ENERGY CONSUMPTION
 OF RESIDENTIAL BUILDINGS

The Computer program ENCORE
 Part l, User's Manual

by
Bjørn Tore Larsen

CONTENTS

0. INTRODUCTION 0.01
1. GENERAL DESCRIPTION OF INPUT DATA 1.01
1.1. Building location 1.01
1.2. The building 1.05
1.3. The heating system 1.13
1.31 Electric resistance heaters 1.13
1.32 Oil fired hot air system 1.13
1.4 The use of the building 1.16
2. DETAILED DESCRIPTION OF INPUT DATA 2.01
3. OUTPUT 3.01
3.1 Standard output 3.01
3.2 Error messages and warnings 3.02
4. EXAMPLES 4.01
4.1 House with hot air system 4.01
4.2 " " electric heating 4.26
5. REFERENCES 5.01
6. APPENDIXES 6.01
6.1 Appendix A. Program restrictions 6.01
6.2 Appendix B. Z-transfer function coeffi- cients of some typical Norwe- gian wall/floor/roof 6.02 constructions
6.3 Appendix C. Description of weather tape 6.11
6.4 Appendix D. Description of output file 6.12
6.5 Appendix E. How to run the program on Univac 1100 series computers 6.13

0. INTRODUCTION

This manual explains how to prepare input data for the ENCORE program. The program is based on the "weighting factor method" as described in Chapter 22 of the ASHRAE Handbook of Fundamentals. 1 A detailed description of how the program works is given in the Documentation.

This manual may logically be divided into five main parts:

The first part explains, in general terms, what kind of data that are required, why they are required and where to look for them (most of the data can be found in the ASHRAE Handbook of Fundamentals ${ }^{1}$).

The second part is a detailed description of input data, which explains card by card, column by column, how to prepare the input card deck.

The third part is a description of the output from the program.

The fourth part is two examples showing the input card decks and the results.

The fifth part is the Appendixes. Appendix A gives the program restrictions, e.g. maximum number of walls, rooms, etc.. Appendix B gives Z-transfer function coefficients of some typical Norwegian wall/floor/ceiling constructions. Appendix C gives a detailed description of how the input weather tape should should look like in order to be accepted by the program. Appendix D gives a detailed description of the data that are written on file for later plotting or other use.

1. GENERAL DESCRIPTION OF INPUT DATA

1.1 Building Location

For solar radiation calculations the program needs information on building latitude, longitude and, to get solar radiation values in Standard Time, the Time Zone (only buildings in the northern hemisphere can be analysed). Longitudes and Time Zones west of Greenwich are positive (e.g. locations in U.S.). Figures 1 and 2 show the Time Zones in U.S. and Europe.

TIME ZONE	TZN
Atlantic	4
Eastern	5
Central	6
Mountain	7
Pacific	8

Figure 1
Time Zones in the United States

Figure 2
Time Zones in Europe

The sky clearness numbers for summer and winter are also needed for solar radation calculations. Figure 3 shows clearness numbers for U.S. Data for Europe is not available, but Figure 3 shows the values the numbers possibly may take.

Figure 3
Clearness numbers of non-industrial atmosphere in United States

Figure 4
Horizon at the building site

The horizon at the building site is necessary to calculate shading from mountains, hills and other buildings. The program requires the height of the horizon (in degrees) for each 20 th degree of the circle starting with 20 degrees east of north and ending with 360 degrees east of north (i.e. north). The height of the horizon between the given values as approximated by linear interpolation as shown in Figure 4.

In most cases the terrain at the nearest meteoroligical site, i.e. the site that has supplied the weather data for the computer run, is different from the terrain at the building site. Therefore it is necessary to modify the wind speed readings from the meteorological site before they are used to calculate the pressure distribution on the building. Both information on the terrain at the building and the meteorological site is needed. The terrain is classified as "flat" (code l), "suburban" (code 2) or "center of city" (code 3). This is the same classification as used by Davenport ${ }^{4}$. The wind velocity profile, i.e. wind speed as a function of height above ground, is assumed to follow the power law:

$$
\frac{\mathrm{v}_{\mathrm{z}}}{\mathrm{v}_{\mathrm{g}}}=\left(\frac{\mathrm{Z}}{\mathrm{z}_{\mathrm{g}}}\right) \frac{1}{\alpha}
$$

where:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{z}}= & \text { wind speed at the height } \mathrm{z} \text { above ground } \\
\mathrm{V}_{\mathrm{g}}= & \text { wind speed above the boundary } \\
& \text { layer (the gradient wind speed) } \\
\mathrm{z}_{\mathrm{g}}= & \text { thickness of boundary layer } \\
\alpha= & \text { exponent }
\end{aligned}
$$

Z_{g} and α depend on the type of terrain as shown in the following table:

Perrain	Z_{g}	α
1	275 m	7
2	$400 \mathrm{\prime} \mathrm{\prime}$	3.5
3	520 n	2.5

When the type of terrain at the meteorological and the building sites are given, the measured wind speed is modified by using the above equation twice. First, using it for the meteorological site, the gradient speed V_{g} is found (wind speed measurements are taken $Z=10 \mathrm{~m}$ above ground). Second, using the calculated V_{g} with Z_{g} and α for the building site, the wind speed at roof level is found (see Figure 5 which is copied from ref. 4).

Figure 5

1.2 The building

The wind pressure distribution on a building depends on the building shape. In the program there are stored wind pressure coefficients for eight different building shapes, see Figure 6 and Table l. Specify the building shape that best approximates the shape of the actual building. Figure 6 also shows the meaning of the expressions "short wall" and "long wall" (wind pressure coefficients for long and short walls usually are different). The dynamic pressure of the wind at the level of the roof edge (i.e. H in Figure 6) is multiplied by the

Shape no.	1	2	3	4	5	6	7	8
H/B	1	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	3/2	3/2	3/2
L/B	1.	2	1	2	4	1	2	4

Figure 6
Definition of building shape
pressure coefficients to aet the pressure distribution on the building.

The rooms of the building are identified by giving each room a "room number" (see Figure 7). Rooms in this respect means actual rooms or zones where all rooms are having equal temperature (to subdivide such mones is an unnecessary waste of computer time).

As shown in Figure 7 some external, fictitious rooms or "outside pressure point" (numbers 8 to l0) are needed. The outside pressure points are necessary to define external walls and, by means of outside pressure point codes to classify the external walls as "long walls", "short walls" or "roofs" (see Figure 6). It should be noted that outside pressure points are not considered to be real rooms. Therefore outside pressure point numbers must be higher than the number of rooms in the house : E.g. the house in Figure 7 have 7 rooms, outside pressure points are numbered 8 to 10 (actually outside pressure points are recognized by the computer by having "room numbers" higher than

Figure 7
Using room numbers and outside pressure points to
describe a building
the number of rooms in the house). As shown in Figure 7 only three outside pressure points are needed; one to represent the "room on the outside" of short walls, one for the "room outside" the long walls and one for the "room outside" the roof panels. In order to get a printout that is more easily understood some users prefer to have pressure points outside all the facades and roof panels. Also in some cases it is necessary to introduce more than three pressure points in order to avoid more than 20 walls or roof panels connected to a pressure point (each "room" may consist of maximum 15 walls, floors, etc.).

Each room is classified as being of "light" (approx. 145 $\mathrm{kg} / \mathrm{m}^{2}$), "medium" (approx. $345 \mathrm{~kg} / \mathrm{m}^{2}$) or "heavy" (approx. $635 \mathrm{~kg} / \mathrm{m}^{2}$) construction (the weights per square meter are including furniture). Choose the code that best approximates the actual room.

In order to include the stack effect in infiltration calculations the room level is needed. This is the distance from the pressure reference level (usually the ground levelis chosen) to a point halfway between floor and ceiling.

The walls, floors, etc. are identified by the rooms, or for external walls, the rooms and the outside pressure points, they separate. Each wall is further described by it's azimuth angle and tilt angle. Wall azimuth angle is the clockwise angle between north and the wall normal as shown in Figure 8. For tilted walls the azimuth anqle, is the andle between north and the horizontal projection of the wall normal. Definition of wall tilt angle is shown in Figure 9.

Some times it is useful to see what influence the building orientation makes on the energy consumption. By changing just one input parameter it is possible to "rotate" the building without having to change the wall azimuth angles (they are changed by the computer). A positive rotation (degrees) means that the building is rotated in the clockwise direction (e.g. from north to east).

BUILDING SURFACE

 UNDER CONSIDERATIONNORMAL TO THE SURFACE

Figure 8
Definition of wall azimuth angle

The construction of each wall is defined by the "wall type number". To each wall type number the user assigns a set of Z-transfer function coefficients, U-value and solar absorbtion coefficient of the outdoor surface of the wall. Transfer function coefficients may be obtained from chapter 22 of the ASHRAE Handbook of Fundamentals ${ }^{1}$ (remember to multiply the b-coefficients and the Σc_{n} by 5.6778 to convert from Btu/ft ${ }^{2} h^{\circ} \mathrm{F}$ to $\mathrm{W} / \mathrm{m}^{20} \mathrm{C}$). Transfer function coefficients may also be obtained by using DBR Computer Program No. 33^{9}. Transfer function coefficients for some tyrical Norwegian wall constructions are given in Appendix B.

The air flow through cracks in external walls can be expressed by the equation:

$$
Q=\left(\frac{\Delta p}{R}\right)^{n}
$$

where:

$$
\begin{aligned}
& Q=\text { flow rate }\left(\mathrm{m}^{3} / \mathrm{s}\right) \\
& \Delta \mathrm{D}=\text { pressure difference across the wall }\left(\mathrm{kg} / \mathrm{m}^{2}\right) \\
& R=\text { flow resistance" } \\
& \mathrm{n}=\text { flow exponent (between } 0,5 \text { and } 1.0)
\end{aligned}
$$

Figure 9
Definition of wall tilt angle

If the flow is laminar $n=1.0$, if turbulent $n=0.5$. Cracks around windows and doors usually have $n=0,66$.

Chapter 25 of the ASHRAE Handbook of Fundamentals gives values for air flow through cracks at different pressure differences. These values are used to find values of R and n to use in the equation above:

> Find the total crack length. Multiply the crack length by the air flow value at a given pressure difference (remember to convert to metric units). Repeat this procedure for all the crack types of the wall and add the results. The air flow through the wall at a given pressure difference is now found (Q in the above equation). For "standard" cracks $n=0,66$, then the only unknown in the above equation is R.

If $n \neq 0.66$ it is necessary to find the air flow through the wall at two pressure differences to get two equations with two unknowns (R and n).

For each external wall R and n are needed by the program. Internal walls are assumed to make no resistance to air flow (doors are open), thus they are not taken into account in the calculations. External walls that are "completely" air tight must be given $\mathrm{R}=\mathrm{n}=0.0$. This way they will be skipped in the calculations in the same way as the internal walls.

If there are windows in an external wall the windows are described by the "window type number", the glass area, the sash, vertical fins and horizontal overhangs, see Figure 10 (internal walls cannot have windows). To each window type number the user assigns U-value with and without shutters, shading coefficient and a code number to tell if the shading device (e.g. venetian blind) is on the inside or outside. The two U-values makes it possible to find the savings one can achieve by covering the windows with insulating shutters during the night. The period during the night when the shutters are closed, as well as the period during the year when shutters are used during the night, is specified in the input.

Figure 10
Description of window sash, vertical fins and horizontal. overhang

If there are doors in a wall the doors are described by the "door type number" and the door area. To each door type number the user assigns U-value and solar absorption coefficient of the outdoor surface (the latter is not necessary for doors in internal walls).

1.3 The heating system.

The model includes two types of heating systems.

1.31 Electric_resistance_heaters.

For each room the capacity of the roomheater and the thermostat throttling range (see Figure ll) is given as input.

1.32 Oil_fired_hot_air_system.

Due to the fact that the model is not able to calculate airflow between rooms, houses with hot air systems must always be modelled as having one room only : This simplification is justified by the fact that most hot air systems have only one thermostat and there is no way of controlling the air flow to each room.

The thermostat throttling range (Figure ll) is given as input. The capacity of the heating system is calculated from the burner nozzle capacity and the furnace efficiency (therefore the input field for "the capacity of the room heater" may be left blank).

In order to calculate furnace efficiency as a function of "furnace load factor" (i.e. burner on-time to total time) detailed data for burner, furnace and chimney are needed.

Burner data: Nozzle capacity (U.S. Gallons per hour) Air supply ratio, i.e. the amount of air supplied for combustion to the theoretically necessary supply.

Furnace data:
The draft setting at the barometric damper. Flow ratio, i.e. weight flow of air through furnace at off-cycle to weight flow of flue gases at on-cycle.

t-room temperature $\mathrm{t}_{\mathbf{s}}$ - thermostat set point temperature
Δ^{-}proportional band
Q- heat output

Figure 11
Heat output as a function of room temperature

Number of burner cycles at $50 \frac{\circ}{\partial}$ furnace load (one burner cycle consist of one on-cycle and one off-cycle).

Steady state on-cycle flue gas temperature ($\theta_{\text {on }}$ in Figure 12).

Steady state off-cycle "flue gas" temperature ($\theta_{\text {off }}$ in Figure 12).

Flue gas temperature when air circulation fan shuts off $\left(_{\text {fan }}\right.$ in Figure 12).

Time constant for increase in flue gas temperature during on-cycle (time constant is the time it takes to reach 63% of the steady state value, $\tau_{\text {in }}$ in Figure 12).

Time constant for decrease in flue gas temperature during off-cycle when the air circulation fan is running.

Time constant for decrease in flue gas temperature during off-cycle when the air circulation fan is not running.

Figure 12
Flue temperature as a function of time during one burner cycle

Chimney and smoke pipe data:
Smoke pipe diameter
Length of smoke pipe
No. of smoke pipe bends
Inside side length of chimney
Length of chimney (length of flow path)
Distance from pressure reference level to top of chimney (h_{3} in Figure 13).

Distance from pressure reference level to center of furnace (h_{2} in Figure 13).

Figure 13
Hot air furnace with smoke pipe and chimney

1.4 The use of the building

The life style of the habitants, or how they are "using" the building, is of major importance for the energy consumption.

The use of the building is described by schedules. A
shedule is 24 numbers giving the value of, for instance the heat gain from lights, for each hour of the day. The program uses the following schedules:

Hot water consumption schedules
Occupancy schedules
Constant light schedules
Variable " "
Equipment schedules
Thermostat setpoint schedules.

The difference between constant light schedules and variable light schedules needs explanation: The constant light schedules give heat gains from lights, and these gains are purely a function of the time of the day, whereas the gains in the variable light schedule will only be "switched on" if the room is occupied and the solar heat gain is less than $4.7 \mathrm{~W} / \mathrm{m}^{2}$ floor area (this value is set in the main program and may easily be changed).

The shedules are input as follows:
First specify a max. quantity. Then for max. five intervals in the day specify a percent of the max. quantity. The intervals must not overlap, but may be disjoint. Hours of the day that are not included by the specified intervals are given the defautt value "Zero percent of max " (see Figure 14). Note that, in order to save core storage of mini computers, the "percent of max." values are given as integers (real numbers need two words of core storage, whereas integers need only one word).

The thermostat setpoint schedules are exceptions of what is said above. For max. five intervals of the day the setpoints in ${ }^{\circ} \mathrm{C}$ are specified directly (not "percent of max"). Hours of the day not included by the intervals are given the default value $0^{\circ} \mathrm{C}$ (setpoints are given as integers).

To each room is assigned two sets of occupancy, constant light, variable light and equipment schedules; one for working days and one for holidays (saturdays and sundays included). In the printout schedules for working days are marked with a W and schedules for holidays with a H.

The hot water consumption is the total for the house, one schedule for each day of the week. The same schedule may be used for several days, i.e. it is necessary to specify minimum one maximum seven schedules.

Figure 14
Schedule for internal heat gain
2. DETAILED DESCRIPTION OF INPUT DATA

The following abbreviations are used in the input description:

Card No. - the numbers listed are the minimum number of cards.
AN - alpha-numeric data, i.e. text. Except for the first two cards, all alpha-numeric text, "headings", occupy 10 columns of the card.

FL - floating point number, i.e. number with a decimal point (e.g. 2.4). All floating point numbers occupy 10 columns of the card.

I - Integer number, i.e. number without a decimal point (e.g. 2). All integer numbers occupy 5 columns of the card. The number must be right justified in the field of 5 columns :

It should be noted that, except for the first two cards, the only purpose of the alpha-numeric text or "headings" is to make a listing of the input card deck more "comfortable" to read. During the reading of the input card deck the text fields are skipped. Therefore, the user are free to choose his own headings, or leave the text fields blank (not recommended).

$\begin{gathered} \text { Card } \\ \text { no. } \end{gathered}$	Column. no.	Format	Comments
1	$1-80$	AN	Job title, line 1
2	$1-80$	AN	Job title, line 2
3	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: STATION NO Synoptic station no. ${ }^{\mathrm{x}}$
4	$\begin{array}{r} 1-10 \\ 11-20 \end{array}$	AN FL	Heading: ROTATION Building rotation (degres) relative to azimuth angles given on "wall data cards" (card no. 40). Clockwise rotation positive (e.g. from north to east), counter clockwise rotation negative
5	$\left\lvert\, \begin{gathered} 1-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \end{gathered}\right.$	I I I I I	Year of weather data Start of heating season, day of year End of heating season, day of year Detailed output, day of year 1 or 0 : 1 - results are written on file (unit 7) for later plotting ${ }^{\mathrm{XX}}$ 0 - nothing will be written on file
6	$\begin{aligned} & 1-10 \\ & 11-20 \\ & 21-25 \end{aligned}$	FL FL I	Building location: Latitude (degrees) Longitude (degrees, west positive) Time Zone (west positive)

x) See Appendix C
$\left.{ }^{x}\right)_{\text {See Appendix }} D$

Cand m.	Colunn. no.	Format	Corments
$\begin{gathered} 7 \\ \text { (lst card) } \end{gathered}$	$\begin{gathered} 1-10 \\ 11-20 \\ 21-30 \\ \vdots \\ \vdots \\ 71-80 \end{gathered}$	AN FL FL - - - FL	Heading: HORIZON Height of horizon (degres) 20 deg. clockwise from north
$\begin{gathered} 8 \\ \text { (2nd card) } \end{gathered}$	$\begin{gathered} 1-10 \\ 11-20 \\ \vdots \\ \vdots \\ 71-80 \end{gathered}$	FL " FL	
$\begin{gathered} 9 \\ (3 \mathrm{rd} \text { card) } \end{gathered}$	$\begin{array}{r} 1-10 \\ 11-20 \\ 21-30 \end{array}$	FL FL FL	$\begin{array}{lllllll} " & " & " & " & 320 " & " & " \\ " & " & " & " & 340 " & " & " \\ " & " & " & " & 360 " & " & " \end{array}$
10	$\begin{gathered} 1-5 \\ .6-10 \\ 11-20 \\ 21-30 \end{gathered}$	I I FL FL	Terrain at building site (1,2 or 3): 1-flat, 2 - suburban, 3 - center of city Terrain at meteorological site (1,2 or 3): Same codes as for building site Sky clearness number, summer " " " , winter
11	$\begin{aligned} & 1-5 \\ & 6-15 \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{FL} \end{aligned}$	Building shape (1 to 8) Distance from ground to roof edge (m)

$\begin{gathered} \text { Card } \\ \mathrm{no} . \\ \hline \end{gathered}$	Column. no.	Format	Corments
12	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{gathered} \text { AN } \\ \text { I } \end{gathered}$	Heading: SYST TYPE Heating system type (1 or 2): 1 - oil fired hot air system 2 - electric resistance heaters
13	$\begin{gathered} 1-10 \\ 11-20 \\ 21-25 \\ 26-30 \\ \vdots \\ \vdots \\ 51-55 \end{gathered}$	FL FL I I I	Hot water heater element capacity (Watts) Hot water tank capacity (liters) Hot water schedule for monday (1 to 7) " " " " tuesday (")
14	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{gathered} \text { AN } \\ \text { I } \end{gathered}$	Heading: MO. \cap.ROMS Number of rooms (max. 20)
$\begin{gathered} 15 \\ \left({ }^{\mathrm{x}}\right. \text { lst card)} \end{gathered}$	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: ROOM NO. Room no.
16 (2nd card)	$\begin{aligned} & 1-5 \\ & 6-15 \\ & 16-25 \\ & 26-35 \\ & 36-45 \\ & 46-55 \end{aligned}$	I FL FL FL FL FL	Room weight code (1,2 or 3): 1-light, 2-medium, 3-heavy Floor area (m^{2}) Length of room extericr perimeter (m) Room level (m). Ground level is zero by definition (+ upwards). Capacity of room heater (Watts) Thermostat throttling range $\left({ }^{\circ} \mathrm{C}\right)$

X 4 cards per room. The set of cards consisting of cards nos. 15 to 18 is repeated as many times as there are rooms in the house.

