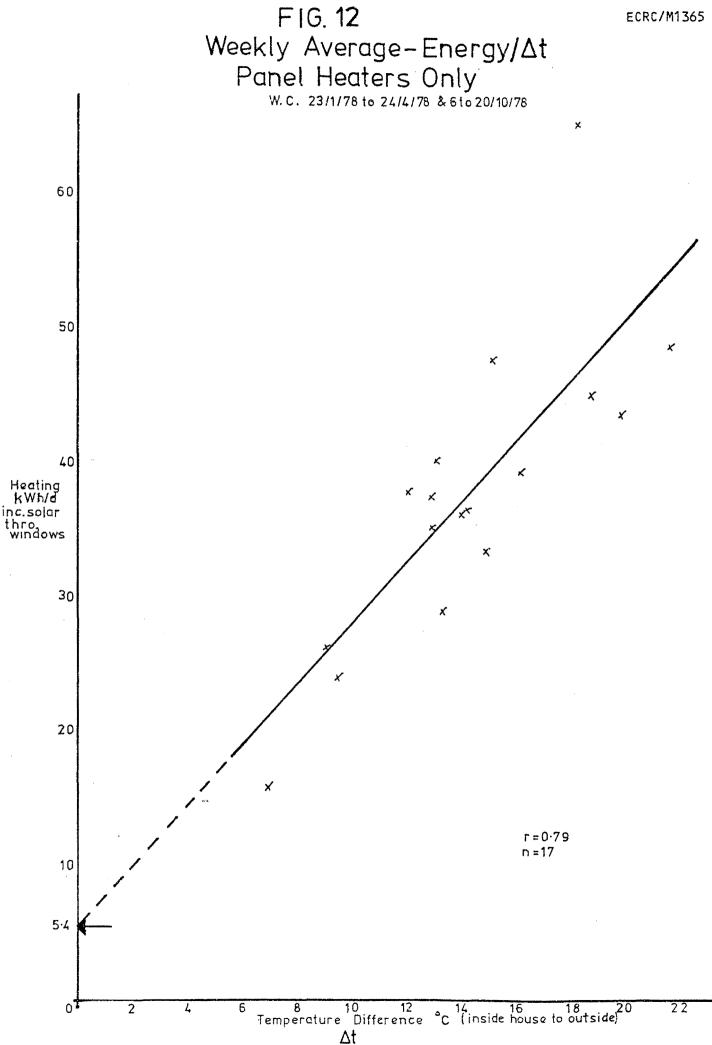
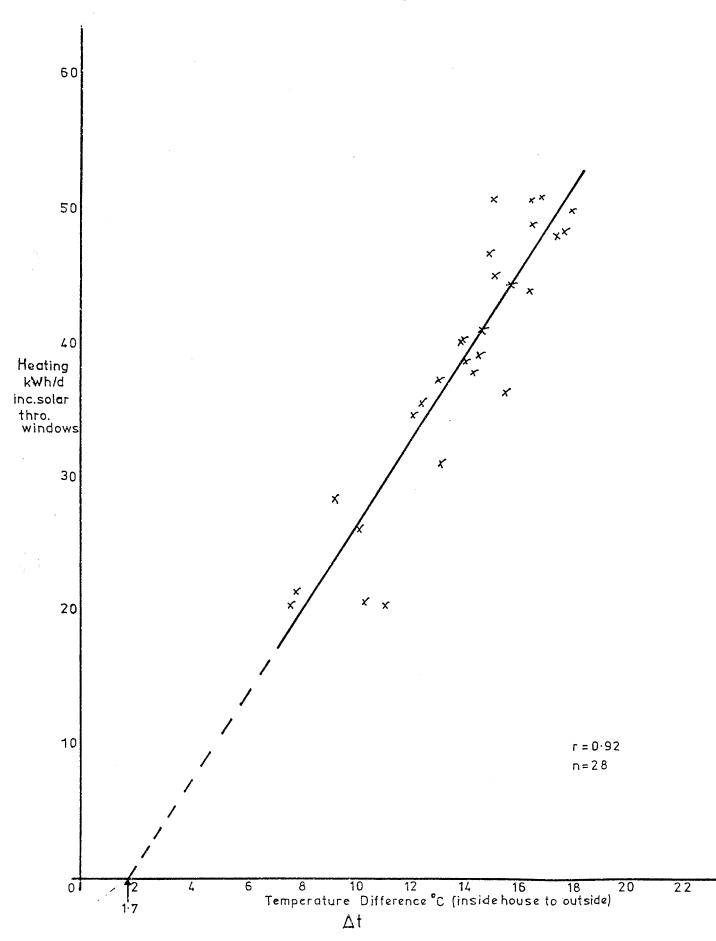
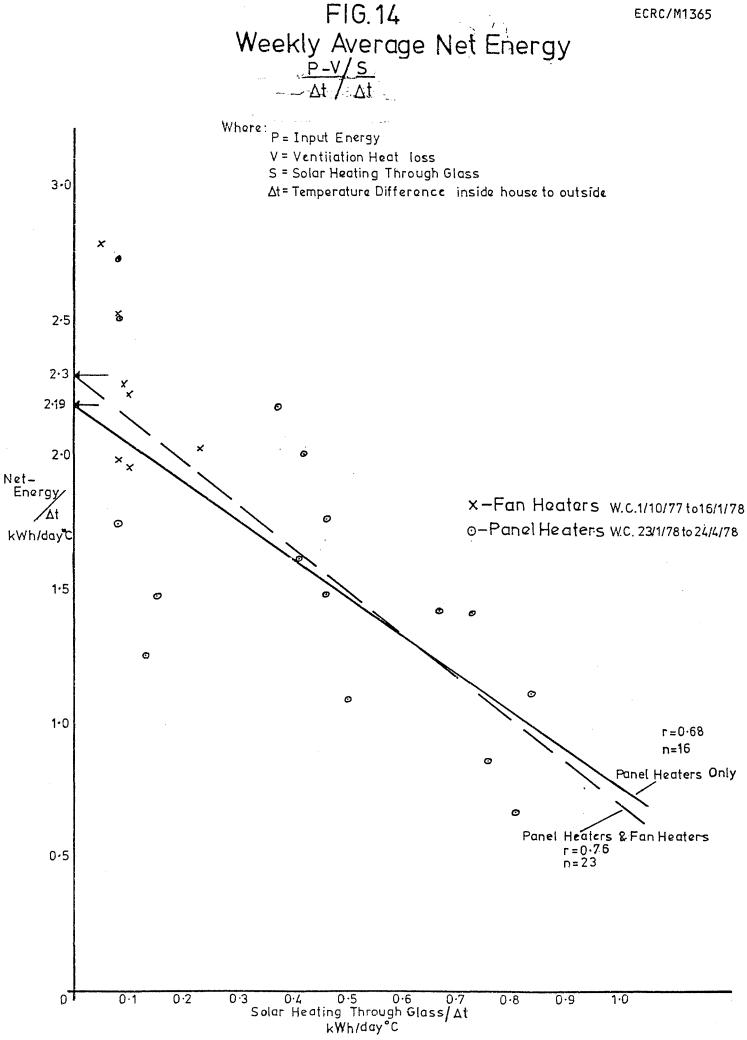
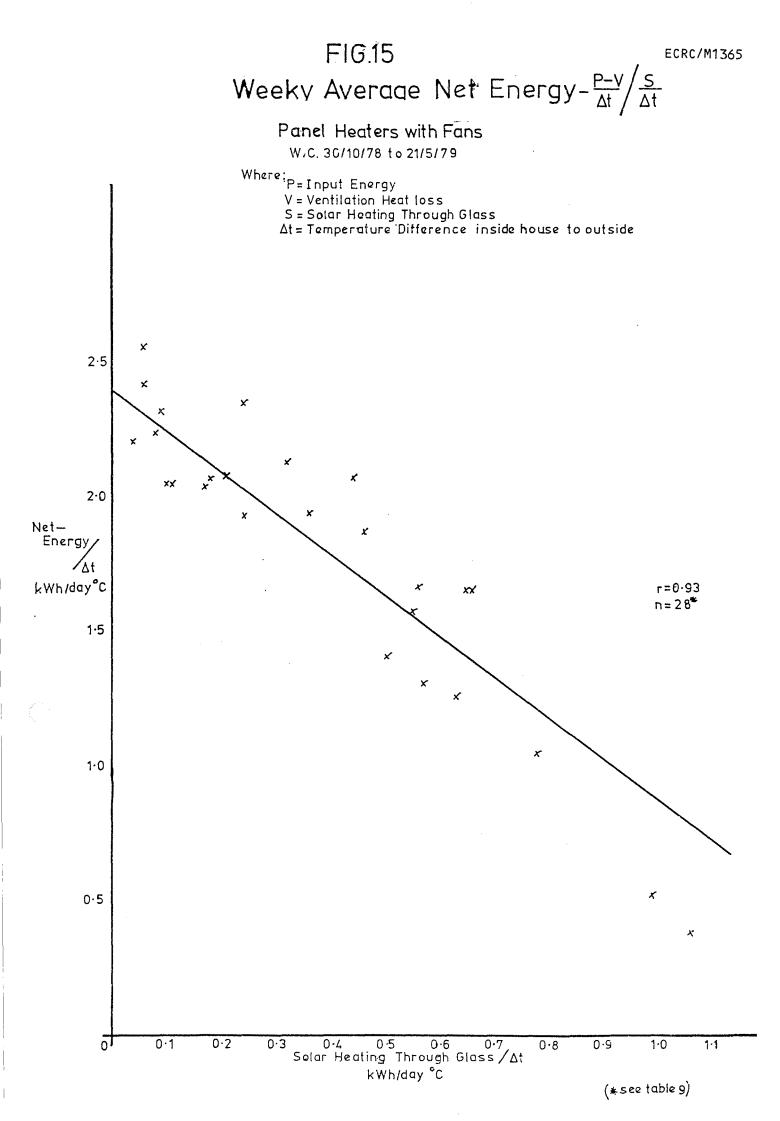