Card no.	Column. no.	Format	Corments
17 (3rd card)	$\begin{gathered} 1-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \end{gathered}$		Working day: Occupancy schedule no. Constant light schedule no. Variable " " " Equipment schedule no. Thermostat setpoint schedule no.
$\begin{gathered} 18 \\ \text { (4th card) } \end{gathered}$	$\begin{gathered} 1-5 \\ \cdot \\ \vdots \\ \vdots \\ 21-25 \end{gathered}$		Holiday: See "Working day" card corments
19	$\begin{gathered} 1-10 \\ 11-15 \end{gathered}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: OUT. PRESS Number of outside pressure points (max.20)
x_{20}	$\begin{aligned} & 1-5 \\ & 6-10 \end{aligned}$	I	Outside pressure point no. Type of wall (1, 2 or 3): 1-long wall, 2-short wall, 3-roof
21	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	AN I	Heading: ©CCUPANCY Number of occupancy schedules (max. 15)
$\begin{gathered} 22 \\ \mathrm{xx}(\text { lst card }) \end{gathered}$	1-10	FL	Max. sensible heat released by occupants (Watts)
x One card per pressure point			
${ }^{x X}$ Two cards per occupancy schedule. The set of cards consisting of cards nos. 22 and 23 is repeated as many times as there are occupancy schedules. The first set of cards describes occupancy schedule no. 1 , the second set no. 2 ,etc.			

$\begin{gathered} \text { Card } \\ \text { no. } \\ \hline \end{gathered}$	Column. no.	Format	Corments
23 (2nd card)	$\begin{gathered} 1-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \\ 26-30 \\ 31-35 \\ 36-40 \\ 41-45 \\ 46-50 \\ 51-55 \\ 56-60 \\ 61-65 \\ 66-70 \\ 71-75 \end{gathered}$	I I	
24	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: CON.LIGHT Number of constant light schedules (max. 20)
$\begin{gathered} 25 \\ \text { (1st card) } \end{gathered}$	$1-10$	FL	Max. constant light output (Watts)

Card no.	Column. no.	Fonnat	Comments
$\begin{gathered} 26 \\ \text { (2nd card) } \end{gathered}$	1-75	I	Similar to card no. 23
27	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: VAR. LIGHT Number of variable light schedules (max.20)
$\begin{gathered} 28 \\ \text { (lst card) } \end{gathered}$	1-10	FL	Max. variable light output (Watts)
$\begin{gathered} 29 \\ (2 \mathrm{nd} \text { card) } \end{gathered}$	1-75	I	Similar to card no. 23
30	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{gathered} \text { AN } \\ \text { I } \end{gathered}$	Heading: EQUIPMENT Number of equipment schedules (max.8)
$\begin{aligned} & 31 \\ & \text { (lst card) } \end{aligned}$	1-10	FL	Max. equipment heat output (Watts)
32 (2nd card)	1-75	I	Similar to card no. 23
33	$\begin{array}{r} i-10 \\ 11-15 \end{array}$	$\begin{array}{r} \text { AN } \\ \text { I } \end{array}$	Heading: THERMOSTAT Number of thermostat setpoint schedules (max.8)
	$\begin{gathered} 1-5 \\ 6-10 \\ 11-15 \end{gathered}$		Start (hr) End (hr) Thermostat setpoint $\left({ }^{\circ} \mathrm{C}\right)$

$\begin{gathered} \text { Card } \\ 110 . \\ \hline \end{gathered}$	Column. no.	Fornat	Corments
${ }^{\times} 34$	$\begin{aligned} & 16-20 \\ & 21-25 \\ & 26-30 \\ & 31-35 \\ & 36-40 \\ & 41-45 \\ & 46-50 \\ & 51-55 \\ & 56-60 \\ & 61-65 \\ & 66-70 \\ & 71-75 \end{aligned}$		
35	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: HOT NATEP Number of hot water consumption schedules (max. 7)
$\begin{gathered} 36 \\ \text { (lst card) } \end{gathered}$	$1-10$	FL	Max. hot water consumption (liters/s)
$\begin{gathered} 37 \\ \text { (2nd card) } \end{gathered}$	$1-75$	I	Similar to card no. 23

$\begin{gathered} \text { Card } \\ \text { no. } \end{gathered}$	Colunn. no.	Format	Corments
38	$\begin{aligned} & 1-5 \\ & 6-10 \\ & 11-15 \\ & 16-20 \end{aligned}$	I I	Window shutter schedule: Day of the year (spring) when we stop using shutters during the night. Day of the year (fall) when we start using shutters during the night. Hour of the day (evening) when shutters close. Hour of the day (morning) when shutters open.
39	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	AN	Heading: No. .O. WALLS Number of walls (max. 50)
$\begin{gathered} 40 \\ \left({ }^{\mathrm{x}}\right. \text { lst card) } \end{gathered}$	$\begin{gathered} 1-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \\ 26-35 \\ 36-45 \end{gathered}$	I I I I FL FL	Room nos. that this wall/floor/roof separates (outside pressure points are regarded as rooms in this respect). wall type (see cards 44, 45, 46 and 47) Number of windows in the wall " " doors " " Wall azimuth is.e.the clockwise anqle (degrees) between north and the horizontal projection of the wall normal. Tilt angle (degrees), i.e. the angle between a vertical line and the wall normal. Thus vertical walls have 90 deg. tilt angle. Horizontal walls facing upwards have 0 deg. tilt angle. Horizontal walls facing downwards have 180 deg. tilt angle. Note! External walls that should not receive any solar radiation at all, must be qiven neqative tilt angle. (e.g. a floor facing a crawl space)

[^0]| $\begin{array}{r} \text { Card } \\ \text { no. } \\ \hline \end{array}$ | Column. no. | Format | Corments |
| :---: | :---: | :---: | :---: |
| | $\begin{aligned} & 46-55 \\ & 56-65 \\ & 66-75 \end{aligned}$ | FL
 FL
 FL | Brutto area $\left(\mathrm{m}^{2}\right)$, i.e. wall area with areas of windows and doors included. $\left.\begin{array}{l} \text { Resistance } \\ \text { Exponent } \end{array}\right\} \begin{aligned} & \text { Constants of infiltra- } \\ & \text { tion flow equation } \end{aligned}$
 Note: External walls that should be considered air tight, and internal walls, mus be assigned resistance and exponent values equal to 0.0 |
| 41 | $\begin{aligned} & 1-5 \\ & 6-15 \end{aligned}$ | I
 FL
 FL | Type of window (see card no. 49)
 Window glass area (m^{2})
 Note: For this card and the next, see Fig. 10 |
| (${ }^{\text {2 }}$ nd card) | $\begin{aligned} & 26-35 \\ & 36-45 \\ & 46-50 \end{aligned}$ | FL
 FL
 I | Height of window sash (m)
 Depth " " " (m)
 1 or 0
 1 - window has fins and/or overhang
 0 - no fins and/or overhang |

[^1]| Card
 n). | $\begin{gathered} \text { Column. } \\ \text { no. } \end{gathered}$ | Format | Corments |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 42 \\ (x: 3 r d \operatorname{card}) \end{gathered}$ | $\begin{array}{r} 1-10 \\ 11-20 \\ 21-30 \\ 31-40 \\ 41-50 \\ 51-60 \end{array}$ | FL
 FL
 FL
 FL
 FL
 FL | Width of right vertical fin (m)
 Distance between right fin and sash (m)
 Width of left vertical fin (m)
 Distance between left fin and sash
 (m)
 Width of horizontal overhang (m)
 Distance between overhang and sash |
| $\left(\begin{array}{c} 43 \\ (\because x \quad 4 \text { th card }) \end{array}\right.$ | $\begin{aligned} & 1-5 \\ & 5-15 \end{aligned}$ | I
 FL | Type of door (see card no. 51) Door area (m^{2}) |
| 44 | $\begin{array}{r} 1-10 \\ 11-15 \end{array}$ | $\begin{gathered} \text { AN } \\ \text { I } \end{gathered}$ | Heading: z -TRANSFER
 Number of wall types (max. 10) |
| | $\begin{array}{r} 1-10 \\ 11-20 \\ 21-30 \end{array}$ | FL
 FL
 FL | ΣC_{i} (sum of c-coefficients U-value ($\mathrm{w} / \mathrm{m}^{2}{ }^{\circ}{ }_{\mathrm{C}}$)
 Solar absorbtion coefficient(outdoor surface) |

x This card is used only if the window has fins and/or overhang. The set of cards consisting of cards nos. 41 and 42 is repeated as many times as there are windows in the wall.
xx This card is used only if there are doors in the wall. One card for each donr.
xxx The set of cards consisting of cards nos. 45, 46 and 47 is repeated as many times as there are wall types.

Card no.	Columr. no.	Format	Comments
$\begin{gathered} 46 \\ (2 n d \text { card) } \end{gathered}$	$\begin{gathered} 1-10 \\ 11-20 \\ \vdots \\ \vdots \\ 61- \\ \hline \end{gathered}$	FL FL - - FL	
$\left\lvert\, \begin{array}{cc} 47 \\ (3 r d & \operatorname{car} d) \end{array}\right.$	$\begin{gathered} 1-10 \\ 11-20 \\ \vdots \\ \vdots \\ 61- \\ \hline \end{gathered}$	FL FL FL	$\begin{aligned} & d-\text { coefficients (max. 7): } \\ & d_{0}=1.0 \\ & d_{1} \\ & \vdots \\ & \cdot \\ & d_{6} \end{aligned}$
48	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{gathered} \text { AN } \\ \text { I } \end{gathered}$	Heading: WINDOWTYPE Number of window types (max. 5)
X 49	$\begin{aligned} & 1-10 \\ & 11-20 \\ & 21-30 \\ & 31-35 \end{aligned}$	FL FL FL I	```U-value without shutters (}\mp@subsup{}{}{W}/\mp@subsup{\textrm{m}}{}{2}\mp@subsup{}{}{\circ}\mp@subsup{O}{C}{} Shading coefficient 0 or l: 0 - outside shading device l - inside```

$\begin{array}{r} \text { Card } \\ \text { no. } \\ \hline \end{array}$	Column. no.	Format	Corments
50	$\begin{array}{r} 1-10 \\ 11-15 \end{array}$	$\begin{aligned} & \text { AN } \\ & \text { I } \end{aligned}$	Heading: DOORTYPES Number of door types (max. 5)
$\times 51$	$\begin{array}{r} 1-10 \\ 11-20 \end{array}$	$\begin{aligned} & \text { FL } \\ & \text { FL } \end{aligned}$	U-value ($\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$) Solar absorbtion coefficient (outdoor surface)
xx_{52}	$\begin{gathered} 1-10 \\ 11-20 \\ 21-30 \\ 31-40 \\ 41-50 \\ 51-60 \\ 61-70 \\ 71-80 \end{gathered}$	FL FL	Burner nozzle canacity (U.S. Gallons per hour). Air supply ratio, i.e. the amount of air supplied for combustion to the theoretically necessary sunply Draft setting at the barometric damper ($\mathrm{kg} / \mathrm{m}^{2}$) Flow ratio, i.e. weight flow of air through furnace at off-cycle to weight flow of flue gases at on-cycle Number of burner cycles at 50 \% furnace load Steady state on-cycle flue gas temperature (${ }^{\circ} \mathrm{C}$) Steady state off-cycle "flue gas" temperature (usually the room temperature, e.g. $20^{\circ} \mathrm{C}$) Flue gas temnerature when air cirm culation fan shuts off (${ }^{\circ} \mathrm{C}$)
	1-10	FL	Time constant (seconds) for increase in flue gas temperature during on-cy-

X
One card for each door type
xx This card is used only if the heating system is "oil fired hot air system" (system type 1 , see card no. 12).

$\begin{gathered} \text { Card } \\ \text { no. } \end{gathered}$	$\begin{aligned} & \text { Column. } \\ & \text { no. } \end{aligned}$	Format	Comments
53	$11-20$ $21-30$	FL FL	Time constant (seconds) for decrease in flue gas temperature during offcycle when the air circulation fan is running Time constant (seconds) for decrease in flue gas temperature during offcycle when the air circulation fan is not running
x_{54}	$\begin{gathered} 1-10 \\ 11-20 \\ 21-30 \\ 31-40 \\ 41-50 \\ 51-60 \\ 61-70 \end{gathered}$	FL FL FL FL FL FL FL	```Smoke pine diameter (m) " " length (m)``` Number of smoke pipe bends. Inside side length of chimney (m) Length of chimney (m) Distance from pressure reference level to top of chimney (m) Distance from pressure reference level to center of furnace (m)

x This card is used only if the heating system is "oil fired hot
air system" (system type 1 , see card no. l2).
3. OUTPUT

3.1 Standard output

The output consists of three parts (see the examples):

The first part shows the input data that are used in the calculations.

The second part, which is optional, gives a detailed hour by hour output for one day of the heating season. The user is free to choose the day he wants. The detailed output presents the results in the same way as Chapter 22 of the ASHRAE Handbook of Fundamentals presents the transfer function method. First the heat flows ("gains") through all windows, walls, etc. at a constant room temperature of $20^{\circ} \mathrm{C}$ are printed. Note that two values for internal walls are printed: The first value shows the heat flow from the room with the highest to the room with the lowest room number. The room with the lowest room number is assumed to have $20^{\circ} \mathrm{C}$ room temperature, whereas the room with the highest room number are having its real room temperature. The second value shows the heat flow from the room with lowest(real room temperature) to the room with the highest room number $\left(20^{\circ} \mathrm{C}\right.$ room temperature). After the gains comes a table with the resulting heating or cooling loads at $20^{\circ} \mathrm{C}$ room temperature. The table shows the total loads and the load components, i.e. loads due to windows, walls, infiltration, etc. Then comes a table with actual heat output and room temperature for each room. These are the heat outputs that correspond to the thermostat setpoint schedule and the thermostat throttling range. At last comes information on the hot water consumption, and if the heating system is a hot air system, the furnace load factor.

The third part is tables of daily and accumulated energy consumption, one table for each month of the year. The tables show energy consumption due to heating, lights and appliances, and hot water heating respectively. If the heating system is a hot air system, the accumulated oil consumption is also shown. The accumulated energy consumptions for the 3lst December are
the same as the total for the heating season. I.e. the calculation starts the first of January at hr. 0100, stops when the heating season ends in the spring, starts up again when the heating season starts in the fall, and ends the 3lst of December at hr. 2400.

3.2 Error messages and warnings

It should be noted that the infiltration calculation, the calculation of the flow up the chimney, and the calculation of the hydraulic friction factor of the smoke pipe and the chimney are calculated by iterative processes. This means that under certain circumstances they may fail to give a solution.

The calculation of the flow up the chimney (a mixture of flue gas and air from the barometric camper inlet) for instance, may fail with certain combinations of outdoor temperature, pressure distribution on the building, tightness of the building, building pressure and temperature in the chimney (i.e. draft). In this case the program makes a "forced solution". That is the flue gases from the furnace are "forced" up the chimney (the barometric damper is closed). In addition the program prints a message:

SUBROUTINE CHMNEY FLOW IN CHIMNEY NOT FOUND AFTER
11 ITERATIONS.

If this message occurs only a few times during a calculation it has no consequences for the results. But if it occurs frequently it may indicate that the building is too air tight, i.e. the chimney is not capable of giving the necessary draft. This may even cause the whole infiltration calculation to fail, and the program will stop.
4. EXAMPLES
4.1 House with hot air system

The house is shown in Figure 15. It is the same house as shown in Figure 7 , but since the heating system is an oil fired hot air system it is modelled as having one room only. The house is built on a crawl space (no basement). Since this is a one-storyed building the reference level is taken as halfway between floor and ceiling. The schedules for internal heat gains are shown in Figure 16. The input card deck is shown in Figure 17, and the output is shown in Figure 18.

Figure 15
House with hot air system

Figure 16
Schedules for internal heat gains


```
Z-TFANSFER 2
```



```
1. -.12917745.00053341
    .077978 .3 .6
    .00052652.02373843.04390606 .00957936.00022729.00000030
1. -.92789179.19580070%.00817364.00003718
NINDOWTYME 1
    2.9 .75
OOORTYPES
    2.5
    100. 150.
        .15 2.
        500:8
        6.
        300.
        20.
        55.
        6.
    5.5
-0.5
```

```
*** EXAMPLE 1 ENCORE USERIS MANUAL ***
*** HOUSE WITH HOT AIR SYSTEM ***
```


HUILGIAG IS ROTATED O. DEGREES FROM THE AZIMUT ANGLES
GIVEN EN THE "WAL! DATA CARIS"
METEUROLOGICAL STATION NO: 492
WEATHERDATA FOX 1964 IS USED IN SIMIJATION
HEATING SEASON STARTS UN DAY NO. 260, ENDS ON DAY NO. 127
BUILUING HAS SHAPE TYPE 4
DISTANCE BETWEEN TRROUND AND EDGE OF ROOF: 3.0 M
BUILDING LUCATION 60.O DEG N AND - 15.0 DFGW (E IF NEG. O TME ZONE MI

```
TERRAIA AT BUILDIAG SITE :
    " " METEOROLOGICAL SITE: 2
CLEARNESS NUMBER, SUMMER: 1.05
    " " WINTER: 1.05
*** HORIZON ***
OIR. 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
HOK. 0. 0. 1. 1. 1. 3. 4. 5. 3. 3. 2. 3. 2. 1. 1. 1. 1. 0. %
*** hOT WATER HEATER ***
TANK CAPACITY : 180. LITERS
HEATER ELEMENT CAPACITY : 1ONO. WATTS
HOT WATER CONSUMPTION SCHEDULES: MON:I TUE:I WED:1 THU:I FRI:I SAT:1 SUN:I
*** ROOM DATA ***
```



```
\begin{tabular}{lllllllllll}
1 & 1 & 100.00 & 41.00 & 0 & \(W\) & 1 & 1 & 1 & 1 & 1 \\
\(H\) & 2 & 2 & 1 & 2 & 1
\end{tabular}
```

```
UUTSIDE PRESSURE POINTS
PCINTNO. CUCE
\begin{tabular}{ll}
2 & 1 \\
3 & 2 \\
4 & 1 \\
5 & 2 \\
6 & 3
\end{tabular}
*** UCCUPANCY SChEDULES ***
NO. 1
    400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 100.0 100.0
    100.0 00 0, 0 300.0 300.0 300.0 400.0 400.0 400.0 400.0
    400.0 400.0 400.0 400.0
NO.
    \triangle00.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0
            .0 .0 .0 400.0.400.0 400.0 400.0 400.0 400.0 400.0
    \triangle00.0 400.0 400.0 400.0
*** CONSIANT LIGHT SCHEDULES ***
NO. 1.0
```

```
*** VARIABLE LIGHT SCHEDULES ***
LIGHT UN IF ROOM IS DCCUPIED AND SOLAR GAIN LESS THAN A.7 WATTS/ME FLOOR AREA
NO. 1
    100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
    100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
    100.0 100.0 100.0 100.0
*** ERUIPMENI SCHEDILES ***
NO. I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline . 0 & . 0 & .0 & . 0 & .0 & .0 & 1500.0 & . 0 & .0 & . 0 \\
\hline .0 & . 0 & . 0 & - 0 & .0 & 2000.0 & .0 & . 0 & .0 & 500,0 \\
\hline . 0 & .1) & .0 & .0 & & & & & & \\
\hline 2 & & & & & & & & & \\
\hline .0 & . 0 & .0 & . 0 & . 0 & .0 & . 0 & 1500.0 & - 0 & . 0 \\
\hline .0 & - 0 & .0 & . 0 & 2000.0 & .0 & . 0 & . 0 & & 1000.0 \\
\hline .0 & 0 & .0 & . 0 & & & & & & \\
\hline
\end{tabular}
*** THERMOSTAT SETPOINT SCHEDULES ***
NO. 1
\begin{tabular}{llllllllll}
20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 \\
20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20 \\
20 & 20 & 20 & 20 & & & & & &
\end{tabular}
*** HOT WATER CONSUMPTION SCHEDULES ***
NO. 1
\begin{tabular}{llllllllll}
.000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 \\
.000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 & .000 \\
.000 & .000 & .000 & .000 & & &
\end{tabular}
```

```
*** NINDOW SH!\TER SCHEDULES ***
NINDOWS HAVE NQ SHUTTFRS WHEN DAY OF THE YEAR IS BETWEEN O AND 37O ING INE YEAR SHUTTERS ARE CLOSED FROM 25 IN THE EVENING TO O IN THE
MORNING
*** WALL DATA ***
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline WALL & \multicolumn{3}{|l|}{SEPARATES} & WALL & NO. OF & NO. OF & WALL & TILT & NET & FLOW & FLOW
EXP \\
\hline NO. & \multicolumn{3}{|c|}{ROOMS} & TYPE & WI VDOWS & DOORS & AZIMUT & ANGLE & AREA & RES. & EXP. \\
\hline 1 & 1 & ANO & 2 & 1 & 2 & 1 & 180.0 & 90.0 & 25.8 & . \(2001+04\) & . 66 \\
\hline 2 & 1 & AND & 5 & 1 & 1 & 0 & 270.0 & 90.0 & 19.2 & . 200*04 & . 66 \\
\hline 3 & 1 & AND & 6 & 2 & 0 & 0 & .0 & -1.0 & 100.0 & .000 & .00 \\
\hline 4 & 1 & AND & 6 & 2 & 0 & 0 & 180.0 & 25.0 & 50.0 & .000 & .00 \\
\hline 5 & 1 & AND & 6 & 2 & 0 & 0 & . 0 & 25.0 & 50.0 & . 000 & .00 \\
\hline 6 & 1 & AND & 4 & 1 & 2 & 1 & 0 & 90.0 & 29.2 & . \(200+04\) & . 66 \\
\hline 7 & 1 & AND & 3 & 1 & 3 & 0 & 90.0 & 90.0 & 17.3 & \(.200+04\) & . 66 \\
\hline
\end{tabular}
*** HOUSE GEOMETRY ***
```



```
*** LOCATIUN, AREA AND TYPE OF DCORS ***
    DOOX AREA TYPE SEPARATES
        1
*** WALL TYPES ***
NO. 1
H:.0935621 .2335535 .0215937 .0000355 .0000000 .00000000 .0000000
D:1.0000000..1291774 .0005334 .0000000 .0000000 .0000000 .0000000
C: 3487446
U: 4000000
WSAHS: 600OOnO
NO. 2
B: 0005265 .0237384 .0439061 .0095794 .0002273 .0000003 .0000000
D.0000000 . . . % % 8918 . 1958007 . .00817736 .0000372.0000000.0000000
C: .0779780
U: 3000000
WSABS: .6000000
*** NINDO& TYPES ***
NO. U=VALUEI UNALUE2 SH.COEF, SH.TYPE(I=INSIOE,OEOUTSIDES
        NO SHUTTERS SHUTTERS
            .7500
            .90 1
*** DOOR TYPES ***
NO. U-VALUE SOLAR ABS.
```

```
*** HEATING SYSTEM DATA ***
THERMOSTAT THRUTTLING RANGE (CELCIUS)
CAPACITY OF BURNER NOZZLE (US-GALLONS/HOUR)
AIR SUPPLIED FOR CIMBUSTION TO THEIRETICAI. AIR REQUIREMENT
DRAFT SETTING AT RAROMETRIC DAMPER (MM WATER GAUGE)
WEIGHT FLOW UF AIR THRUUGH THE FURNACE AT OFF=CYCLE
            TO THE WEIGHT FLON OF FLUE AT ON-CYCLE
NUMBER OF BURVER CYCLES PER HOUR AT 5O% LOAD
STEADY STATE ONmCYCLE FLUE TEMP. (C)
    " " OFF=CYCLE " "
FLUE TEMP. WHEN AIROCIRCULATION FAN STOPS (C)
TIME CONST. FOR INCREASE IN FLUE TEMP. AT ONmCYCLE (SEC)
    " " " DECREASE " " " " " OFF-CYCLE (SEC)
        WHEN AIR=CIRCULATIUN FAN IS ON (SEC)
SAME AS ABOVE, BUT AIR=CIRCULATION FAN IS OFF (SEC)
SMOKE PIPE DIAMEIFR (M)
    " " LENGTH (M)
NUMBER OF SMOKE PIPE BEINDS
INTERNAL SIDE LENGTH OF CHIMNEY (M)
LENGTH OF CHIMNEY (M)
DISTANCE FROM PRESSIIRE REF. LEVEL TO TOP OF CHIMNEY (M)
        " " " " " " CENTER OF FURNACE (M)
```

```
    1.5
```

 1.5
 .75
 .75
 1.70
 1.70
 80
 80
 8
 8
 .40
 .40
 6.
 6.
 300.0
300.0
20.0
20.0
55.0
55.0
100.
100.
150.
150.
500.
500.
.15
.15
2.00
2.00
2.
2.
. }1
. }1
6.00
6.00
5.50 (UP +)
5.50 (UP +)
..50 (")

```
    ..50 ( " )
```

```
DATE: 1/ 1-1964
    HOUR: I
    ORY BULB TEMP: - 1.1 CELCIUS
    WIND SPEED
    WIND DIRECTIDN: 20.O DEG FROM NORTH
    CLOUD COVEK * 4.0 (O.-3.)
HEAT FLOW THROUGH WALLS, ETC. AT 2O C ROOM TEMP. (WATTS),
AND AIR FLOW THROUGH CRACKS IN WALLS (KG/S)
HEAT AND AIK FLON INTO ROOM/HOUSE POSITIVE
```



```
HEATING(NEG.) ANI COOLING(POS.) LOADS AT 2O C ROUM TEMP. (WATTS)
```


heat outpur and room temperature

I ROOM I HEAT OUTPUT	I KOGM TEMP	I		
I NO. I	(WATTS)	I	(CELCIUS)	I
I		I		I
	1	2287.		20.6

HOT WATER HEATER (ASSUMING 75 C TEMP.RISE)

HOT WATER DEMAND
AVG ELECTR INPUT WATTS
O. WATTS STORED HEAT AT END OF HQUR: 15700. WATTHRS

FURNACE LOAD FACTOR: . 10

```
DATE: 1/ 1-1964
HOUR: 24
```

```
DRY GULB TEMP: : 4.I CELCIUS
```

DRY GULB TEMP: : 4.I CELCIUS
WIND SPEED
WIND SPEED
WIND DIRECTION:
WIND DIRECTION:
CLOUD COVER : 2.5 (0.-3.)
CLOUD COVER : 2.5 (0.-3.)
.4 M/S
.4 M/S
48.3 DEG FROM NORTH
48.3 DEG FROM NORTH
HEAT FLOW THROUGH WALLS, ETC. AT 2O C ROOM TEMP. (WATTS),
AND AIR FLUW THROUGH CRACKS IN WALLS (KG/S)
HEAT AND AIK FLOW INTO RJOM/HOUSE POSITIVE

1 WALL	I	WINDOWS		I	WALLS		1	DOORS	1	AIR FLOW TH	HROUGH WALLS	
I WINDUW	I	SOLAR I	COND.	1	(TWO	VALUES	+		1	AT	BUR	NER
I DOOR	I	I		I	FOR	INTERNAL	I		1	ON-CYCLE	1	OFF=CYCLE
I NO.	I	I		1	WALL		I		1		1	
1		U.	-419.		-247	. 0_{0}		-66.		. 72.066002		. 21917 -02
2		0.	-63.		-184	- 0		-120.		. 72090.02		. 21962 -02
3		0.	-168.		-863	. 0.		0.		.00000		. 00000
4		0.	-168.		-429	. 0°		0 \%		. 00000		. 00000
5		0.	-11.		-431	- 0.		0.		. 00000		. 00000
6		0.	-101.		-280	O.		0.		. 72334 -02		- 22410 -02
7		0.	-101.		-166	- 0.		0.		. 72310.02		. $22365-02$
8		0.	-101.		0	- 0.		0.		.00000		. 00000

HEATING(NEG.) AND COOLING(POS.) LOADS AT 20 C ROOM TEMP. (WATTS)

```
```

I ROOM I LOADS DUE TO: I TOTAL I

```
I ROOM I LOADS DUE TO: I TOTAL I
NO. I WINDOWS I WALLS I DOORS I OCCUP. I EQUIP. I LIGHTS I INF. I I I
```

NO. I WINDOWS I WALLS I DOORS I OCCUP. I EQUIP. I LIGHTS I INF. I I I

```


heat output and room tempfrature
\begin{tabular}{ccccc} 
I ROOM I HEAT OUTPUT I ROOM TEMP. I \\
I NO. I I & (WATTS) & I (CELCIUS) & I \\
I & I & & \\
& 1 & 3015. & & 20.5
\end{tabular}

HOT WATER MEATER (ASSUMING 75 C TEMP.RISE)

HOT WATER UEMAND : O. WATTS
AVG. ELECTR. INPUT: 0. WATTS STORED HEAT AT END DF HOUR: 15700. WATTHRS

FURNACE LDAD FACTOR: . 13
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline DATF． & MEAN DBT 1）EG & \begin{tabular}{l}
** DAILY \\
HEATING \\
KWH
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\(\therefore\) APPL． \\
KWH
\end{tabular} & \[
\begin{aligned}
& \text { CONS HOT } \\
& \text { WATER }
\end{aligned}
\]
\[
K W H
\] & \begin{tabular}{l}
＊＊TOTAL HEATING \\
KWH
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\＆APPL． \\
KWH
\end{tabular} & CONS．＊＊ HOT WATER KWH & \[
\begin{aligned}
& \text { * TOTAL } \\
& \text { OIL CONS }
\end{aligned}
\] \\
\hline 11 & －2．2 & 59. & 11. & U． & 59. & 11. & 0. & 7.4 \\
\hline 2.1 & －2．2 & 67. & 11. & 0. & 126. & 22. & 0. & 15．0 \\
\hline 31 & 3.5 & 45． & 11． & 10. & 171. & 32. & 0. & 21.6 \\
\hline \(4 /\) & 1． 6 & 48. & 11. & 0. & 219． & 44. & 0. & 27.7 \\
\hline \(5 /\) & 1．8 & 49. & 11. & 0. & 258. & 55. & 0. & 34.0 \\
\hline 61 & －5．3 & 71. & 11. & 0. & 339． & 65. & 0. & 43.0 \\
\hline 71 & －8．0 & 89. & 11. & 0. & 426． & 76. & 0. & 54.2 \\
\hline 81 & －6．0 & 84. & 11. & 0. & 512. & 87. & 0. & 64.8 \\
\hline 91 & －2．11 & 67. & 11. & 0. & 580. & 97. & 0. & 73，3 \\
\hline 101 & －1．3 & 59. & 11. & 0. & 639. & 108. & 0 。 & 80.8 \\
\hline \(11 /\) & －3．9 & 69. & 11. & 0. & 7118. & 119. & 0. & 80.6 \\
\hline \(12 i\) & －4．3 & 71. & 11. & 0. & 779. & 130. & 0. & 98.7 \\
\hline \(13 /\) & －1．2 & 78. & 11. & 0. & 857. & 141． & 0. & 108.5 \\
\hline \(14 /\) & － 6.8 & 83. & 10. & 0. & 940． & 151. & 0. & 119.0 \\
\hline 151 & －6．\({ }^{1}\) & 72. & 10. & 0 。 & 1012. & 162． & 0. & 128.2 \\
\hline 161 & \(=5.8\) & 76. & 10. & 0. & 1088. & 172. & 0. & 137.9 \\
\hline 171 & －6．8 & 76. & 10. & 0. & 1165. & 183. & 0. & 147.6 \\
\hline 181 & －8．7 & 85. & 11. & 0. & 1250． & 194. & 0. & 158.3 \\
\hline 191 & －9．5 & 91. & 11. & 0. & 1341． & 205. & 0. & 169．9 \\
\hline 201 & －5．1 & 76. & 10. & 0. & 1417. & 215. & 0. & 179.5 \\
\hline 211 & 1．8 & 48． & 10. & 0. & 1464. & 22.6 & 0. & 185.6 \\
\hline 22， & 2.1 & 42. & 10. & 0. & 1506． & 236. & 0. & 190.9 \\
\hline 231 & －．8 & 53. & 10. & 0 & 1559． & 246. & 0. & 197．6 \\
\hline 241 & ＊． 2 & 53. & 10． & 0. & 1612． & 257. & 0. & 204，3 \\
\hline 251 & ． 0 & 45. & 11. & 0. & 1657. & 268. & 0 & 210.0 \\
\hline 261 & －3．4 & 61. & 11. & 0 & 1718. & 279． & 0 & 217.7 \\
\hline 271 & －7．1 & 70. & 10. & 0. & 1787. & 289. & 0. & 226.5 \\
\hline 281 & －1．5 & 59. & 10. & 0. & 1847. & 300. & 0. & 234．1 \\
\hline 291 & 1.8 & 43. & 10. & 0. & 1890 & 310. & 0. & 239．5 \\
\hline 301 & 2.7 & 40. & 10. & 0 & 1930． & 320． & 0. & 244，7 \\
\hline \(31 /\) & －．2 & 45. & 10. & 0 。 & 1975. & 331. & 0. & 250.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{DATE}} & MEAN & \begin{tabular}{l}
** OAIL.Y \\
HEATING
\end{tabular} & ENERGY
LIGHTS & \[
\begin{gathered}
\mathrm{CONS}_{*}^{*} \\
\mathrm{HOT}
\end{gathered}
\] & ** TUTAL HEATING & \begin{tabular}{l}
ENERGY \\
LIGHTS
\end{tabular} & \[
\begin{gathered}
\text { CONS } \\
\text { HOT }
\end{gathered}
\] & \[
\begin{aligned}
& \text { *TOTAL * } \\
& \text { OIL CONS. }
\end{aligned}
\] \\
\hline & & UBT & & \& \(\triangle P P L\). & WATER & & \& \(A P P L\). & WATER & \\
\hline & & LEG C & KWH & KWH & KWH & KWH & KWH & KWHi & LITEKS \\
\hline \(1 /\) & & -2.3 & 56. & 11. & 0. & 2031. & 342. & 0. & 257.4 \\
\hline 21 & & -2.2 & 53. & 11. & 0. & 2084. & 353. & 0. & 264.2 \\
\hline 31 & & 1.4 & 45. & 10. & 0. & 2129. & 363. & 0 & 269.9 \\
\hline \(4 /\) & & -. 5 & 48. & 10. & 0. & 2177. & 373. & 0. & 276.0 \\
\hline \(5 /\) & & -3.8 & 59. & 10. & 0. & 2236. & 384. & \(0 \cdot\) & 283.5 \\
\hline 61 & & -5. \({ }^{\text {c }}\) & 56. & 10. & 0. & 2292. & 394. & 0. & 290.5 \\
\hline 71 & & -3.7 & 59. & 10. & 0. & 2351. & 404. & 0. & 297.8 \\
\hline \(8 /\) & & 3.6 & 30. & 11. & 0. & 2381. & 415. & 0. & 301.5 \\
\hline 01 & & . 0 & 35. & 11. & 0. & 2416. & 426. & 0. & 306.0 \\
\hline 101 & & 1.2 & 36. & 10. & 0. & 2452. & 436. & 0. & 310.6 \\
\hline 11/ & & -1.5 & 46. & 10. & 0. & 2498. & 447. & 0 O. & 316.4 \\
\hline 121 & & -8.9 & 69. & 10. & 0. & 2568. & 457. & 0. & 325.2 \\
\hline 131 & & -7. C & 76. & 10. & 0. & 2644. & 467. & 0. & 334.8 \\
\hline 141 & & -4.5 & 63. & 10. & 0. & 2707. & 477. & 0. & 342.9 \\
\hline \(15 /\) & & -5.3 & 65. & 11. & 0. & 2771. & 488. & 0. & 351.0 \\
\hline 161 & 2 & -11.2 & 82. & 11. & 0. & 2853. & 499. & 0. & 361.6 \\
\hline 171 & & \(=10.5\) & 8 2. & 10. & 0. & 2936. & 509. & 0. & 372. 6 \\
\hline 181 & & -11.1 & 74. & 10. & 0. & 3010. & 519. & 0. & 381.4 \\
\hline 191 & 2 & -8.6 & 73. & 10. & 0. & 3083. & 529. & 0. & 390.6 \\
\hline 201 & 2 & - ć \(^{\text {c }} 3\) & 64. & 10. & 0. & 3147. & 540. & 0. & 398.7 \\
\hline \(21 /\) & 2 & -6.2 & 59. & 10. & 0. & 3205. & 550. & 0. & 406.1 \\
\hline 221 & 2 & -1.8 & 49. & 11. & 0. & 3254. & 561. & 0. & 412.3 \\
\hline 231 & & -2.6 & 48. & 11. & 0. & 3302. & 571. & 0. & 418.4 \\
\hline 24/ & & -5.3 & 58. & 10. & 0. & 3361. & 581. & 0. & 425.7 \\
\hline 251 & 2 & -3.6 & 55. & 10. & 0. & 3416. & 592. & 0. & 432,8 \\
\hline 261 & & -1.2 & 37. & 10. & 0. & 3453. & 602. & 0. & 437.4 \\
\hline 271 & & -1.0 & 42. & 10. & 0. & 3494. & 612. & 0. & 442.7 \\
\hline 28/ & 2 & . 4 & 42. & 10. & 0. & 3536. & 622. & 0. & 448.1 \\
\hline 291 & & 1.4 & 32. & 11. & 0. & 3569. & 633. & 0. & 452.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline DATE & MEAN DBT & \[
\begin{aligned}
& \text { ** DAILY } \\
& \text { HEATING }
\end{aligned}
\] & \begin{tabular}{l}
ENERGY \\
LIGHIS \\
\& \(A P P L\).
\end{tabular} &  & \begin{tabular}{l}
** TOTAL \\
HEATING
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\& \(\triangle P P L\).
\end{tabular} & \[
\begin{gathered}
\text { CONS } \begin{array}{c}
\text { HOT } \\
\text { WATER }
\end{array} ~
\end{gathered}
\] & \[
\begin{aligned}
& \text { * TOTAL } \\
& \text { OIL CONS }
\end{aligned}
\] \\
\hline & DEG C & KWH & KWH & KWH & KWH & KWH & KWH & LITERS \\
\hline \(1 / 3\) & 1.0 & 32. & 11. & 0. & 3601. & 643. & 0. & 456.3 \\
\hline 213 & 1.1 & 27. & 10. & 0. & 3629. & 653. & 0. & 459.7 \\
\hline \(3 / 3\) & . 7 & 33. & 10. & 0. & 3661. & 663. & 0. & 463.8 \\
\hline \(4 / 3\) & . 7 & 32. & 10. & 0. & 3694. & 674. & 0. & 467.9 \\
\hline 5/3 & 1.1 & 28. & 10. & 0. & 3722. & 684. & 0. & 471.5 \\
\hline 613 & . 1 & 31. & 10. & 0. & 3753. & 694. & 0. & 475.4 \\
\hline 7/3 & -2. 6 & 42. & 11. & 0. & 3795. & 704. & 0. & 480.7 \\
\hline \(8 / 3\) & -1.6 & 43. & 11. & 0. & 3838. & 715. & 0. & 486.1 \\
\hline 913 & 3.7 & 22. & 10. & 0. & 3859. & 725. & 0. & 488.8 \\
\hline \(10 / 3\) & 2.9 & 18. & 10. & 0. & 3877. & 735. & 0. & 491.1 \\
\hline \(11 / 3\) & 2.6 & 19. & 10, & 0. & 3896. & 745. & 0. & 493.5 \\
\hline 1213 & . 9 & 23. & 10. & 0. & 3920. & 755. & 0. & 496.4 \\
\hline 13/3 & . 4 & 20. & 10. & 0. & 3940. & 765. & 0. & 498.9 \\
\hline \(14 / 3\) & -3.2 & 26. & 10. & 0. & 3966. & 775 & 0. & 502.2 \\
\hline \(15 / 3\) & -4.2 & 29. & 10. & 0. & 3995. & 786. & 0. & 505.9 \\
\hline \(16 / 3\) & -3.1 & 30. & 10. & 0. & 4025. & 795. & 0. & 509.6 \\
\hline 1713 & -2.9 & 31. & 10. & 0. & 4056. & 805. & 0. & 513.5 \\
\hline \(18 / 3\) & -1.8 & 33. & 10. & 0. & 4088. & 815. & 0. & 517.7 \\
\hline \(19 / 3\) & -4.5 & 42. & 10. & 0. & 4130. & 825. & 0. & 523.0 \\
\hline 20/3 & -4.4 & 45. & 10. & 0. & 4175. & 835. & 0. & 528.6 \\
\hline 21/3 & -3.4 & 53. & 10. & 0. & 4228. & 846. & 0. & 535.2 \\
\hline 22/3 & -1.8 & 45. & 10. & 0. & 4273. & 856. & 0. & 541.0 \\
\hline \(23 / 3\) & -2.4 & 37. & 10. & 0. & 4311. & 866. & 0. & 545.7 \\
\hline \(24 / 3\) & -2.0 & 37. & 10. & 0. & 4347. & 876. & 0. & 550.3 \\
\hline 25/3 & -. 3 & 27. & 10. & 0. & 4375. & 886. & 0. & 553.7 \\
\hline \(26 / 3\) & . 1 & 24. & 10. & 0 \% & 4399. & 896. & 0. & 556.8 \\
\hline 27/3 & . 3 & 29. & 10. & 0 & 4428. & 906. & 0. & 560.5 \\
\hline 28/3 & 1.0 & 19. & 10. & 0. & 4447. & 916. & 0. & 562.9 \\
\hline 29/3 & 1.8 & 14. & 10. & 0. & 4461. & 927. & 0. & 564,6 \\
\hline \(30 / 3\) & 1.0 & 25. & 10. & 0. & 4485. & 936. & 0. & 567.7 \\
\hline \(31 / 3\) & . 8 & 23. & 10. & 0 。 & 4509. & 946. & 0. & 570.6 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline DATE & MEAN & \begin{tabular}{l}
＊＊DAILY \\
heating
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS
\end{tabular} & CONS．＊＊ HOT WATER & \begin{tabular}{l}
＊＊TOTAL \\
heating
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\＆\(A P P L\)
\end{tabular} & CONS．＊＊ HOT WATER & \begin{tabular}{l}
＊TOTAL＊ \\
OIL CONS．
\end{tabular} \\
\hline & DEG 6 & K NH & KWH． & KWH & KWH & KWH． & KWH & LITERS \\
\hline 1／11 & 2.1 & 39. & 11. & 0. & 5628. & 1783. & 0. & 712.0 \\
\hline 2／11 & 3.3 & 32. & 10. & 0. & 5660. & 1793. & 0. & 716.0 \\
\hline \(3 / 11\) & －． 4 & 38. & 10. & 0. & 5698. & 1803. & 0. & 720.8 \\
\hline 4／11 & －1．4 & 56． & 10. & 0. & 5754. & 1814． & 0. & 727.8 \\
\hline 5／11 & ． 4 & 42. & 11. & 0. & 5797. & 1824. & 0. & 733.2 \\
\hline \(6 / 11\) & \(1: 0\) & 43. & 10. & 0. & 5840. & 1834. & 0. & 738．6 \\
\hline 7／11 & －1．4 & 50. & 11. & 0. & 5890. & 1845. & 0. & 745.0 \\
\hline 8／11 & \(\cdots 0\) & 48. & 11. & 0. & 5937. & 1856. & 0. & 751.0 \\
\hline \(0 / 11\) & －1．3 & 57. & 10. & 0. & 5995. & 1867. & 0. & 758．3 \\
\hline 10111 & －． 1 & 48. & 10. & 0. & 6043. & 1877. & 0. & 764.5 \\
\hline 1．1／11 & 2.6 & 35. & 10. & 0. & 6079. & 1887. & 0. & 769．0 \\
\hline 12／11 & 2.7 & 39. & 10. & 0 。 & 6117. & 1898. & 0. & 773．9 \\
\hline \(13 / 11\) & ． 8 & 45. & 10. & 0. & 6163. & 1908． & 0. & 779.6 \\
\hline 14／11 & 4．6 & 30. & 11. & 0. & 6193. & 1919． & 0. & 783.4 \\
\hline 15／11 & 4.9 & 28. & 11. & 0. & 6221. & 1930. & 0. & 787.0 \\
\hline \(16 / 11\) & 1.2 & 43. & 10. & 0. & 6264. & 1940. & 0. & 792.4 \\
\hline \(17 / 11\) & \％ & 50. & 10. & 0. & 6315. & 1951． & 0. & 798.8 \\
\hline 18／11 & 2.2 & 40. & 10. & 0 。 & 6354． & 1961. & 0. & 803.8 \\
\hline \(19 / 11\) & －．8 & 58. & 10. & 0. & 6412. & 1972． & 0. & 811.1 \\
\hline 20／11 & －． 6 & 52. & 10. & 0. & 6464． & 1982. & 0. & 817.7 \\
\hline 21／11 & ． 6 & 47． & 11． & 0. & 6511． & 1994． & 0. & 823.7 \\
\hline 22111 & 1.5 & 45. & 11. & 0. & 6556． & 2005. & 0. & 829.4 \\
\hline 23／11 & 1.2 & 45. & 10. & 0. & 6601. & 2015． & 0. & 835.0 \\
\hline 24／11 & 3.1 & 40. & 10. & 0. & 6640. & 2026. & 0. & 840.1 \\
\hline 25／11 & 2.5 & 42. & 10. & 0. & 6683. & 2036. & 0. & 845.4 \\
\hline 26／11 & ． 5 & 50. & 10. & 0 。 & 6732. & 2047． & 0. & 851.7 \\
\hline 27／11 & 2.0 & 43. & 10. & 0. & 6775. & 2057. & 0. & 857.2 \\
\hline 28／11 & －． 4 & 56. & 11. & 0. & 6832. & 2068． & 0. & 864.4 \\
\hline 29／11 & －1．4 & 56. & 11. & 0. & 6888. & 2079． & 0. & 871.5 \\
\hline 30／11 & －2．3 & 63. & 10. & 0. & 6951． & 2090． & 0. & 879.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DATE．} & MEAN
DBT & ＊＊DAILY heAting & \multirow[t]{2}{*}{\begin{tabular}{l}
ENERGY LIGHTS \\
\＆\(A P P L\) ． \\
KWH
\end{tabular}} & \multirow[t]{2}{*}{CONS．＊＊ hnt WATER KWH} & \multirow[t]{2}{*}{\begin{tabular}{l}
＊＊total heATING \\
KWH
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ENERGY CONS，＊＊
LIGHTS HOT
\＆APPL．WATER
KWH KWH}} & \multirow[t]{2}{*}{\begin{tabular}{l}
＊total OIL CONS \\
LITFRS
\end{tabular}} \\
\hline & DEG C & KWH & & & & & & \\
\hline 1／12 & －2．7 & 62. & 10. & 0. & 7013. & 2100. & 0. & 887．5 \\
\hline \(2 / 12\) & ． 3 & 55. & 10. & 0. & 7069． & 2111． & 0. & 894.5 \\
\hline \(3 / 12\) & 1.3 & 48. & 10. & 0. & 7117. & 2121. & 0. & 900.6 \\
\hline 4／12 & －． 5 & 58. & 10. & 0 。 & 7174. & 2132. & 0. & 908.0 \\
\hline \(5 / 12\) & －5．0 & 71. & 11. & 0. & 7245． & 2143. & 0. & 916.9 \\
\hline 6／12 & \(-5.7\) & 83. & 11. & 0. & 7328. & 2154. & 0. & 927.4 \\
\hline 7／12 & 1.4 & 55. & 11. & 0. & 7383. & 2165. & 0 ． & 934.4 \\
\hline 8／12 & 5．0 & 42. & 11. & 0. & 7425. & 2175. & 0. & 939.7 \\
\hline 9／12 & 5.8 & 39. & 11. & 0. & 7464． & 2186. & 0. & 944.7 \\
\hline 10／12 & 1.0 & 51. & 11. & 0. & 7515. & 2196. & 0. & 951.2 \\
\hline 11／12 & －． 5 & 58. & 11. & 0. & 7573. & 2207. & 0. & 952.5 \\
\hline 12／12 & 2.9 & 47. & 11. & 0. & 7620. & 2218． & 0. & 964.5 \\
\hline 13／12 & 1.5 & 50. & 11. & 0. & 7670. & 2229． & 0. & 970.9 \\
\hline 14／12 & －2．1 & 64. & 11. & 0. & 7734. & 2240. & 0. & 979.0 \\
\hline 15／12 & －2．8 & 66. & 11. & 0. & 7799. & 2251. & 0. & 987．2 \\
\hline 16／12 & －4．5 & 74. & 11. & 0. & 7873. & 2261. & 0. & 996.5 \\
\hline 17112 & －2．8 & 70. & 11. & 0 ． & 7944． & 2272. & 0. & 1005．4 \\
\hline 18／12 & －2．6 & 65. & 11. & 0. & 8009． & 2282． & 0. & 1013.6 \\
\hline 19／12 & －5．1 & 75. & 11. & 0. & 8084. & 2294. & 0. & 1023．0 \\
\hline 20／12 & －3．3 & 68. & 11. & 0 。 & 8152. & 2305. & 0. & 1031.7 \\
\hline 21／12 & －3．8 & 71. & 11. & 0. & 8223． & 2315． & 0. & 1040.6 \\
\hline 22／12 & －6，8 & 85. & 11. & 0. & 8308. & 2326. & 0. & 1051.3 \\
\hline 23／12 & －7．7 & 89. & 11. & 0. & 8397. & 2337. & 0. & 1062.5 \\
\hline 24／12 & －6．8 & 83. & 11. & 0. & 8480. & 2347. & 0. & 1073.0 \\
\hline 25／12 & －3．0 & 86. & 1.1. & 0. & 8566． & 2358. & 0. & 1083.9 \\
\hline 26／12 & －11．0 & 96. & 11. & 0 。 & \(8662^{\circ}\) & 2370． & 0. & 1095．8 \\
\hline 27112 & －13．5 & 107. & 11. & 0. & 8769. & 2381． & 0. & 1109.2 \\
\hline 28／12 & \(-15.6\) & 118. & 11. & 0. & 8887． & 2391. & 0. & 1124.0 \\
\hline 29／12 & －9．7 & 105. & 11. & 0. & 8992． & 2402． & 0. & 1137.4 \\
\hline 30／12 & －1．1 & 65. & 11. & 0. & 9057． & 24.3. & 0. & 1145.8 \\
\hline 31／12 & 1.3 & 53. & 11. & 0. & 9110. & 2423. & 0. & 1152.6 \\
\hline
\end{tabular}

House with electric heating
The house is shown is Figure 7. It has a "natural ventilation system". Fresh air enters the house through an opening in the window sash in the sleeping rooms and the living room. Used air is sucked out from the kitchen and the bathroom by means of vertical shafts to the outside (stack effect). In a multiroom model this system is easily simulated by just saying that the room level of the kitchen and bathroom is the same as the top of the vertical shafts, i.e. all the "cracks" in these rooms are located in that level (note that kitchen and bathroom have no fresh air intakes).

The input card deck is shown in Figure 19, and the output is shown in Figure 20.

Another way of simulating the ventilating system would be to introduce a "dummy" room in the level of the top of the shafts. This room should consist of minimum one external wall with the crack that corresponds to the shaft(s), and one internal wall with a high U-value. The latter is necessary to make sure that the temperature of the dummy room is the same as the temperature of the real room which it is a part of.