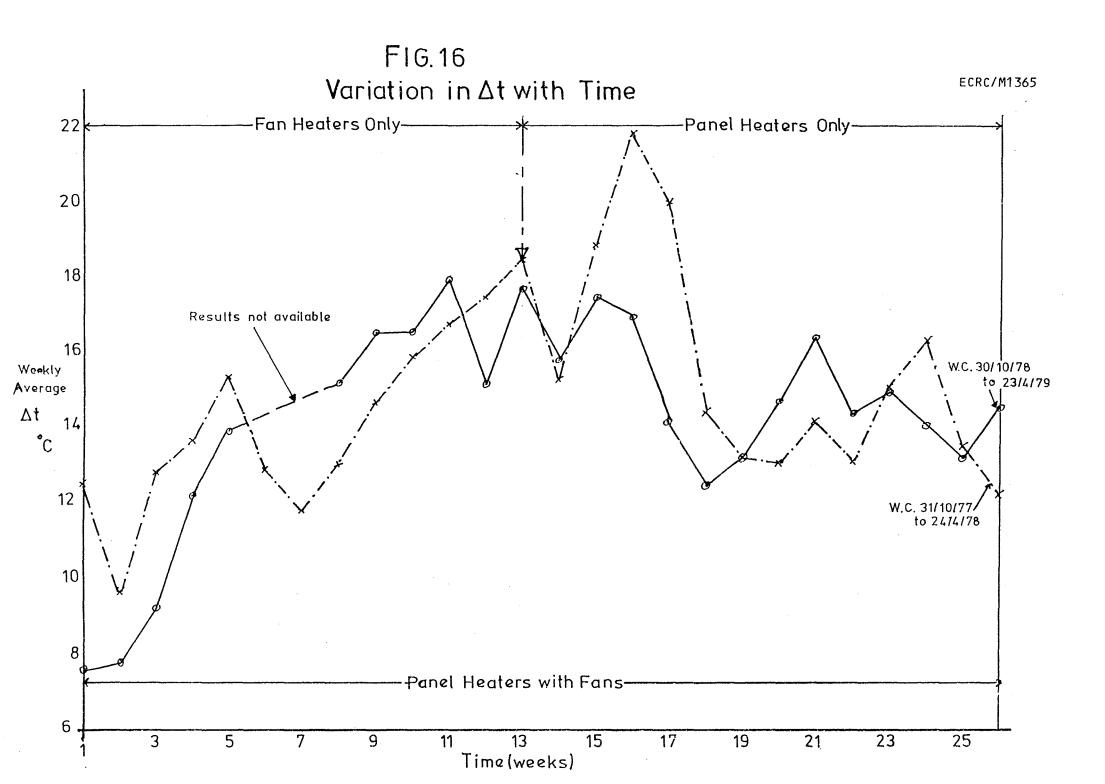
Figure 10. BASNETT'S CURVES.