```

LQUIPMENT 3
2000;
2000
8 8 7
0:
HOT WA
0.

```

90.
.1
.02
\(90 . \quad 13.5\)
90.1 12.15
90.
90. \(\quad 5.4\)
90. \(\quad 0.75\)
\(90 . \quad 6.75\)
\(\begin{aligned}-1 . & 44.5 \\ 25 . & 34.0\end{aligned}\)
\(\begin{array}{ll}25 . & 34.0 \\ 25 . & 10.5\end{array}\)
\(\begin{array}{ll}90 . & 8.1 \\ 90 . & 12.15\end{array}\)
\(\begin{array}{lr}90.1 & 8.1 \\ -1 . & 13.5\end{array}\)
```

L=TRANSFEH 3
.3487446 .4 .0
.09356209 .23355346 .02159372.00003546
1. -.12917745 .00053341
1.7160367 1.309 . .6
.95025575 ./5598248.00979849.00000002
1.0774 -.05156129.00002141
.077978 .3 .0
.00052655 .02373843 .04390606 .00957936 .00022729 .00000030

1. =.92789179.19580n70=.00817364 .00003718
WINDOW U. l
2.9 -7
UOOR U. 2
2.5 .6
2.9 .0
```
```

*** EXAMPLE 2 - ENCORE USERIS MANUAL ***
** HUUSE WITH ELECTRIC HEATING ***

```

部
BUILDING is rotated \(\quad 0\). ofgrees from the azimut angles
given on the "wall data cards"
METEOROLOGICAL STATION NU: 492
WEATHERDATA FOR 1964 IS USED IN SIMULATION
heating season starts on day no. 260, ENDS ON DAY No. 127
buIlding has shape type a
UISTANCE BETWEEN GROUND AND EDGE OF RDOF: 3.0 M
BUILUING LOCATION 60.0 DEG \(N\) AND -15.0 DEG \(W\) (E IF NEG.) TIME ZONE - 1
TERRAIN AT BUILDING SITE
" " METEOROLOGICAL SITE:
2
*** HORIZON ***
```

DIR. 20 40 60 < < < 100 120 140 160 180 200 220 240 260 280 300 320 340 360
HOK. 0. 0. 1. 1. 1. 3. 4. 5. 3. 3. 2. 3. 2. 1. 1. 1. 1. 1. 0.
*** HOT wATER HEATER ***

TANK CAPACITY	180. LITERS
HEATER ELEMENT CAPACIYY	IOOO. WATTS WEDI THU:I FRI:I SAT:I SUN:I

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ROOM & WEIGHT & FLOOR & PERIM. & ROOM & & ****** & ******* & SCHEDULES & ****** & ******* \\
\hline NO. & CODE & AREA & LENGTH & LEVEL & & OCCUP. & C.LIGHT & \(\checkmark\) LIGHT & EQUIP. & THERM. \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{44.50} & \multirow[t]{2}{*}{13.50} & \multirow[t]{2}{*}{. 0} & \(W\) & 1 & 1 & 2 & 3 & 1 \\
\hline & & & & & H & 1 & 1 & 2 & 3 & 1 \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{13.50} & \multirow[t]{2}{*}{4.50} & \multirow[t]{2}{*}{4.0} & \(W\) & 2 & 2 & 1 & 1 & 1 \\
\hline & & & & & H & 3 & 3 & 1 & \(?\) & 1 \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{6.00} & \multirow[t]{2}{*}{2.00} & \multirow[t]{2}{*}{4.0} & W & 6 & 5 & 2 & 3 & 1 \\
\hline & & & & & H & 6 & 5 & 2 & 3 & 1 \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{4,00} & \multirow[t]{2}{*}{2.00} & \multirow[t]{2}{*}{. 0} & W & 6 & 4 & 2 & 3 & 1 \\
\hline & & & & & H & 6 & 4 & 2 & 3 & 1 \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{12.00} & \multirow[t]{2}{*}{7.00} & \multirow[t]{2}{*}{. 0} & W & 4 & 5 & 2 & 3 & 1 \\
\hline & & & & & H & 4 & 5 & 2 & 3 & 1 \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{10.00} & \multirow[t]{2}{*}{2.50} & \multirow[t]{2}{*}{. 0} & W & 5 & 5 & 2 & 3 & 1 \\
\hline & & & & & H & 5 & 5 & 2 & 3 & 1 \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{10.00} & 6.50 & . 0 & W & 5 & 5 & 2 & 3 & 1 \\
\hline & & & & & H & 5 & 5 & 2 & 3 & 1 \\
\hline
\end{tabular}

```

${ }^{N O} 200$.

```

```

 \(\begin{array}{lllllllll}.0 & .0 & .0 & .0 & .0 & .0 & .0 & .0 & .0\end{array}\)
 *** COnstant light schedules ***
NO. 1
$\begin{array}{rrrrllllll}.0 & .0 & .0 & .0 & .0 & 0 & .0 & .0 & .0 & .0 \\ 500.0 & 500.0 & 500.0 & .0 & .0 & .0 & 300.0 & 300.0 & 500.0 & 500.0\end{array}$

```


NO. 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 \\
\hline 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 & 60.0 \\
\hline 60.0 & 60.0 & 60.0 & 60.0 & & & & & & \\
\hline \multicolumn{10}{|l|}{NO. 5} \\
\hline .0 & - 0 & .0 & . 0 & .0 & . 0 & . 0 & . 0 & - 0 & - 0 \\
\hline .0 & .0 & .0 & . 0 & .0 & .0 & .0 & - 0 & .0 & . 0 \\
\hline .0 & . 0 & .0 & . 0 & & & & & & \\
\hline
\end{tabular}
*** VARIABLE LIGHT SCHEDULES ***
LIGHT ON IF ROUM IS OCCUPIED AND SOLAR GAIN LESS THAN A. 7 WATTS/M2 FLOOR AREA
NO. 1
\(\begin{array}{llllllllllll}100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0\end{array}\)
\(\begin{array}{llll}100.0 & 100.0 & 100.0 & 100.0\end{array}\)
NO. 2
\begin{tabular}{ccccccccc}
2 & .0 & .0 & 0 & .0 & .0 & 0 & .0 & 0 \\
.0 & .0 & .0 & 0 & .0 & 0 & 0 & .0 & 0 \\
.0 & .0 & .0 & 0 & & 0 & 0
\end{tabular}
*** EQUIPMENT SCHEDULES ***
NO. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & . 0 & .0 & .0 & .0 & - 0 & . 0 & 1500.0 & .0 & .0 & . 0 \\
\hline & .0 & .0 & . 0 & .0 & . 0 & 2000. 2 & .0 & .0 & 0 & 500.0 \\
\hline & . 0 & .0 & .0 & .0 & & & & & & \\
\hline \multirow[t]{4}{*}{NO.} & 2 & & & & & & & & & \\
\hline & .0 & .0 & .0 & .0 & . 0 & . 0 & .0 & 1500.0 & - 0 & - 0 \\
\hline & . 0 & . 0 & .0 & - 0 & 2000.0 & .0 & . 0 & - 0 & .0 & 1000.0 \\
\hline & .0 & .0 & - 0 & - 0 & & & & & & \\
\hline \multirow[t]{4}{*}{NO.} & 3 & & & & & & & & & \\
\hline & .0 & .0 & .0 & - 0 & .0 & - 0 & . 0 & & . 0 & . 0 \\
\hline & .0 & .0 & .0 & . 0 & . 0 & . 0 & .0 & . 0 & . 0 & .0 \\
\hline & .0 & .0 & .0 & \(\bigcirc\) & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & 1 & AND & 10 & 3 & 0 & 0 & . 0 & 25.0 & 10.5 & .000 & .00 \\
\hline 11 & 2 & AND & 9 & 1 & 0 & 0 & 270.0 & 90.0 & 8.1 & .000 & .00 \\
\hline 12 & 2 & AND & 8 & 1 & 1 & 0 & . 0 & 90.0 & 9.7 & .000 & .00 \\
\hline 13 & 2 & AND & 3 & 2 & 1 & \(u\) & 90.0 & 90.0 & 8.1 & .000 & . 00 \\
\hline 14 & 2 & AND & 10 & 3 & 0 & 0 & . 0 & -1.0 & 13.5 & .000 & .00 \\
\hline 15 & 2 & A, VD & 10 & 3 & 0 & 0 & . 0 & 25.0 & 13.5 & \(.200+04\) & .50 \\
\hline 16 & 3 & AND & 8 & 1 & 1 & 0 & . 0 & 90.0 & 5.2 & .000 & .00 \\
\hline 17 & 3 & AIND & 4 & 2 & 0 & 0 & 90.0 & 90.0 & 5.4 & .000 & .00 \\
\hline 18 & 3 & ANO & 1 & 2 & 0 & 1 & 90.0 & 90.0 & . 7 & .000 & . 00 \\
\hline 19 & 3 & AND & 10 & 3 & 0 & 0 & -0 & -1.0 & 6.0 & . 000 & .00 \\
\hline 20 & 3 & \(\triangle N D\) & 10 & 3 & 0 & 0 & .0 & 25.0 & 6.0 & . \(2000+04\) & . 50 \\
\hline 21 & 4 & AND & 8 & 1 & 0 & 1 & . 0 & 90.0 & 3.4 & .000 & .00 \\
\hline 22 & 4 & AND & 5 & 2 & 0 & 0 & 90.0 & 90.0 & 5.4 & .000 & . 00 \\
\hline 23 & 4 & AND & 10 & 3 & 0 & 0 & .0 & -1.0 & 4.7 & . 000 & . 00 \\
\hline 24 & 4 & AND & 10 & 3 & 0 & - & - 0 & 25.0 & 4.0 & .000 & .00 \\
\hline 25 & 5 & AND & 8 & 1 & 0 & 0 & . 0 & 90.0 & 10.8 & .000 & . 00 \\
\hline 26 & 5 & AND & 9 & 1 & 1 & 7 & 90.0 & 90.0 & 6.7 & \(.187+05\) & .50 \\
\hline 27 & 5 & AND & 6 & 2 & 0 & 0 & 180.0 & 90.0 & 10.8 & .000 & .00 \\
\hline 28 & 5 & ANi) & 1 & 2 & 0 & 1 & 90.0 & 90.0 & . 7 & .000 & .00 \\
\hline 29 & 5 & AND & 10 & 3 & 0 & 0 & .0 & -1.0 & 12.0 & .000 & .00 \\
\hline 30 & 5 & AND & 10 & 3 & 0 & 0 & . 0 & 25.0 & 12.0 & .000 & .00 \\
\hline 31 & 6 & AND & 9 & 1 & 1 & 0 & 90.0 & 90.0 & 5.3 & \(.187+05\) & . 50 \\
\hline 32 & 6 & ANO & 7 & 2 & 0 & 0 & 180.0 & 90.0 & 10.8 & .000 & .00 \\
\hline 33 & 6 & AND & 10 & 3 & 0 & 0 & 0 & -1.0 & 10.0 & . 000 & .00 \\
\hline 34 & 6 & AND & 10 & 3 & 0 & 0 & 180.0 & 25.0 & 10.0 & .000 & .00 \\
\hline 35 & 7 & AND & 9 & 1 & 1 & 0 & 90.0 & 90.0 & 5.3 & \(.187+05\) & .50 \\
\hline 36 & 7 & AND & 8 & 1 & 0 & 0 & 180.0 & 90.0 & 10.8 & .000 & .00 \\
\hline 37 & 7 & AND & 10 & 3 & 0 & 0 & . 0 & -1.0 & 10.0 & .000 & .00 \\
\hline 38 & 7 & AND & 10 & 3 & 0 & 0 & 180.0 & 25.0 & 10.0 & .000 & .00 \\
\hline
\end{tabular}

```

*** WINDOW SASH, VERTICAL FINS, AND HORIZONTAL OVERHANG ***

```

```

*** WALL TYPES ***
NO. 1
B: .0935621 [.0.335535 (.0215937 .0000355 % .0000000 .0000000 .00000000
C: . 3487446
U: 4000000
WSABS: . 5COOOOU
NO. }
B: .9502558 .7559825 .0097985 .0000000 .0000000 .0000000 .0000000
D:1.0000000 =.0515613 .0000214 .0000000 .0000000 .0000000 .0000000
C: 1.7160367
U:1.80900C0
WSABS: .6000000
NO. 3
D:1.0000000-.9278918 . 1958007 -.0081736 .0000372 .0000000 .0000000
C: .0779780
U: . 3000000
WSABS: . 6U00000
*** WINDOW TYPES ***
NO. U=VALUE1 U-VALUE2 SH.COEF. SH.TYPE(I=INSIDE,O=OUTSIDE)
NO SHUTTERS SHUTIERS
2.9000 .7500 .00 1
*** DOOR TYPES ***
NO. U=VALUE
SOLAR ABS.
.6000
.6000

```
```

DATE: 1/ 1=1964
HOUR: 1
DRY BULB TEMP: $\quad 1.1$ CELCIUS
WIND SPEED
WIND DIRECIIUN:
CLOUD COVER
: 20.0 DEG FRDM NORTH

```
HEAT FLOW THROUGH NALLS, ETC. AT 2 : C ROOM TEMP. (WATTS),
AND AIR FLOW THROUGH CRACKS IN WALLS (KG/S)
HEAT AND AIR FLON INTO RJOM/HOUSE POSITIVE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 22. & 0. & 0. & 2. & 2. & 0. & .00000 & . 00000 \\
\hline 23 & 0. & 0. & -8. & 0. & 0. & . 00000 & - 00000 \\
\hline 24 & 0. & 0. & =8. & 0. & 0. & . 00000 & . 00000 \\
\hline 25 & 0 。 & 0. & -76. & 0. & 0. & . 00000 & . 00000 \\
\hline 26 & 0. & 0. & -47. & 0. & 0. & . 47515 m 02 & . 00000 \\
\hline 27 & 0. & 0. & 4. & 4. & 0. & . 00000 & 00000 \\
\hline 28 & 0. & 0. & 0. & 0. & 0. & . 00000 & - 00000 \\
\hline 29 & 0. & 0. & - 24. & 0 & 0. & . 00000 & - 00000 \\
\hline 30 & 0. & 0. & -24. & 0 \% & 0. & . 00000 & 00000 \\
\hline 31 & 0. & 0. & - 38. & 0. & 0. & . \(47515-02\) & -00000 \\
\hline 32 & 0. & 0. & 4. & 5. & 0. & - 00000 & - 0000000 \\
\hline 3.3 & 0 。 & 0. & -20. & ก. & \%. & - 00000 & \\
\hline 34 & 0. & 0. & -20, & 0. & 0. & . 00000 & - 00000 \\
\hline 35 & 0. & 0. & -38. & 0. & 0. & . \(47515=02\) & -00000 \\
\hline 36 & 0. & 0. & -76. & 0. & 0 & . 00000 & - 00000 \\
\hline 37 & 0. & 0. & -20. & 0 & 0 \% & - 0000 & - 00000 \\
\hline 38 & 0. & 0. & -20. & 0. & 0 & . 00000 & . 00000 \\
\hline
\end{tabular}

HEATING (NEG.) AND COOLING(POS,) LOADS AT 20 C ROOM TEMP. (WATTS)


HEAT OUTPUT AND ROOM TEMPERATURE


HOT WATER HEATER (ASSUMING 75 ( TEMP.RISE)

HOT WATER DEMAND : \(\quad\) : WATTS
AVG. ELECTR. INPUT : O. WATTS STIRED HEAT AT END OF HOUR: 15700. WATTHRS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 22 & 0. & 0. & 3. & 4. & 0. & ． 00000 & .00000 \\
\hline 23 & 0. & 0. & －35． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 24 & 0 。 & 0. & －34． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 25 & 0. & 0. & －103． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 26 & 0. & 0. & －64． & 0. & 0. & ． 47515 －02 & ． 00000 \\
\hline 27 & 0. & 0. & 6. & 6. & 0. & ． 00000 & ． 00000 \\
\hline 28 & 0. & 0. & 0. & 1. & 0. & ． 00000 & ． 00000 \\
\hline 29 & 0. & 0. & －104． & 0. & \(n\). & ． 00000 & ． 00000 \\
\hline 30 & 0. & 0. & －103． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 31 & 0. & 0 。 & －51． & 0. & 0. & ． \(47515=02\) & ． 00000 \\
\hline 32 & 0. & 0. & 4. & 6. & 0. & ． 00000 & ． 00000 \\
\hline 3.3 & 0 ， & 0. & －86． & 0. & 0. & ． 00000 & － 00000 \\
\hline 34 & 0. & \(\bigcirc\). & －86． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 35 & 0. & 0. & －51． & 0. & 0. & ． 47515 －02 & ． 00000 \\
\hline 36 & 0. & 0. & －103． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 37 & 0. & 0. & －86． & 0. & 0. & ． 00000 & ． 00000 \\
\hline 38 & 0. & 0. & －86． & 0. & 0. & .00000 & .00000 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATE & MEAN DET & \begin{tabular}{l}
** DAILY \\
HEATING
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\& APPL.
\end{tabular} & \[
\begin{gathered}
\text { CONS HOT } \\
\text { WATER }
\end{gathered}
\] & ** TOTAL HEATING & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\& \(A P P L\). \\
KWH
\end{tabular} & \[
\begin{gathered}
\text { CONS } \\
\text { HOT } \\
\text { WATER }
\end{gathered}
\]
\[
K W H
\] \\
\hline & DEG C & KWH & KWH & KWH & KWH & KWH & \\
\hline \(1 / 1\) & -2.? & 62. & 11. & 0 & 62. & 11. & 0. \\
\hline 211 & -2.2 & 70. & 11. & 0. & 132. & 21. & 0. \\
\hline \(3 / 1\) & 3.5 & 45. & 11. & 0. & 177. & 32. & 0. \\
\hline 4/1 & 1.4 & 49. & 11. & 0. & 226. & 43. & 0. \\
\hline \(5 / 1\) & 1.8 & 53. & 11. & 0. & 279. & 54. & 0. \\
\hline 611 & \(-5.3\) & 72. & 11. & 0. & 350. & 64. & 0. \\
\hline \(7 / 1\) & -8.6 & 89. & 11. & 0. & 439. & 75. & 0. \\
\hline \(8 / 1\) & -6.0 & 84. & 11. & 0. & 524. & 86. & 0. \\
\hline 911 & -2.0 & 68. & 11. & 0. & 592. & 97. & 0. \\
\hline \(10 / 1\) & -1.3 & 60. & 11. & 0. & 652. & 107. & 0. \\
\hline 11/1 & -3.9 & 71. & 11. & 0. & 723. & 118. & 0. \\
\hline 1211 & -4.3 & 73. & 11. & 0. & 796. & 129. & 0. \\
\hline \(13 / 1\) & -7.2 & 79. & 11. & 0. & 875. & 140. & 0. \\
\hline 1411 & -6. 8 & 82. & 11. & 0. & 957. & 150. & 0. \\
\hline 1511 & -6.0 & 74. & 11. & 0. & 1031. & 161. & 0. \\
\hline \(16 / 1\) & -5.8 & 76. & 11. & 0 \% & 1107. & 172. & 9. \\
\hline \(17 / 1\) & -6.8 & 77. & 11. & 0. & 1184. & 182. & 0. \\
\hline 18/1 & -8.7 & 85. & 11. & 0. & 1269. & 193. & 0. \\
\hline 1911 & -9.5 & 91. & 11. & 0. & 1360. & 204. & 0. \\
\hline 2011 & - 5.1 & 76. & 11. & 0. & 1436. & 215. & 0. \\
\hline 21/1 & 1.8 & 49. & 11. & 0. & 1484. & 225. & 0. \\
\hline 22.1 & 2.1 & 45. & 11. & 0. & 1529. & 236. & 0. \\
\hline \(23 / 1\) & -. 8 & 58. & 11. & 0. & 1587. & 247. & 0. \\
\hline 24/1 & -. 2 & 55. & 11. & 0. & 1642. & 257. & 0. \\
\hline 25/1 & . 6 & 48. & 11. & 0. & 1690. & 268. & 0. \\
\hline 2511 & -3.a & 62. & 11. & 0. & 1752. & 279. & 0. \\
\hline 27/1 & -7.1 & 73. & 10. & 0. & 1825. & 289. & 0. \\
\hline 28/1 & -1.5 & 61. & 11. & 0. & 1886. & 300. & 0. \\
\hline 2911 & 1.8 & 43. & 11. & 0. & 1929. & 311. & 0. \\
\hline \(30 / 1\) & 2.1 & 40. & 11. & 0. & 1969. & 322. & 0. \\
\hline \(31 / 1\) & -. 2 & 46. & 11. & 0. & 2016. & 332. & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{DATE}} & MEAN & \begin{tabular}{l}
** DAILY \\
HEATING
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS
\end{tabular} & \[
\begin{gathered}
\text { CONS: } \\
\text { HOT }
\end{gathered}
\] & ** TOTAL HEATING & \begin{tabular}{l}
ENERGY \\
LIGHTS
\end{tabular} & CONS. **
HOT \\
\hline & & DBY & & \& APPL. & WATER & & \& APPL. & WATER \\
\hline & & DEG C & KWH & \(\mathrm{K} W \mathrm{H}\) & KWH & KWH & KWH & KWH \\
\hline \(1 /\) & 2 & -2.3 & 59. & 11. & 0. & 2075. & 343. & 0. \\
\hline 21 & 2 & -2.2 & 57. & 11. & 0. & 2132. & 353. & 0. \\
\hline \(3 /\) & 2 & 1.4 & 46. & 11. & 0. & 2178. & 364. & 0. \\
\hline 41 & 2 & . .9 & 50. & 11. & 0 . & 2228. & 375 & 0. \\
\hline \(5 /\) & 2 & -3.8 & 56. & 10. & 0. & 2284. & 385. & 0. \\
\hline 61 & 2 & -5.0 & 61. & 10. & 0. & 2345. & 395. & 0. \\
\hline 71 & 2 & -3.7 & 62. & 11. & 0. & 2407. & 406. & 0. \\
\hline 81 & 2 & 3.6 & 37. & 10. & 0 . & 2443. & 416. & 0. \\
\hline 91 & 2 & . 0 & 40. & 11. & 0. & 2484. & 427. & 0. \\
\hline 101 & 2 & 1.2 & 11. & 10. & 0. & 2524. & 437. & 0. \\
\hline 111 & 2 & -1.5 & 50. & 10. & 0. & 2574. & 448. & 0 . \\
\hline 121 & 2 & -8.9 & 74. & 10. & 0. & 2648. & 458. & 0 \\
\hline 131 & 2 & -7.0 & 80. & 10. & 0. & 2728. & 468. & 0. \\
\hline 141 & 2 & -4.9 & 69. & 11. & 0. & 2797. & 479. & 0. \\
\hline \(15 /\) & 2 & \(-5.3\) & 71. & 11. & 0. & 2868. & 490. & 0. \\
\hline 161 & 2 & -11.2 & 87. & 10. & 0 \% & 2955. & 500. & 0. \\
\hline 171 & 2 & \(-10.5\) & 85. & 10. & 0. & 3040. & 510. & 0. \\
\hline 181 & 2 & -11.1 & 80. & 10. & 0 . & 3121. & 521. & 0. \\
\hline 191 & 2 & -8.0 & 79. & 10. & 0. & 3199. & 531. & 0. \\
\hline 201 & 2 & -6.3 & 70. & 10. & 0. & 3269. & 541. & 0. \\
\hline 21/ & 2 & -6.2 & 56. & 10. & 0. & 3335. & 552. & 0. \\
\hline 221 & 2 & -1.8 & 55. & 11. & 0. & 3390. & 562. & 0. \\
\hline \(23 /\) & 2 & -2.6 & 55. & 11. & 0. & 3444. & 573. & 0. \\
\hline 24/ & 2 & \(-5.3\) & 64. & 10. & 0. & 3508 。 & 583. & 0. \\
\hline 25/ & 2 & \(=3.6\) & 60. & 10. & 0. & 3569. & 593. & 0. \\
\hline 261 & 2 & -1.2 & 44. & 10. & 0. & 3613. & 604. & 0. \\
\hline \(27 /\) & 2 & -1.0 & 47. & 10. & 0. & 3660. & 614. & 0. \\
\hline 28/ & 2 & . 4 & 46. & 11. & 0. & 3706. & 625. & 0. \\
\hline 291 & 2 & 1.4 & 38 . & 10. & 0. & 3745. & 635. & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{aligned}
& \text { MEAN } \\
& \text { DBT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ** DAILY } \\
& \text { HEATING }
\end{aligned}
\] & ENERGY LIGHTS \& \(A P P L\). & \[
\begin{gathered}
\text { CONS: } \\
\text { HOT } \\
\text { WATER }
\end{gathered}
\] & \begin{tabular}{l}
* TOTAL \\
HEATING
\end{tabular} & \begin{tabular}{l}
ENERGY \\
LIGHTS \\
\& APPL.
\end{tabular} & \[
\begin{aligned}
& \text { CONS } \\
& \text { HOT } \\
& \text { WATER }
\end{aligned}
\] \\
\hline & DEG C & KWH & KWH & KWH & KWH & KWH & KWH \\
\hline \(1 / 4\) & 1.0 & 25. & 10. & 0. & 4883. & 960. & 0. \\
\hline 214 & 2.6 & 17. & 10. & 0. & 4901. & 970 & 0. \\
\hline 314 & 3.3 & 13. & 10. & 0 & 4913. & 979. & 0. \\
\hline 414 & 3.5 & 15. & 10. & 0. & 4928. & 9.89. & 0. \\
\hline \(5 / 4\) & 3.1 & 19. & 10. & 0. & 4947. & 1000. & 0. \\
\hline 614 & 2.5 & 23. & 10. & 0. & 4969. & 1010. & 0. \\
\hline 714 & 2.9 & 20. & 10. & 0. & 4989. & 1020. & 0 \\
\hline 814 & 2.1 & 23. & 10. & U. & 5012. & 1030. & 0. \\
\hline 914 & 1.1 & 32. & 10. & 0. & 5045. & 1040. & 0. \\
\hline 1014 & 3.6 & 26. & 10. & 0. & 5071. & 1050. & 0. \\
\hline 1114 & 2.5 & 26. & 11. & 0. & 5097. & 1061. & 0. \\
\hline 1214 & 5.2 & 18. & 10. & 0. & 5116. & 1071. & 0. \\
\hline \(13 / 4\) & 7.1 & 6. & 10. & 0. & 5122. & 1081. & 0. \\
\hline 1414 & 4.5 & 6. & 10. & 0. & 5128. & 1091. & 0 , \\
\hline \(15 / 4\) & 4.6 & 13. & 10. & 0. & 5140. & 1101. & 0. \\
\hline 1614 & 3.9 & 18. & 10. & 0. & 5159. & 1111. & 0. \\
\hline 1714 & 7.9 & 12. & 10. & 0. & 5171. & 1121. & 0. \\
\hline 18/4 & 9.9 & 5. & 10. & 0. & 5176. & 1131. & 0. \\
\hline 1914 & 11.0 & 1. & 10. & 0. & 5176. & 1141. & 0. \\
\hline 2014 & 11.8 & 0. & 10. & 0. & 5176. & 1151. & 0. \\
\hline 21/4 & 10.2 & 0 & 10. & 0. & 5176. & 1161. & 0. \\
\hline 2214 & 10.5 & \(\bigcirc\) & 10. & 0. & 5176. & 1171. & 0. \\
\hline 2314 & 8.2 & 2. & 10. & 0. & 5179. & 1181. & 0. \\
\hline 24/4 & 5.2 & 14. & 10. & 0. & 5193. & 1191. & 0. \\
\hline \(25 / 4\) & 3.4 & 21. & 10. & 0. & 5214. & 1201. & 0. \\
\hline 2614 & 3.7 & 17. & 10. & 0. & 5232. & 1211. & 0. \\
\hline 2714 & 8.0 & 7. & 10. & 0. & 5239. & 1221. & 0. \\
\hline 2814 & 8.9 & 5. & 10. & 0. & 5244. & 1232. & 0. \\
\hline 2914 & 7.7 & 6. & 10. & 0. & 5250. & 1242. & 0. \\
\hline 3014 & 9.0 & 8. & 10. & 0. & 5258. & 1252. & 0. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{DATE} & & ＊＊DAILY & ENERGY & CONS．＊＊ & ＊＊TOTAL & EnERGY & CONS．＊＊ \\
\hline & MEAN & HEATING & LIGHTS & HOT & ATING & LIGHTS & HOT \\
\hline & DBT & & \(\& A P P L\) ． & WATER & & \＆APPL． & ATER \\
\hline & DEG C & KWH & KWH & KWH & KWH & KWH & Kwh \\
\hline \(1 / 10\) & 4.4 & 15. & 10. & 0 。 & 5402. & 1478. & 0. \\
\hline \(2 / 10\) & 7.9 & 14. & 10. & 0. & 541\％． & 1488． & 0. \\
\hline \(3 / 10\) & 6.9 & 10. & 10. & 0. & 5426． & 1499. & 0. \\
\hline \(4 / 10\) & 5.5 & 14. & 10. & 0. & 5441. & 1509． & 0. \\
\hline \(5 / 10\) & 6.3 & 12. & 10. & 0. & 5452. & 1519. & 0 。 \\
\hline \(6 / 10\) & 7.5 & 11. & 11. & 0. & 5463. & 1530. & 0. \\
\hline 7110 & 10.0 & 10. & 11. & 0. & 5473. & 1540. & 0. \\
\hline \(8 / 10\) & 10.3 & 4. & 10. & 0. & 5478. & 1551． & 0. \\
\hline 9／10 & 9.3 & 10. & 11. & 0. & 5488． & 1562. & 0. \\
\hline 10／10 & 9.6 & 14. & 11. & 0. & 5502. & 1572． & 0. \\
\hline 11／10 & 7.7 & 20. & 11. & 0. & 5522． & 1583. & 0. \\
\hline 12／10 & 7.7 & 21. & 11. & 0 。 & 5543. & 1594. & 0. \\
\hline \(13 / 10\) & 6.6 & 23. & 11. & 0. & 5566. & 1605． & 0. \\
\hline 14／10 & 6.0 & 23. & 11. & 0. & 5589． & 1615. & 0. \\
\hline 15／10 & 4.0 & 24． & 11. & 0. & 5613. & 1626. & 0. \\
\hline 16／10 & 5.9 & 22. & 11. & 0. & 5635. & 1637. & 0. \\
\hline 17110 & 6.4 & 18. & 11. & 0. & 5653. & 1648. & 0. \\
\hline 18／10 & 4.7 & 19. & 11. & 0 。 & 5672． & 1658． & 0. \\
\hline 19／10 & 4.2 & 22. & 11. & 0. & 5694． & 1669． & 0. \\
\hline 20110 & 9.1 & 15. & 11. & 0. & 5710. & 1679. & 0. \\
\hline 21／10 & 7.5 & 16. & 10. & 0 ： & 5725. & 1690. & 0. \\
\hline 22110 & 4.6 & 24. & 11. & 0. & 5750. & 1700. & 0. \\
\hline 23／10 & 6.3 & 25． & 11. & 0. & 5775． & 1711： & 0. \\
\hline 24／10 & 5.8 & 26. & 11. & 0. & 5801. & 1722． & 0. \\
\hline 25／10 & 1.8 & 26. & 11. & 0. & 5827． & 1732． & 0. \\
\hline 26110 & －1．2 & 36. & 10. & 0. & 5863. & 1743. & 0. \\
\hline 27／10 & －． 7 & 44. & 11. & 0. & 5907. & 1754. & 0. \\
\hline 28／10 & ． 3 & 44. & 11. & 0. & 5951． & 1764． & 0. \\
\hline 29／10 & －． 4 & 44. & 11. & 0. & 5996. & 1775． & 0 \\
\hline 30／10 & －． 8 & 37. & 10. & 0. & 6033. & 1785. & 0. \\
\hline 31／10 & ． 1 & 42. & 11． & 0. & 6075． & 1796． & 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DATE & MEAN & \begin{tabular}{l}
\[
* * O A I L Y
\] \\
HEATING
\end{tabular} & ENERGY
LIGHTS & \[
\text { CONS. }_{\text {HOT }}{ }^{* *}
\] & ** TOTAL HEATJNG & \begin{tabular}{l}
ENERGY \\
LIGHTS
\end{tabular} & \[
\begin{gathered}
\text { CONS }_{*}^{* *} \\
\text { HOT }
\end{gathered}
\] \\
\hline & DBT & & 8 APPL. & WATER & & \& \(A P P L\) & WATER \\
\hline & DEG C & KWH & KWH & KWH & KWH & KWH & KWH \\
\hline 1/11 & 2.1 & 37. & 11. & 0. & 6112. & 1807. & 0. \\
\hline 2/11 & 3.3 & .32. & 11. & 0. & 6143. & 1818. & 0. \\
\hline 3/11 & -. 4 & 39. & 10. & 0. & 6182. & 1828. & 0. \\
\hline \(4 / 11\) & -1.4 & 53. & 11. & 0. & 6235. & 1839. & 0 \\
\hline 5/11 & . 4 & 43. & 11. & 0. & 6278. & 1850. & 0. \\
\hline \(6 / 11\) & 1.0 & 45. & 11. & 0. & 6323. & 1860. & 0 \\
\hline \(7 / 11\) & \(-1.4\) & 55. & 11. & 0. & 6379. & 1871. & 0. \\
\hline \(8 / 11\) & -. 0 & 53. & 11. & 0. & 6432 . & 1882. & 0 \\
\hline 9/11 & -1.9 & 62. & 11. & 0. & 6493. & 1892. & 0 \\
\hline 10/11 & - . 1 & 54. & 11. & 0. & 6547. & 1903. & 0. \\
\hline 11/11 & 2.6 & 41. & 11. & 0 & 6588. & 1914. & 0. \\
\hline 12/11 & 2.7 & 43. & 11. & 0. & 6632. & 1924. & 0 \\
\hline 13/11 & . 8 & 50. & 11. & 0. & 6682. & 1935. & 0. \\
\hline 14/11 & 4.3 & 35. & 11. & 0. & 6717. & 1946. & 0 \\
\hline 15/11 & 4.9 & 32. & 11. & 0. & 6749. & 1957. & 0 \\
\hline 16/11 & 1.2 & 45. & 11. & 0. & 6794. & 1967. & 0 \\
\hline \(17 / 11\) & . 6 & 33. & 11. & 0. & 6846. & 1978. & 0 \\
\hline 18/11 & 2.2 & 41. & 11. & 0. & 6881. & 1989. & 0 \\
\hline 19/11 & -. 8 & 59. & 11. & 0. & 6946. & 2000. & 0 \\
\hline 20/11 & \(=.6\) & 54. & 11. & 0. & 7000. & 2010. & 0 \\
\hline 21/11 & . 6 & 51. & 11. & 0. & 7051. & 2021. & 0. \\
\hline 22/11 & 1.5 & 48. & 11. & 0. & 7099. & 2032. & 0 \\
\hline 23/11 & 1.2 & 47. & 11. & 0. & 7146. & 2043. & 0 \\
\hline 24/11 & 3.1 & 42. & 11. & 0. & 7189. & 2053. & 0 \\
\hline 25/11 & 2.6 & 42. & 11. & 0. & 723\%. & 2064. & 0. \\
\hline 26/11 & . 5 & 50. & 11. & 0. & 7281. & 2074. & 0 \\
\hline 27/11 & 2.0 & 44. & 11. & 0. & 7325. & 2085. & 0 \\
\hline 28/11 & - 4 & 58. & 11. & 0. & 7383. & 2096. & 0 \\
\hline 29/11 & -1.4 & 59. & 11. & 0. & 744. & 2107. & 0 \\
\hline 30/11 & -2.3 & 63. & 11. & 0. & 7504. & 2117. & 0 \\
\hline
\end{tabular}