ECRC/M1365








FIG.13 Weekly Average-Energy/∆t Panel Heaters & Fans

W.C. 30/10/78 to 21/5/79

APPENDIX I

(1)

Theoretical Ventilation and Fabric Heat Loss Ventilation Heat Loss

From 1970 IHVE Guide Book A, Section 4, Paragraph 14. Ventilation loss $qv = 0.33 \text{ N} \text{ W/m}^3 \text{ °C}$ where N is rate of air change/hour From (1) Ventilation heat loss expressed in kWh/day

$$\frac{0.33N \times \Delta T \times 24 \times Vm}{1000}$$

where Vm is house volume in m^3

simplified
$$\frac{N \Delta t Vm}{126} kWh/d$$

House volume (excluding front porch and w.c.) = 263 m^3 \therefore Ventilation heat loss is 2.09 kWh/°C/day for 1 ac/h

Fabric Heat Losa

To determine U values $R = \frac{L}{k} \text{ where } R = \text{thermal resistance } m^2 \text{ °C/W}$ L = thickness of slab m k = thermal conductivity W/m°Cand thermal transmittance U = $\frac{1}{R}$ W/m²°C

The wall ceiling and floors are not simple elements consisting of parallel slabs of material, but are bridged at intervals by a dissimilar material. It is therefore necessary to calculate a composite value of thermal resistance (R). The composite value is obtained by calculating a value of thermal resistance (R') for one portion of the structure and another value (R") for the other portion of the structure. The values obtained are then combined in proportion to their relative areas. The method is fully described in IHVE Guide (1970), Book A, Page A3-8 under the heading 'Heat Bridges'.