5. REFERENCES
1. ASHRAE Handbook of Fundamentals, New York 1972.
2. Steohenson, D.G., Equations for Solar Heat Gain through windows. Solar Energy, Vol. IX, No. 2, April-June 1965, page 8l-86.
3. NECAP - NASA Energy and Cost Analyses Program Energineering Manual, NASA Lanqley Research Center 1975.
4. Davenport, A.G., Wind Loads on Structures, Technical paper no. 88 of the Division of Building Research, National Research Council. Ottawa 1960.
5. Stephenson, D.G. and Mitalas, G.P., Calculation of Heat Conduction Transfer Functions for Multi layer Slabs. ASHRAE Transactions, Vol. 77, Part II, 1971, p. 117-126.
6. Chien, N., Feng, Y., Wang, H.J., Siao, T.T., Nind Tunnel Studies of Pressure Distribution on Elementary Building Forms, Iowa Institute of Hydraulic Research, State University of Iowa City, 1954.
7. Bonne, U., Torborg, T.H. Janssen, J.E. Diqital Simulation of the Performance of Combustion Heating Systems, AIChE 15 th Annual Regional Symposium, Twin City Section, Bloomington, Minnesota, February 1975.
8. Bonne, U., Johnson, A.E., Thermal Efficiency in NonModulating Combustion Systems, Proceedings of the conEerence on Improved Efficiency in HVAC Equipment and Components for Residential and Small Commercial Buildings, Purdue University, October 1974.
9. Mitalas,G.P. and Arseneault,J.G., FORTRAN IV program to calculate Z-transfer functions for the calculation of transient heat transfer through walls and roofs, DBR computer program no. 33, Division of Building Research, National Research Council. Ottawa 1972.
10. Larsen, B.T., Energy Consumption of Residential Buildings. The Computer program ENCORE, Part 2, Documentation, Norwegian Building Research Institute Computer Program Library, Program No. 12, Oslo 1977.
11. Larsen, B.T., Digital Simulation of Energy Consumption in Residential Buildings. Presented at International CIB Symposium on Energy Conservation in the Built Environment. Building Research Station, Garston, 6-8 April 1976.

\section*{APPENDIXES \\ 6.1 Appendix A. Program restrictions:}

When preparing data for the program the user must be aware of the restrictions listed below. The restrictions are due to core storage allocation (array declarations) in the program. The program does not check the input to see if the limits are exceeded:
```

Max. no. of walls50

```
" " " rooms ..... 20
" " " walls in a room ..... 15
" " windows ..... 20
" " " doors ..... 20
" " " wall types ..... 10
" " \("\) window types ..... 5
\(\because\) " \("\) door types ..... 5
" " "occupancy schedules ..... 15
" " " const. light schedules ..... 20
" \(\quad\) " var. light schedules ..... 20
" " "equipment schedules ..... 8
" " \("\) hot water cons. schedules ..... 7
" " thermostat setpoint schedules. ..... 8

\subsection*{6.2 Appendix B. Z-transfer function coefficients of some typical Norwegian wall/floor/roof constructions}

The ENCORE program calculates heat flow through building components using the "transfer function method" as described in Chapter 22 of the ASHRAE Handbook of Fundamentals. \({ }^{l}\) It is carried out using sol-air temperature to represent outdoor conditions, and an assumed constant indoor air temperature (variations in indoor air temperature are taken care of later on). Furthermore it is assumed that both indoor and outdoor surface heat transfer coefficients are constant. Thus, the heat gain through a wall, floor or roof is given by:
\[
q_{\tau}=A\left[\sum_{n=0}^{\sum b_{n} t_{\tau-n \Delta}-\sum_{n=1} \frac{d_{n} q_{\tau}-n \Delta}{A}-t_{r} \Sigma c_{n}} \underset{n=0}{ }\right]
\]
where:
```

A = indoor surface area of wall, floor or roof (m
q}\mp@subsup{|}{}{\prime}=\mathrm{ heat gain by the room through indoor surfaces of
a wall, floor or roof (Watts)
\tau = time
\Delta = time interval
n = summation index (each summation has as many terms as
there are nonnegligible values of the coefficients)
t
tr}=\mathrm{ constant indoor room temperature (}\mp@subsup{}{}{\circ}\textrm{C}
\mp@subsup{b}{n}{}}=\mathrm{ transfer function coefficients
dn

```

The transfer function coefficients \(b^{\prime}\) 's and \(d^{\prime} s\), as well as U-value and \(\sum_{n=0} C_{n}\), are listed in Tables B2 and B3 for various wall, floor
and roof constructions. The thermal properties of the various layers that make up roofs, floors and walls are listed in Table B1. The transfer function coefficients for different constructions can be calculated using the computer program outlined in Reference 9. Approximate values can be obtained, however, by selecting a set of transfer function coefficients from Tables B2 or B3 for a construction that is nearly the same as the construction under consideration and multiplying the \(b^{\prime} s\) and \(c^{\prime} s\) by the ratio of the U-value of the construction under consideration over the U-value of construction that was selected from Table B2 or B3.

Table B.l Thermal properties and code numbers of layers used in calculations of coefficients for wall, floor and roof transfer functions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & \begin{tabular}{l}
Code \\
No .
\end{tabular} & Thickness m & \[
\begin{aligned}
& \text { Conductivity } \\
& \mathrm{W} /\left(\mathrm{m}^{\mathrm{O}} \mathrm{C}\right)
\end{aligned}
\] & \[
\underset{\mathrm{kg} / \mathrm{m}}{\mathrm{D}} \mathrm{~J}
\] & \begin{tabular}{l}
Spec.heat \\
\(\mathrm{J} /\left(\mathrm{kg}{ }^{\mathrm{C}}\right.\) )
\end{tabular} & \(\underset{\left(\mathrm{m}^{2 \mathrm{O}} \mathrm{C}\right) / \mathrm{W}}{\text { Resistance }}\) \\
\hline Outside surface resistance & 1 & & & & & 0.04 \\
\hline Inside " & 2 & & & & & 0.13 \\
\hline Air space resistance & 3 & & & & & 0.17 \\
\hline \begin{tabular}{l}
2"x2" studs c/c 600 mm \\
and 50 mm mineral wool
\end{tabular} & 4 & 0.05 & 0.05 & 75. & 980. & \\
\hline \begin{tabular}{l}
2"x4" studs c/c 600 mm \\
and 100 mm mineral wool
\end{tabular} & 5 & 0.1 & 0.055 & 95. & 1000. & \\
\hline \begin{tabular}{l}
2"x2" horizontal battens \\
\(\mathrm{c} / \mathrm{c} 900 \mathrm{~mm}\) and 50 mm min.wool
\end{tabular} & 6 & 0.05 & 0.047 & 60. & 930. & \\
\hline \[
\begin{aligned}
& 2 " x 8 " \text { joists c/c } 600 \mathrm{~mm} \\
& \text { and } 100 \mathrm{~mm} \text { mineral wool }
\end{aligned}
\] & 7 & 0.1 & 0.05 & 75. & 980. & \\
\hline \[
\begin{aligned}
& 2 " x 8 " \text { joists c/c } 600 \mathrm{~mm} \\
& \text { and } 150 \mathrm{~mm} \text { mineral wool }
\end{aligned}
\] & 8 & 0.15 & 0.05 & 75. & 980. & \\
\hline \begin{tabular}{l}
2"x8" joists c/c 600 mm \\
and 175 mm mineral wool
\end{tabular} & 9 & 0.175 & 0.05 & 75. & 980. & \\
\hline \[
\begin{aligned}
& 2^{\prime \prime} \times 8 " \text { joists c/c } 600 \mathrm{~mm} \\
& \text { and } 200 \mathrm{~mm} \text { mineral wool }
\end{aligned}
\] & 10 & 0.2 & 0.05 & 75. & 980. & \\
\hline 100 mm mineral wool & 11 & 0.1 & 0.041 & 35. & 840. & \\
\hline 4" bricks & 12 & 0.108 & 0.7 & 1800. & 800. & \\
\hline
\end{tabular}

Table B.l Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Description & Code
No. & \[
\underset{\mathrm{m}}{\text { Thickness }}
\] & \[
\underset{\mathrm{W} /\left(\mathrm{m}_{\mathrm{O}} \mathrm{C}\right)}{\text { Conductivity }}
\] & \[
\underset{\mathrm{kg} / \mathrm{m}}{\mathrm{Density}}
\] & \[
\underset{J /(k g}{\text { Spec.he }} \underset{\text { ) }}{t}
\] & Resistance \(\left(\mathrm{m}^{2} \mathrm{C}\right) / \mathrm{W}\) \\
\hline 100 mm l.w.concrete blocks & 13 & 0.1 & 0.26 & 700. & 1500. & \\
\hline 150 mm " " & 14 & 0.15 & 0.26 & 700. & 1500. & \\
\hline 200 mm " " & 15 & 0.2 & 0.26 & 700. & 1500. & \\
\hline 250 mm " " " & 16 & 0.25 & 0.26 & 700. & 1500. & \\
\hline 100 mm h.w. concrete & 17 & 0.1 & 1.75 & 2300. & 880. & \\
\hline 150 mm " " & 18 & 0.15 & 1.75 & 2300. & 880. & \\
\hline 200 mm " & 19 & 0.2 & 1.75 & 2300. & 880. & \\
\hline 100 mm l.w. concrete & 20 & 0.1 & 0.2 & 500. & 1500. & \\
\hline 150 mm " " & 21 & 0.15 & 0.2 & 500. & 1500. & \\
\hline 200 mm " " & 22 & 0.2 & 0.2 & 500. & 1500. & \\
\hline 12 mm asphalt treated fiber board & 23 & 0.012 & 0.058 & 350. & 840. & \\
\hline 13 mm plaster board & 24 & 0.013 & 0.2 & 800. & 840. & \\
\hline 28 mm wood & 25 & 0.028 & 0.14 & 500. & 2500. & \\
\hline
\end{tabular}

Table B. 2 Transfer function coefficients for exterior walls, floors and roofs (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description \({ }^{\text {l }}\)} & \multirow[t]{2}{*}{Code nos. of layers} & \multicolumn{8}{|c|}{Coefficients \(\mathrm{b}_{\mathrm{n}}\) and \(\mathrm{d}_{\mathrm{n}}\) 2)} & \multirow[t]{2}{*}{U} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \stackrel{\infty}{\Sigma} C_{n} \\
& n=0
\end{aligned}
\]} \\
\hline & & & \(\mathrm{n}=0\) & \(\mathrm{n}=1\) & \(\mathrm{n}=2\) & \(\mathrm{n}=3\) & \(n=4\) & \(\mathrm{n}=5\) & \(\mathrm{n}=6\) & & \\
\hline 200 mm h.w. concrete & 1, 19, 2 & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\begin{array}{|l|l}
0.007252 \\
1.000000
\end{array}
\] & \[
\begin{array}{r}
0.172498 \\
-1.143274
\end{array}
\] & \[
\begin{aligned}
& 0.217459 \\
& 0.271005
\end{aligned}
\] & \[
\begin{array}{r}
0.028411 \\
-0.006665
\end{array}
\] & \[
\begin{aligned}
& 0.000252 \\
& 0.000004
\end{aligned}
\] & & & 3.518 & 0.42587 \\
\hline \(100 \mathrm{~mm} \mathrm{~h} . \mathrm{w}\). concrete and 50 mm mineral wool & \[
\begin{aligned}
& 1,17,4, \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& 0.007640 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.101335 \\
-0.825775
\end{array}
\] & \[
\begin{aligned}
& 0.074220 \\
& 0.069690
\end{aligned}
\] & \[
\begin{array}{r}
0.004713 \\
-0.001093
\end{array}
\] & 0.000014 & & & 0.774 & 0.18792 \\
\hline 150 mm h.w. concrete and 50 mm mineral wool & \[
\begin{aligned}
& 1,18,4 ; \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\begin{aligned}
& 0.000820 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.031446 \\
-1.065150
\end{array}
\] & \[
\begin{array}{l|l}
0.053992 \\
0.203238
\end{array}
\] & \[
\begin{array}{r}
0.010790 \\
-0.009645
\end{array}
\] & \[
0.000222
\] & & & 0.757 & 0.09727 \\
\hline 200 mm h.w. concrete and 50 mm mineral wool & \[
\left\lvert\, \begin{array}{ll}
1, & 19,4, \\
2
\end{array}\right.
\] & b
\[
\mathrm{d}
\] & \[
\left\lvert\, \begin{aligned}
& 0.000063 \\
& 1.000000
\end{aligned}\right.
\] & - \(\begin{array}{r}0.007785 \\ -1.317412\end{array}\) & \[
\begin{aligned}
& 0.028186 \\
& 0.417116
\end{aligned}
\] & \[
\begin{array}{|r|r|}
0.013269 \\
-0.032559
\end{array}
\] & \[
\begin{aligned}
& 0.000938 \\
& 0.000654
\end{aligned}
\] & 0.000008 & & 0.741 & 0.05025 \\
\hline 4" brick, 100 mm mineral wool, 4" brick & \[
\begin{aligned}
& 1,12,11 \\
& 12,2
\end{aligned}
\] & b & \[
\left\lvert\, \begin{aligned}
& 0.000000 \\
& 1.000000
\end{aligned}\right.
\] & - 0.000183 & \[
\begin{aligned}
& 0.002260 \\
& 1.160403
\end{aligned}
\] & \[
\begin{array}{r}
0.003526 \\
-0.2224422
\end{array}
\] & \[
0.001061
\] & \[
\begin{array}{r}
0.000063 \\
-0.000127
\end{array}
\] & 0.000001 & 0.343 & 0.00709 \\
\hline Wood floor with 100 mm mineral wool & \[
\left\lvert\, \begin{aligned}
& 1,23,7, \\
& 25,2
\end{aligned}\right.
\] & b & \[
\left\lvert\, \begin{aligned}
& 0.003243 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.063079 \\
-0.756503
\end{array}
\] & \[
\begin{aligned}
& 0.059174 \\
& 0.093037
\end{aligned}
\] & \[
\begin{array}{r}
0.004930 \\
-0.000377
\end{array}
\] & 0.000024 & & & 0.388 & 0.13045 \\
\hline Wood floor with 150 mm mineral wool & \[
\begin{aligned}
& 1,23,8, \\
& 25,2
\end{aligned}
\] & b & \[
\begin{aligned}
& 0.000213 \\
& 1.000000
\end{aligned}
\] & - \(\begin{array}{r}0.015196 \\ -1.035015\end{array}\) & \[
\begin{aligned}
& 0.036154 \\
& 0.264934
\end{aligned}
\] & \[
\begin{array}{r}
0.010077 \\
-0.008306
\end{array}
\] & \[
\begin{aligned}
& 0.000322 \\
& 0.000021
\end{aligned}
\] & 0.000001 & & 0.280 & 0.06196 \\
\hline Wood floor with 175 mm mineral wool & \[
\left\lvert\, \begin{aligned}
& 1,23,9 \\
& 25,2
\end{aligned}\right.
\] & b & \[
\left\lvert\, \begin{aligned}
& 0.000046 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.006710 \\
-1.177474
\end{array}
\] & \[
\begin{aligned}
& 0.024328 \\
& 0.374065
\end{aligned}
\] & \[
\begin{array}{r}
0.010928 \\
-0.022627
\end{array}
\] & \[
\begin{aligned}
& 0.000685 \\
& 0.000127
\end{aligned}
\] & 0.000005 & & 0.245 & 0.04270 \\
\hline Ventilated wood roof with 100 mm min. wool & \[
\begin{array}{ll}
1,7,24 \\
2 &
\end{array}
\] & b & \[
\begin{aligned}
& 0.068750 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.239406 \\
-0.227086
\end{array}
\] & \[
0.039904
\] & 0.000202 & & & & 0.447 & 0.34826 \\
\hline
\end{tabular}
1) Construction is defined by code numbers for various layers. The thermal properties of layers


Tablc B. 2 Transfer function coefficients for exterior walls, floors and roofs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description \({ }^{\text { }}\)} & \multirow[t]{2}{*}{Code nos. of layers} & \multicolumn{8}{|c|}{Coefficients \(b_{n}\) and \(d_{n}{ }^{2}\) ?} & \multirow[t]{2}{*}{U} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \stackrel{\infty}{\Sigma} C_{n} \\
& n=0
\end{aligned}
\]} \\
\hline & & & \(\mathrm{n}=0\) & \(\mathrm{n}=1\) & \(\mathrm{n}=2\) & \(\mathrm{n}=3\) & \(\mathrm{n}=4\) & \(n=5\) & \(n=6\) & & \\
\hline \begin{tabular}{l}
Frame wall with \\
100 mm mineral wool
\end{tabular} & \[
\begin{aligned}
& 1,23,5 \\
& 24,2
\end{aligned}
\] & b
d & \[
\begin{aligned}
& 0.026599 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.190682 \\
-0.358803
\end{array}
\] & \[
\left\{\begin{array}{l}
0.071833 \\
0.016105
\end{array}\right.
\] & \[
\begin{array}{r}
0.001703 \\
-0.000031
\end{array}
\] & 0.000001 & & & 0.442 & 0.29082 \\
\hline \begin{tabular}{l}
Frame wall with \\
150 mm mineral wool
\end{tabular} & \[
\begin{aligned}
& 1,23,5, \\
& 6,24,2
\end{aligned}
\] & b & \[
\begin{array}{l|l}
0.002837 \\
1.000000
\end{array}
\] & \[
\begin{array}{|r|}
\hline 0.060754 \\
-0.621991
\end{array}
\] & \[
\begin{aligned}
& 0.061630 \\
& 0.060392
\end{aligned}
\] & \[
\begin{array}{r}
0.006291 \\
-0.001098
\end{array}
\] & \[
\begin{aligned}
& 0.000051 \\
& 0.000001
\end{aligned}
\] & & & 0.301 & 10.13156 \\
\hline Frame wall with 100 mm min. wool and \(4^{\prime \prime}\) brick on the outside & \[
\begin{aligned}
& 1,12,5, \\
& 24,2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{b} \\
& \mathrm{~d}
\end{aligned}
\] & \[
\begin{aligned}
& 0.000065 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.009382 \\
-1.158408
\end{array}
\] & \[
\begin{aligned}
& 0.035919 \\
& 0.329089
\end{aligned}
\] & \[
\begin{array}{r}
0.018021 \\
-0.028173
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 0.001429 \\
& 0.000604
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{array}{r}
0.000014 \\
-0.000001
\end{array}\right.
\] & & 0.453 & 0.06483 \\
\hline \begin{tabular}{l}
100 mm \\
l.w. concrete blocks
\end{tabular} & 1, 13, 2 & \[
\begin{aligned}
& \mathrm{b} \\
& \mathrm{~d}
\end{aligned}
\] & \[
\begin{aligned}
& 0.023011 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.309997 \\
-0.768822
\end{array}
\] & \[
\begin{aligned}
& 0.224691 \\
& 0.085988
\end{aligned}
\] & \[
\begin{array}{r}
0.013230 \\
-0.000503
\end{array}
\] & 0.000031 & & & 1.803 & 0.57096 \\
\hline \begin{tabular}{l}
\[
150 \mathrm{~mm}
\] \\
l.w. concrete blocks
\end{tabular} & 1, 14, 2 & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& 0.000261 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.028869 \\
-1.241234
\end{array}
\] & \[
\begin{aligned}
& 0.095107 \\
& 0.393494
\end{aligned}
\] & \[
\begin{array}{r}
0.039655 \\
-0.028388
\end{array}
\] & \[
0.002295
\] & 0.000013 & & 1.339 & D. 16620 \\
\hline \begin{tabular}{l}
200 mm \\
I.W. concrete blocks
\end{tabular} & 1, 15, 2 & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\begin{aligned}
& 0.000001 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.001313 \\
-1.713647
\end{array}
\] & \[
\begin{aligned}
& 0.015813 \\
& 0.924433
\end{aligned}
\] & \[
\begin{array}{r}
0.023887 \\
-0.175066
\end{array}
\] & \[
0.006962
\] & \[
\begin{array}{r}
0.000400 \\
-0.000116
\end{array}
\] & 0.000004 & 1.065 & 0.04838 \\
\hline \[
\begin{aligned}
& 250 \mathrm{~mm} \\
& \text { l.w. concrete blocks }
\end{aligned}
\] & 1, 16, 2 & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\begin{aligned}
& 1.000000 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.000032 \\
-2.186060
\end{array}
\] & \[
\begin{aligned}
& 0.001379 \\
& 1.678546
\end{aligned}
\] & \[
\begin{array}{r}
0.005986 \\
-0.546365
\end{array}
\] & \[
\begin{aligned}
& 0.005391 \\
& 0.073271
\end{aligned}
\] & \[
\begin{aligned}
& 0.001224 \\
& -0.003504
\end{aligned}
\] & \[
\begin{aligned}
& 0.000070 \\
& 0.000047
\end{aligned}
\] & 0.884 & 0.01408 \\
\hline \(100 \mathrm{~mm} \mathrm{~h} . \mathrm{w}\). concrete & 1, 17, 2 & b & \[
\left\lvert\, \begin{aligned}
& 0.338172 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
1.093784 \\
-0.648451
\end{array}
\] & \[
\begin{aligned}
& 0.160852 \\
& 0.010315
\end{aligned}
\] & 0.000304 & & & & 4.403 & 1.59311 \\
\hline \(150 \mathrm{~mm} \mathrm{~h} . \mathrm{W}\). concrete & 1, 18, 2 & b & \[
\begin{aligned}
& 0.057708 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.502883 \\
-0.890946
\end{array}
\] & \[
\begin{aligned}
& 0.255826 \\
& 0.101962
\end{aligned}
\] & \[
\begin{array}{r}
0.007977 \\
-0.000205
\end{array}
\] & 0.000004 & & & 3.911 & 0.82440 \\
\hline
\end{tabular}
1) Construction is defined by code numbers for various layers. The thermal properties of layers
2) àsignaied by code numbers are given in Table B.l.

Table B. 2 Transfer function coefficients for exterior walls, floors and roofs (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description \({ }^{1)}\)} & \multirow[t]{2}{*}{Code nos. of layers} & \multicolumn{8}{|c|}{Coefficients \(b_{n}\) and \(d_{n}\) 2)} & \multirow[t]{2}{*}{U} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \sum_{\sum}^{\infty} C_{n} \\
& n=0
\end{aligned}
\]} \\
\hline & & & \(\mathrm{n}=0\) & \(\mathrm{n}=1\) & \(\mathrm{n}=2\) & \(\mathrm{n}=3\) & \(\mathrm{n}=4\) & \(\mathrm{n}=5\) & \(n=6\) & & \\
\hline Ventilated wood roof with 150 mm min. wool & \[
\begin{aligned}
& 1,8,24 \\
& 2
\end{aligned}
\] & b & \[
\left\lvert\, \begin{aligned}
& 0.008436 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.096150 \\
-0.500823
\end{array}
\] & \[
\begin{aligned}
& 0.058024 \\
& 0.036436
\end{aligned}
\] & \[
\begin{array}{r}
0.002868 \\
-0.000274
\end{array}
\] & 0.000006 & & & 0.309 & 0.16548 \\
\hline Ventilated wood roof with 200 mm min. wool & \[
\begin{aligned}
& 1,10,24 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
b \\
d
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& 0.000675 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.026593 \\
-0.785745
\end{array}
\] & \[
\begin{array}{l|l}
0.043138 \\
0.122619
\end{array}
\] & \[
\begin{array}{r}
0.008027 \\
-0.004042
\end{array}
\] & \[
\begin{aligned}
& 0.000160 \\
& 0.000012
\end{aligned}
\] & & & 0.236 & 0.07859 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & . & & & & & & & & & & \\
\hline & & & & & - & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
1) Construction is aefined by code numbers for various layers. The thermal properties of layers
2) designated by code numbers are given in Table B.l. J , \(\mathrm{D}^{\prime} \mathrm{s}\) and \(\mathrm{C}^{\prime \prime} \mathrm{s}\) are in \(\mathrm{W} /\left(\mathrm{m}^{\mathrm{C}} \mathrm{C}\right)\), and d is dimensionless.

Table B. 3 Transfer function coefficients for interior partitions, floors and ceilings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description 1)} & \multirow[t]{2}{*}{Code nos. of layers} & \multicolumn{8}{|c|}{Coefficients \(\mathrm{b}_{\mathrm{n}}\) and \(\mathrm{d}_{\mathrm{n}}{ }^{2}\) )} & \multirow[t]{2}{*}{U} & \multirow[t]{2}{*}{\[
\begin{aligned}
& i 0_{n} \\
& n=0
\end{aligned}
\]} \\
\hline & & & \(\mathrm{n}=0\) & \(\mathrm{n}=1\) & \(\mathrm{n}=2\) & \(n=3\) & \(n=4\) & \(n=5\) & \(n=6\) & & \\
\hline \begin{tabular}{l}
Frame partion with \\
13 mm plaster boards
\end{tabular} & \[
\begin{aligned}
& 2,24,3, \\
& 24,2
\end{aligned}
\] & b & \[
\left\lvert\, \begin{aligned}
& 0.872064 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.779525 \\
-0.067603
\end{array}
\] & \[
\begin{aligned}
& 0.013498 \\
& 0.000052
\end{aligned}
\] & & & & & 1.786 & 1.66509 \\
\hline Frame partion with 50 mm min. wool and 13 mm plaster boards & \[
\begin{aligned}
& 2,24,4, \\
& 24,2
\end{aligned}
\] & b & \[
\begin{aligned}
& 0.162158 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.398854 \\
-0.160750
\end{array}
\] & \[
\begin{aligned}
& 0.045833 \\
& 0.004416
\end{aligned}
\] & 0.000109 & & & & 0.719 & 0.60695 \\
\hline 100 mm l.w. concrete blocks & 2, 13, 2 & b & \[
\left\lvert\, \begin{aligned}
& 0.011310 \\
& 1.000000
\end{aligned}\right.
\] & 0.181018
-0.906526 & \[
\begin{aligned}
& 0.159032 \\
& 0.142685
\end{aligned}
\] & \[
\begin{array}{r}
0.012553 \\
-0.001544
\end{array}
\] & 0.000048 & & & 1.551 & 0.36396 \\
\hline 150 mm l.w. concrete blocks & 2, 14, 2 & b & \[
\left\lvert\, \begin{aligned}
& 0.000120 \\
& 1.000000
\end{aligned}\right.
\] & - \(\begin{array}{r}0.015609 \\ -1.378930\end{array}\) & 0.059017
0.515661 & - \(\begin{array}{r}0.029072 \\ -0.048746\end{array}\) & \[
\begin{aligned}
& 0.002111 \\
& 0.000684
\end{aligned}
\] & 0.000017
-0.000001 & & 1.195 & 0.10595 \\
\hline 200 mm l.W. concrete blocks & 2, 15, 2 & b & \[
\begin{aligned}
& 0.000000 \\
& 1.000000
\end{aligned}
\] & - 0.000672 & \[
\begin{aligned}
& 0.009085 \\
& 1.111651
\end{aligned}
\] & \[
\begin{array}{r}
0.015494 \\
-0.245484 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.005223 \\
& 0.017191
\end{aligned}
\] & \[
\begin{array}{|r|}
0.000361 \\
-0.000273
\end{array}
\] & \[
\begin{aligned}
& 0.000004 \\
& 0.000001
\end{aligned}
\] & 0.972 & 0.03084 \\
\hline \(100 \mathrm{~mm} \mathrm{h.w}\). & 2, 17, 2 & b & \[
\left\lvert\, \begin{aligned}
& 0.130025 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.475217 \\
-0.802578
\end{array}
\] & \[
\begin{aligned}
& 0.084114 \\
& 0.021272
\end{aligned}
\] & 0.000222 & & & & 3.153 & 0.68958 \\
\hline 150 mm h.w. concrete & 2, 18, 2 & b & \[
\left\lvert\, \begin{aligned}
& 0.021626 \\
& 1.000000
\end{aligned}\right.
\] & - 0.209603 & \[
\begin{aligned}
& 0.121329 \\
& 0.157032
\end{aligned}
\] & \[
\begin{array}{r}
0.004591 \\
-0.000458
\end{array}
\] & 0.000003 & : & & 2.893 & 0.35715 \\
\hline 200 mm h.w. concrete & 2, 19, 2 & b & \[
1 \begin{aligned}
& 0.002660 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.069704 \\
-1.285158
\end{array}
\] & \[
\begin{aligned}
& 0.097407 \\
& 0.365857
\end{aligned}
\] & \[
\begin{array}{r}
0.014566 \\
-0.011655
\end{array}
\] & \[
\begin{aligned}
& 0.000155 \\
& 0.000009
\end{aligned}
\] & & & 2.672 & 0.18449 \\
\hline Wood floor with 100 mm mineral wool & \[
\begin{array}{lll}
2, & 25, & 3 \\
7, & 24, & 2
\end{array}
\] & d & \[
\begin{aligned}
& 0.001421 \\
& 1.000000
\end{aligned}
\] & - 0.041902 & \[
\begin{aligned}
& 0.059169 \\
& 0.157258
\end{aligned}
\] & ( \(\begin{array}{r}0.009444 \\ -0.004734\end{array}\) & 0.000143
0.000008 & & & 0.371 & 0.11208 \\
\hline
\end{tabular}
1) Construction is defined by code numbers for various layers. The thermal properties of layers
2) designated by code numbers are given in Table B.l.


Table B. 3 Transfer function coefficients for interior partitions, floors and ceilings(continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Description \({ }^{1)}\)} & \multirow[t]{2}{*}{Code mos. of layers} & \multicolumn{8}{|c|}{Coefficients \(\mathrm{b}_{\mathrm{n}}\) and \(\mathrm{d}_{\mathrm{n}}{ }^{2}\) ? \(\quad\) Time interval \(=1.0 \mathrm{hr}\)} & \multirow[t]{2}{*}{U} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }_{\Sigma}^{\infty} C_{n} \\
& n=0
\end{aligned}
\]} \\
\hline & & & \(\mathrm{n}=0\) & \(\mathrm{n}=1\) & \(\mathrm{n}=2\) & \(\mathrm{n}=3\) & \(\mathrm{n}=4\) & \(\mathrm{n}=5\) & \(\mathrm{n}=6\) & & \\
\hline Wood floor with 150 mm mineral wool & \[
\begin{array}{ll}
2, & 25, \\
8, & 24, \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{b} \\
& \mathrm{a}
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 0.000084 \\
& 1.000000
\end{aligned}\right.
\] & \[
\begin{array}{r}
0.009078 \\
-1.130657
\end{array}
\] & \[
\begin{aligned}
& 0.031619 \\
& 0.353139
\end{aligned}
\] & \[
\left|\begin{array}{r}
0.013062 \\
-0.026105
\end{array}\right|
\] & \[
\begin{aligned}
& 0.000839 \\
& 0.000312
\end{aligned}
\] & 0.000006 & & 0.271 & 0.05323 \\
\hline Wood floor with 200 mm mineral wool & \[
\left|\begin{array}{l}
2,25, \\
24,2
\end{array}\right|
\] & b & \[
\begin{aligned}
& 0.000005 \\
& 1.000000
\end{aligned}
\] & \[
\begin{array}{r}
0.001952 \\
-1.374132
\end{array}
\] & \[
\begin{aligned}
& 0.012988 \\
& 0.572550
\end{aligned}
\] & \[
\begin{array}{|r|}
0.011413 \\
-0.073140
\end{array}
\] & \[
\begin{aligned}
& 0.001802 \\
& 0.002377
\end{aligned}
\] & \[
\begin{array}{r}
0.000048 \\
-0.000011
\end{array}
\] & & 0.221 & 0.02821 \\
\hline 100 mm l.w. concrete floor deck & 2, 20, 2 & \[
\begin{aligned}
& \mathrm{b} \\
& \mathrm{~d}
\end{aligned}
\] & \[
\begin{aligned}
& 0.016985 \\
& 1.000000
\end{aligned}
\] & \[
\left.\begin{array}{r}
0.218029 \\
-0.790841
\end{array} \right\rvert\,
\] & \[
\begin{aligned}
& 0.154297 \\
& 0.093999
\end{aligned}
\] & \[
\left|\begin{array}{r}
0.008810 \\
-0.000571
\end{array}\right|
\] & 0.000019 & & & 1.316 & 0.39814 \\
\hline 150 mm l.w. concrete floor deck & 2, 21, 2 & \[
\begin{aligned}
& \mathrm{b} \\
& \mathrm{~d}
\end{aligned}
\] & \[
\begin{array}{l|l}
0.000242 \\
1.000000
\end{array}
\] & \[
\begin{array}{r}
0.022814 \\
-1.246059 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.069733 \\
& 0.396645
\end{aligned}
\] & \[
\begin{array}{r}
0.027006 \\
-0.028407 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.001413 \\
& 0.000249
\end{aligned}
\] & 0.000007 & & 0.990 & 0.12122 \\
\hline 200 mm l.w. concrete floor deck & 2, 22, 2 & b & \[
\left\lvert\, \begin{aligned}
& 0.000001 \\
& 1.000000
\end{aligned}\right.
\] & \[
\left.\begin{array}{r}
0.001222 \\
-1.701287
\end{array} \right\rvert\,
\] & \[
\begin{aligned}
& 0.013029 \\
& 0.906556
\end{aligned}
\] & \[
\begin{array}{|r|}
0.017784 \\
-0.167598
\end{array}
\] & \[
\begin{aligned}
& 0.004635 \\
& 0.008923
\end{aligned}
\] & \[
\begin{array}{r}
0.000231 \\
-0.000094
\end{array}
\] & 0.000002 & 0.794 & 0.03690 \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
1) Construction is defined by code numbers for various layers. The thermal properties of layers
2) Cissignated by code numbers are given in Table. B.l.
\(U\), \(b^{\prime} s\) and \(c^{\prime} s\) are in \(W /\left(m^{28} C\right)\), and \(d\) is dimensionless.

In order to be accepted by the ENCORE program the weather tape should be as described below. The records must be in unformatted (binary) form.

First record:
\begin{tabular}{|l|l|}
\hline ISTNR & IAAR \\
\hline
\end{tabular}
where:
ISTNR - synoptic no. of the meteorological station
IAAR - year of weather data
The information in the first record is checked against input data to the ENCORE program to make shure that correct weather data are used in the calculations.

One record for each day of the year:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline MND & IDATO & ISNO & TEMP (1) & SKYDK (1) & SKYTP (1) & VHAST (1) & VRETN ( 1 ) & TEMP (2) & VHAST ( 24 ) & VRETH ( 24 ) \\
\hline
\end{tabular}
where:
\begin{tabular}{|c|c|}
\hline MND & - month \\
\hline IDATO & - day of the month \\
\hline ISNO & - thickness of snow cover (cm) \\
\hline TEMP (1),......TEMP (24) & - dry bulb temperatures at hrs 0100 to 2400 \\
\hline SKYDK (1),.... SKYDK (24) & - cloud cover in parts of eight (i.e. \(1 / 8,2 / 8, \ldots, 8 / 8)\) at hrs 0100 to 2400 \\
\hline \(\operatorname{SKYTP}(1), \ldots . \operatorname{SKYTP}(24)\) & - cloud type as 0. (cirrus, cirrostratus), 1. (stratus) and 2. (other) \(\begin{aligned} \text { at hrs } 0100 \text { to } 2400\end{aligned}\) \\
\hline VHAST (1) , .... VHAST (24) & - wind speed in m/s at hrs 0100 to 2400 \\
\hline VRETN (1) ,.....VRETN (24) & - wind direction (degrees clockwise from north) at hrs 0100 to 2400 \\
\hline
\end{tabular}

\subsection*{6.4 Appendix D. Description of output file}

The following data are written unformatted (binary) on file(unit 7) for later plotting or other use. One record for each hour of the year:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline IDAY & MONTH & IHOUR & DBT & WSPEED & CLC & ER(1) & RTEMP (1) & \(\ldots\) & ER(K) \\
\hline
\end{tabular}
where:
\begin{tabular}{|c|c|}
\hline IDAY & - day of the month \\
\hline MONTH & - month \\
\hline IHOUR & - hour of the day \\
\hline DBT & - outdoor dry bulb temperature \\
\hline WSPEED & - wind speed \\
\hline CLC & - cloud cover \\
\hline ER(1) & - heat output in room no. 1 \\
\hline RTEMP (1) & - room temperature in room no. \\
\hline
\end{tabular}
```

ER(K) - heat output in room no. K
RTEMP(K) - room temperature in room no. K

```

\subsection*{6.5 Appendix E. How to run the program on Univac 1100 series computers}

Assuming that the object code of the program is contained in the disk file PROG, the weather data in the file WEATH, and results for later plotting are to be stored in PLOT, the following card deck is necessary to run the program:
"RUN
"ASG,A PROG
"ASG,A WEATH
"USE 8.,WEATH.
"ASG,A PLOT
"USE 7., PLOT.
" XQT PROG.ENCORE
```

data cards

```
"FIN

As can be seen above the weather data input and the plot output have internal unit numbers 8 and 7 respectively. The program uses standard unit numbers for card reader and line printer (5 and 6 respectively).

  
4, GUE:


















10 : 2f:






Air Infiltration Centre



\section*{Energy Consumption of Residential Buildings}

The Computer program ENCORE
Part 2, Documentation
By Bjørn Tore Larsen

Air Infilitration Centre Old Erazkne:l Lane, Bracknell, Berkshire, Great Britain, RG12 4AH

\author{
ENERGY CONSUMPTION \\ OF RESIDENTIAL BUILDINGS
}

The Computer program ENCORE
Part 2, Documentation
by

Bjørn Tore Larsen

0. INTRODUCTION ..... 1
1. DESCRIPTION OF SUBROUTINES ..... 2
CALCUL ..... 3
CARDIN ..... 13
CCFR ..... 16
CHMNEY ..... 18
DAYMO ..... 22
FCFAC ..... 24
FFACT ..... 25
FILLUP ..... 27
ENACEI ..... 28
HOLDAY ..... 32
HOTWTR ..... 33
INFILT ..... 35
LEEP ..... 42
MAIN PROGRAM ..... 43
NDOW ..... 46
OUTPT2 ..... 48
REDFAC ..... 49
SHGB ..... 54
SOLTAB ..... 56
SUN 1 ..... 57
SUN2B ..... 60
SUN3B ..... 63
3. REFERENCES ..... 69
APPENDIX A. Variables in common blocks ..... 71
APPENDIX B. Program restrictions ..... 89
APPENDIX C. Description of weather tape ..... 91
APPENDIX D. Description of output file ..... 93

\section*{0. INTRODUCTION}

This manual gives a fairly detailed documentation of all the subroutines of the ENCORE program. It also gives a detailed description of all the variables in common blocks (all the key variables of the program are stored in common blocks).

Before reading this manual the reader is advised to read Chapter 1 of the ENCORE Users' Manual (Ref. 10) which explains in general terms how the program works.

\section*{CALCUL}

The routine where the hour by hour simulation takes place.

INPUT
BLANK COMMON (See Appendix A)

COMMON BLOCKS E, G, H, DUMP, PLOT, CLIMA, SHADE (See Appendix A)

\section*{OUTPUT}

BLANK COMMON (See Appendix A)

COMMON BLOCKS E, G, H, DUMP, PLOT, CLIMA, SHADE (See Appendix A)

Printout of daily energy consumption

\section*{CALCULATION SEQUENCE}

Hour



8

9


Figure 1

In non steady state heat transfer calculations the value of a variable, e.g, the heat flow through a wall, is a function of the present and the previous excitations(i. e. inside and outside temperature), and, in the formulation used in this program, it's own history. Therefore, it is necessary to store the present and a certain number of previous values. Figure 1 shows an array with room for the present and the previous 6 values. Every time the calculation proceeds one step forward in time the "oldest" value is not needed any more, and it is replaced by the new present value.
A pointer, ICNT in Figure 1, keeps track of the location where the present value is stored. In this routine there are 3 pointers:
JCNT for arrays where the present and 1 previous value is stored KCNT " " " ICNT " " " " " " 6

The calculation sequence is as described in the following flow chart.










A subroutine which reads the input card deck and produces a printout that shows how the input data was interpreted.

INPUT
Input card deck

\section*{Output}

BLANK COMMON (See Appendix A)
COMMON BLOCKS H, DUMP, PLOT, CLIMA, SHADE (See Appendix A)
Printout that shows how the input data was interpreted.

\section*{CALCULATION SEQUENCE}
1. The routine reads the input card deck and stores information in single variables and arrays contained in the Common Blocks given above. The routine also produces a printout that shows how the input data was interpreted (see chapter 4 of the User's Manual).
2. The only calculation made by this routine is the calculation of a factor that transforms measured wind speed at the nearest meteorological site to wind speed at roof level at the building site.