(i)

Allowing for timber occupying 12.5% of area then R' = 3.84 and R'' = 0.26Composite value of R = R' + R'' $\therefore R = 3.84 + 0.26 = 4.1 \text{ m}^2 \text{°C/W}$ $\therefore U = \frac{1}{4.1} = 0.24 \text{ W/m}^2 \text{°C}$

Floor

	L	k	R'	R"
Chipboard	0.021	0.15	0.14	0.14
Insulation	0.15	0.039	3.85	-
Board	0.004	0.13	0.03	0.03
Timbers	0.2	0.13	-	1.55
Air space			0.18	0.18
			4.20	1.89

Allowing for timbers occupying 12.5% of area then R' = 3.68 R'' = 0.24Composite R = 3.92 m²°C/W From IHVE A3.18 Basic thermal resistance $R_B = 1.27$ m²°C/W $\therefore U = \frac{1}{R + R_B}$

$$U = 0.19 \ W/m^2 \circ C$$

Windows

From 1970 IHVE Guide Book A Section 3 Table 22 $U = 2.5 W/m^{2} °C$ Fabric Heat Loss Q = u.A. Δ t Watts where A = area of respective surfaces in m^2 U Α 2.5 11.0 = 27.6 ∆t Windows 0.32 129.0 = 41.3 ∆t Walls = 9.8 ∆t 0.19 51.4 *Floor = $12.8 \Delta t$ 0.24 52.6 Roof Total heat loss = $91.5 \Delta t$ watts Theoretical Fabric Heat Loss = 2.2 kWh/°C day

*excluding front porch and w.c.

ECRC/M1365

APPENDIX II

Estimation of Solar Heating

The daily aggregate of insolation radiant on a horizontal surface is converted to radiation incident on a vertical surface using Basnett's curves. The daily value is located, taking time of year into consideration, on the curves and the vertical energy in kWh/day estimated. The solar heat gain through the fabric in question, in this case the glazing, is then calculated making allowances for transmission coefficients and areas. This procedure is repeated for each orientation of the vertical surfaces being examined. The solar heat gains, through each surface, are then added to provide an estimate of total solar heating through the glazing.

APPENDIX III

Statistical Analysis of Results : J.F. Waddington Panel Heaters

Estimate of variance about regression line $= (1 - v^{2})s_{0}^{2}$ = 0.163167 with 13 d.f.Estimate of variance about regression line for panel heaters and fans $= (1 - v^{2})sy^{2}$ = 0.044627 with 27 d.f.Variance ratio F = $\frac{0.163167}{0.044627}$ = 3.66 with 13 and 27 d.f. F_{5%} = 2.105 F_{1%} = 2.88 \therefore Variance ratio of 3.66 is highly significant

Conclusion

The variance about its regression line for the panel heaters is significantly greater than for the panel heaters and fans. It is very unlikely that the panel heater data was drawn from the same population.

Fan Heaters

Variance about regression line = $(1 - v^2)s_y^2 = 0.05598$ with 7 d.f. \therefore Variance ratio = $\frac{0.05598}{0.044627}$ = 1.25 with 7 and 27 d.f. $F_{5\%} = 2.37$ $F_{1\%} = 3.39$ \therefore Variance ratio not significant

This makes further tests worthwhile

(a) significance of regression coefficient

(b) significance of mean deviation from line.

(a) Significance of Regression Coefficient

This is tested using the student statistic

$$t = (b - \beta) \frac{s_x}{s_y} \sqrt{\frac{N-2}{1-v^2}}$$

= (0.279874 - 0.133017) x $\frac{0.663248}{0.300734} \sqrt{\frac{6}{0.619}}$
= 1.008 with 6 d.f.

 $t_{5\%} = 1.945$ $t_{1,\infty} = 3.143$ $\therefore t \text{ not significant.}$

(b) Mean Deviation From Line

Mean deviation of fan heater points from the line of panel heaters and fans is - 0.0843196

The standard deviation is 0.255874.

Again the test uses student t statistic

$$t = \frac{x\sqrt{v}}{s}$$

= $\frac{-0.0843196}{0.255874}$ $\sqrt{7}$
= 0.87 with 7 d.f.
 $t_{5\%} = 1.895$
 $t_{1\%} = 2.998$

.Value of t not significant

Conclusion

There is no significant difference between the fan heater data and the panel heater and fans either in speed, slope or mean deviation from the line.