There are three different types of terrain:
1. Flat open country
2. Rough wooded country, towns, city outskirts
3. Centre of large cities

This is the same classification as used in Reference 4. The wind velocity profile, i.e. wind speed as a function of the height above ground, is assumed to follow the power law:
\[
\mathrm{VZ} / \mathrm{VG}=(\mathrm{Z} / \mathrm{ZG}) * * \mathrm{ALFA}
\]

Where:
\[
\begin{aligned}
& \mathrm{VZ} \mathrm{=} \text { wind speed at height } \mathrm{Z} \text { above ground } \\
& \mathrm{VG} \mathrm{=} \text { wind speed above the boundary layer } \\
& \text { (the gradient wind speed) } \\
& \mathrm{ZG} \mathrm{=} \text { thickness of boundary layer } \\
& \text { ALFA = exponent }
\end{aligned}
\]

ZG and ALFA depend on the type of terrain as shown in Table l:
\begin{tabular}{|c|c|c|c|}
\hline Terrain & ZG & ALFA & 1/ALFA \\
\hline \hline 1 & 280 m & .143 & 7. \\
2 & 400 m & .286 & 3.5 \\
3 & 520 m & .400 & 2.5 \\
\hline
\end{tabular}

Table 1
ZG and ALFA for different types of terrain
3. Calculate the gradient wind speed from the measured wind speed at the meteorological site (measurements are made 10 m above ground):
\[
\begin{aligned}
& \text { VG }= \text { VM/((10./ZGM )** ALFAM) } \\
& \text { Where: } \\
& \text { ALFAM = } \text { exponent for meteorological site } \\
& \mathrm{VM}= \text { wind speed at the meteorological } \\
& \text { site } \\
& \text { ZGM }= \text { thickness of boundary layer at the } \\
& \text { meteorological site }
\end{aligned}
\]
4. Calculate wind speed at roof level at the building site:
\[
V R=V G *(H R / Z G B)^{* *} A L F A B
\]

Where:
\[
\begin{aligned}
\text { ALFAB }= & \text { exponent for meteorological site } \\
\mathrm{HR}= & \text { distance between ground and edge } \\
& \text { of roof } \\
\mathrm{ZGB}= & \text { thickness of boundary layer at the } \\
& \text { building site }
\end{aligned}
\]
5. To get VR when VG is given, multiply VG by:
\(\mathrm{WCOEF}=((\mathrm{ZGM} / 10) *\).\(* ALFAM ) *((\mathrm{HR} / \mathrm{ZGB}) * *\) ALFAB \()\)

CCFR

A subroutine to calculate cloud cover and cloud cover factor according to D. G. Stephenson and K. Kimura (Reference 12). The value of CCF, Cloud Cover Factor, is defined as follows:
\[
C C F=I T H C / I T H
\]
where

ITHC: Total solar radiation on a horizontal surface under a cloudy sky of given cloud amount and types of cloud

ITH: Total solar radiation calculated for a horizontal surface under a cloudless sky at the same solar hour as of ITHC

INPUT
IDOY Day of the year

ICT
Cloud type index \(= \begin{cases}0 & \text { Cirrus, Cirrostratus (high clouds) } \\ 1 & \text { Stratus (low clouds) } \\ 2 & \text { Other }\end{cases}\)

ICLD
Total cloud amount (0 - l0)

OUTPUT

CC
Cloud cover

CCF
Cloud cover factor

\section*{CALCULATION SEQUENCE}
1.

If ICT \(=0\) then \(\mathrm{X}=\) ICC
If ICT \(=2\) then \(\mathrm{X}=0,5 *\) ICC
Otherwise \(\mathrm{X}=0\).
2.

Cloud cover
\(C C=I C L D-0.5 * X\)
3.

Cloud cover factor \(\mathrm{CCF}=\mathrm{P}+\mathrm{Q} * \mathrm{CC}+\mathrm{R} * \mathrm{CC} * * 2\) where \(P, Q\), and \(R\) are found in the following table
\begin{tabular}{llll} 
Season & P & Q & R \\
\hline spring \((90<I D O Y \leq 150)\) & 1.06 & 0.012 & -0.0084 \\
summer \((150<I D O \Psi \leq 259)\) & 0.96 & 0.033 & -0.0106 \\
autumn \((250<I D O Y \leq 330)\) & 0.95 & 0.030 & -0.0108 \\
winter (IDOY<330 or IDOY \(\leq 90)\) & 1.14 & 0.003 & -0.0082 \\
\hline
\end{tabular}

The value of \(P\), which is essentially the cloudless sky factor, depends upon the proportion of direct to diffuse sky radiation in reference to the standard ASHRAE values published in the 1972 Handbook of Fundamentals. If the value of \(P\) is unity, this proportion of direct to diffuse solar radiation is such that the solar radiation evaluated for a horizontal surface under a cloudless sky should be equal to the value obtained by the methd described in the 1972 ASHRAE Handbook of Fundamentals. If the value of \(P\) is different from unity, the direct to diffuse proportion is different from the standard values.

\section*{CHMNEY}

A subroutine which simulates the hydraulics of a chimney and smoke pipe with barometric damper.

\section*{INPUT}

FTMP Temp. of flue gases from furnace, \({ }_{\mathrm{K}}\)
GF Weight flow of flue gases from furnace, \(\mathrm{kg} / \mathrm{s}\)

WSPEED
RTMP
OUTTMP
D1
ZETA

Wind speed, m/s
Indoor temp. \({ }^{\circ}{ }_{\mathrm{K}}\)
Outdoor temp., \({ }^{\circ}{ }_{K}\)
Building pressure, \(\mathrm{kg} / \mathrm{m}^{2}\)
Static pressure loss coefficient for furnace at off-cycle when barometric damper is closed

COMMON BLOCK H (See Appendix A)

\section*{OUTPUT}

GCH Weight flow of gases in smoke pipe and chimney, \(\mathrm{kg} / \mathrm{s}\)
DGDPI

The derivative of the chimney flow with respect building pressure, \(\mathrm{m}^{2} / \mathrm{s}\)

\section*{CALCULATION SEQUENCE}

Tote: The following is copied from Reference 11, and the symbols are not the same as those used in the subroutine.

Figure Al shows a furnace, smoke pipe with barometric damper, and a chimney. The following derivations are needed to describe the flow from point 2, immediately upstreams of the branch to the barometric damper, to point 3 , the top of the chimney. Heat loss from smoke pipe and chimney is not taken into account.
When the barometric damper is open, i.e. the damper is operating, the static pressure at point 2 is:
\[
\begin{equation*}
P_{2}=P_{1}-\rho_{\text {in }} g h_{2}-d_{r} \tag{array}
\end{equation*}
\]
where:
\[
\begin{aligned}
& \mathrm{P}_{1}=\text { static pressure in the house at reference level (point 1) } \\
& \rho_{\text {in }}=\text { density of the room air } \\
& \mathrm{g}=\text { gravitational acceleration } \\
& \mathrm{h}_{2}=\text { vertical distance between reference level and point } 2 \text {. } \\
& \mathrm{d}_{r}=\text { draft setting of the barometric damper. }
\end{aligned}
\]


FIGURE AI
Model to find the flow up the chimney

When the outside static pressure at reference level is taken as zero, the static pressure at point 3 is given by:
\[
\begin{equation*}
P_{3}=c_{o u t} \frac{v_{w}^{2}}{2}-\rho_{\text {out }} g h_{3} \tag{A2.}
\end{equation*}
\]
where: \(c=\) wind pressure coefficient
\[
\rho_{\text {out }}=\text { density of outside air }
\]
\(V_{W}=\) wind speed
\(h_{3}=\) vertical distance between reference level and point 3
Bernoulli's equation from point 2 to point 3:
\[
\begin{align*}
& P_{1}-d_{r}-\rho_{i n} g h_{2}+\rho_{\operatorname{ch}} \frac{V_{2}^{2}}{2}+\rho_{c h^{g h}} \operatorname{ch}_{2} \\
& =\rho_{\text {out }} \frac{V_{W}^{2}}{2}-\rho_{o u t} g h_{3}+\rho_{\operatorname{ch}} \frac{V_{3}^{2}}{2}+\rho_{c h^{g h}}+\Delta E \tag{array}
\end{align*}
\]
where: \(\quad \rho_{c h}=\) density of gas in smoke pipe and chimney
\(V_{2}=\) gas velocity at point 2
\(V_{3}=n \quad n \quad n \quad 3\)
\(\Delta E=\) friction loss between 1 and 2

An energy bilancefor the point where the smoke pipe and the branch to the barometric damper is connected gives:
\[
\begin{equation*}
T_{c h}=\frac{G_{f} T_{f}+G_{d} T_{c}}{G_{c h}} \tag{A4}
\end{equation*}
\]
where: \(G_{f}=\) weight flow of gas from furnace
\(G_{c h}="\) " " " up the chimney
\(G_{d}=" \quad " \quad\) air from the barometric damper inlet
\(T_{f}=\) absolute flue gas temperature
\(T_{c h}=\) absolute temperature of chimney gas
\(\mathrm{T}_{\mathrm{c}}=\) absolute room air temperature
The condition of mass balance gives:
\[
\begin{equation*}
G_{d}=G_{c h}-G_{f} \tag{A5}
\end{equation*}
\]
combining equations \(A 4\) and \(A 5\) :
\[
\begin{equation*}
T_{c h}=\frac{G_{f}}{G_{c h}}\left(T_{f}-T_{c}\right)+T_{c} \tag{A6}
\end{equation*}
\]

The density of the chimney gas is given by the gas equation:
\[
\begin{equation*}
\rho_{c h}=\frac{P_{a t, m}}{R T_{c h}} \tag{A7}
\end{equation*}
\]

It is quite adequate to use standard atmospheric pressure and gas constant for air in this equation.

The friction loss from point 1 to point 3 is given by:
\(\Delta E=\left[\left(f_{s} \frac{\ell}{d_{s}}+\zeta_{b r}+n_{b}\right) \frac{8}{g^{2} \pi^{2} d_{s}^{4}}+f_{c h} \frac{\ell}{a} \frac{1}{2 g^{2} a^{4}}\right] \frac{G_{c h}^{2}}{\rho_{c h}}\)
where: \(f_{s}=\) hydraulic friction factor for smoke pipe
\(\ell_{s}=\) smoke pipe length
\(d_{s}=\) smoke pipe diameter
\(\zeta_{b r}=\) "straight-through" dynamic loss coefficient for the branch to the barometric damper
\(n_{b}=\) number of smoke pipe bends. It is assumed that the dynamic loss coefficient for a bend is equal to 1.0
\(f_{c h}=\) hydraulic friction factor for chimney
\(\ell_{c h}=\) chimney length
\(a \quad=\) internal side length of the chimney
Eq. (A6), (A7), (A8) and (A3) give a third order equation with Gch as the unknown. The three solutions are found in mathermatical handbooks. Only one of them is acceptable. The condition for an acceptable solution is that \(G_{c h} \geqslant 0\). In addition it has to be checked if \(G^{c h}-G_{f}>0\). If this is not so, it means that the barometric damper ish closed. The
flow through the furnace, smoke pipe, and damper is then given by:
\[
\begin{align*}
& P_{1}-\rho_{i n} g h_{2}-\frac{1}{2} \frac{G_{c h}^{2}}{g^{2} \rho_{f} A_{3}^{2}}-\rho_{f} g\left(h_{3}-h_{2}\right)+\rho_{o u t}\left(g_{3}-c_{2}^{v_{W}^{2}}\right) \\
& =\left[\left(f_{s p}-\frac{\ell_{s p}}{d_{s p}}+n_{b}+\zeta_{f}\right) \frac{8}{g^{2} h^{2} d_{s p}}+f_{c h} \frac{\ell_{c h}}{a} \frac{1}{2 g^{2} a^{4}}\right] \frac{G_{c h}^{2}}{\rho_{f}} \tag{A9}
\end{align*}
\]

Where: \(A_{3}=\) chimney area
\[
\begin{aligned}
& \zeta_{\mathrm{f}}=\text { dynamic loss coefficient for the furnace } \\
& \rho_{\mathrm{f}}=\text { density of flue gas }
\end{aligned}
\]

The condition for use of Eq. (A9) may occur during off-cycle at low furnace load.

Figure A2 shows some results obtained by this calculation procedure.


FIGURE A 2
Weight flow up a 20 ft high chimney as a function of flue gas and outdoor temperature.

When \(G\) is found, the derivative of \(G\) with respect to the indoor pressure \(P\) is calculated. The reason for this is that \(G\) ch is included in the infiltration calculation which is a Newton-Raphson iteration.

DAYMO

A calendar subroutine which identifies the day of the month and the month of the year.

INPUT \(\quad\) Leap year index \(=\left\{\begin{array}{l}0 \text { Non-leap year } \\ 1 \text { Leap year }\end{array}\right.\)
IDOY Day of the year, from start of year

\section*{OUTPUT}

IDAY
Day of the month

MONTH
Month of the year

\section*{CALCULATION SEQUENCE}
1. If IDOY < 31, MONTH \(=1\) and IDAY \(=\) IDOY
2. If \(31<\) IDOY \(\leq(59+\) LEAP \()\) MONTH \(=2\), IDAY \(=\) IDOY - 31
3. If \((59+\) LEAP \()<\) IDOY \(\leq(90+\) LEAP \()\), MONTH \(=3\), IDAY \(=\) IDOY \(-59-\) LEAP
4. If \((90+\operatorname{LEAP})<\operatorname{IDOY} \leq(120+\operatorname{LEAP})\), MONTH \(=4\). IDAY \(=I D O Y-90-L E A P\)
5. If \((120+\) LEAP \()<\operatorname{IDOY} \leq(151+\) LEAP \()\), MONTH \(=5\), IDAY \(=\) IDOY \(-120-\) LEAP
6. If \((151+\) LEAP \()<\operatorname{IDOY} \leq(181+\) LEAP \()\), MONTH \(=6\), IDAY \(=\) IDOY - 151 - LEAP
7. If \((181+L E A P)<\operatorname{IDOY} \leq(212+\operatorname{LEAP})\). MONTH \(=7\), IDAY \(=\) IDOY - \(181-\) LEAP
8. If \((212+\operatorname{LEAP})<\operatorname{IDOY} \leq(243+\) LEAP \()\), MONTH \(=8\), IDAY \(=\) IDOY - \(212-\) LEAP
9. If \((243+\) LEAP \()<\) IDOY \(\leq(273+\) LEAP \()\), MONTH \(=9\), IDAY \(=\) IDOY \(-243-\) LEAP
10. If \((273+\) LEAP \()<\) IDOY \(\leq(304+\) LEAP \()\), MONTH \(=10\), IDAY \(=\) IDOY \(-273-\) LEAP
11. If \((304+\) IEAP \()<\) IDOY \(\leq(334+\) LEAP \()\), MONTH \(=11\), IDAY \(=\) IDOY \(-304-\) LEAP
12. If \((334+\) LEAP \()<\) IDOY, MONTH \(=12\), IDAY \(=\) IDOY \(-334-\) LEAP

FCFAC

A subroutine to calculate reduction factors, due to heat loss to the surroundings, for "V-factors" of the room transfer function. The routine also calculates the room's total heat conduction to the surroundings. See Chpt. 22, part II of the ASHRAE Handbook of Fundamentals, 1972.

INPUT/OUTPUT
BLANK COMMON (See Appendix A)

\section*{CALCULATION SEQUENCE}
1. For each room the routine calculates the total heat conduction to the surroundings:
\[
\begin{aligned}
& Q_{\text {total }}= U_{\text {window }} A_{\text {window }}+U_{\text {exterior wall }} A_{\text {eksterior }} \\
& \text { wall. }
\end{aligned}
\]

Two different \(Q_{\text {total }}\) are calculated: one which applies when windows do not have shutters, and one when they have.
2. The reduction factors, or Fc-faktors, for the "V-factors" are given by ( Si-units ):
\[
F_{C}=1.0-\frac{0.01156}{L_{F}} \cdot Q_{\text {total }}
\]
where: \(L_{F}=\) Length of room exterior perimeter
As for \(Q_{\text {total }}\) two different \(F_{C}\)-factors are calculated.
3. A test is made to see if \(1.0>\mathrm{F}_{\mathrm{C}}>0.7\). If \(\mathrm{F}_{\mathrm{c}}\) does not fall within these limits the program stops and prints a message. This situation is usually caused by bad input ( it is possible to get around the test by "adjusting" the room exterior perimeter length).

FFACT

A function which calulates the hydraulic friction factor for flow in pipes.

\section*{INPUT}
REY Reynold's number

ROUGH Wall roughness of pipe, m
DIA Pipe diameter, m

\section*{OUTPUT}

FFACT The hydraulic friction factor

\section*{CALCULATION SEQUENCE}
1. If Reynold's number is less than 3000 the flow is laminar, and the friction factor is given by:
\[
\text { FFACT }=64.0 / \mathrm{REY}
\]
2. If Reynold's number is greater than 3000 the flow vill be in the transitional or the fully turbulent regime. The friction factor is then given by the expression:
1.0/SQRT (FFACT) \(=-0.86 *\) ALOG (ROUGH/(DIA*3.7) \(+2.51 /(\operatorname{REY} * \operatorname{SQRT}(F F A C T)))\)

To solve for \(F F A C T\) it is necessary to use an iteration procedure. The Newton Raphson's method of the form \(f(x)=0\) is used to solve for:
\[
X=1.0 / S Q R T(F F A C T)
\]

Initial value (first approximation):
\[
x=3.162
\]

Let
\[
\begin{aligned}
& \mathrm{A}=\mathrm{ROUGH} /(\mathrm{DIA} * 3.7) \\
& \mathrm{B}=2.51 / \mathrm{REY}
\end{aligned}
\]
3. Using exponentials instead of logarithms gives \((y=f(x)=0):\)
\[
\mathrm{Y}=\left(\mathrm{A}+\mathrm{B}^{*} \mathrm{X}\right) \quad * *(-0.86)-\operatorname{EXP}(\mathrm{X})
\]
4. The derivative of \(Y\) with respect to \(X\) :
\[
\operatorname{DYDX}=-0.86 * B *(A+B * X) * *(-1.86)-\operatorname{EXP}(X)
\]
5. Correction to X :
\[
\text { DELTAX }=-Y / D Y D X
\]
6. A new and better value of \(X\) is given by:
\[
X=X+D E L T A X
\]
7. If the absolute value of DELTAX is greater than 0.1 then go back to step 3 and do the steps 3 to 6 over again (usually 3 to 6 iterations are enough).
8. Calculate the friction factor:
\[
F F A C T=1.0 /\left(X^{*} X\right)
\]

\section*{FILLUP}

A subroutine which generates hourly values of the schedules for internal heat gains and thermostat set points.

\section*{INPUT}

IIN(15) Array containing schedule input data for maximum five periods of the day.

IGROUP Identification of schedule:
IGROUP \(=1 \quad\) Occupancy schedule
IGROUP \(=2\) Const. light schedule
IGROUP \(=3\) Var. light schedule
IGROUP \(=4\) Equipment schedule
IGROUP \(=5 \quad\) Thermostat schedule
IGROUP = 6 Hot water schedule
\(\mathrm{N} \quad\) Schedule number of the group

L Maximum number of schedules in the group

M Hours per day (i.e. 24)

OUTPUT
\(K(L, M) \quad\) Array containing hourly schedule values expressed as "percent of max".

\section*{CALCULATION SEQUENCE}

The array IIN contains schedule input data on the form "From hr.. to hr., percent of max, from hr., to hr., percent of max, .... etc. for maximum five periods of the day. From this input fillup produces hourly values ( 24 values) of the form "percent of max.". Each call of the routine produces one line in the array \(K\) (i.e. \(\mathrm{K}(\mathrm{N}, \mathrm{M})\) where M is from l to 24 ).

FNACE1

A subroutine which simulates an oil fired hot air furnace using fuel oil no. 2

\section*{INPUT/OUTPUT}

COMMON Block G (see Appendix A)
COMMON Block H ( " " ")

\section*{CALCULATION SEQUENCE}

Note: The following is copied from Reference ll, and the symbols are not the same as those used in the subroutine.

The purpose of the following derivations is to find the furnace loss as a function of the furnace load. This loss includes the flue gas loss during on-cycles and the loss due to air flow through the furnace at off-cycles.

If the burner is started and left on long enough for the flue gas to reach a constant temperature, and then turned off the flue gas temperature as a


FIGURE BI
Flue gas temperature during on-and off-cycle for an oil fired hot air furnace.
function of time will be something like the continous curve in figure Bl. The general case, with the burner going on and off at regular intervals, will be something like the dashed curve.

The number of burner cycles per hour varies according to the furnace load. It is obvious that the number of cycles at no.load is zero, and that the number of cycles at full load is one (burner on all the time). Somewhere between these two extremes the number of cycles will have a maximum. U.Bonne et al 7,8 have found that the maximum occurs at \(50 \%\) load. Their work indicates that the number of cycles per hour as a function of furnace load factor, i.e. on-time to total time, can be expressed hy the followinp equation:
\[
\begin{align*}
n & =x+\left(n_{50}-0,5\right) \cdot\left[1-(2 x-1)^{2}\right]  \tag{BI}\\
\text { where }: x & =\text { furnace load factor }(0 \leqslant x \leqslant 1) \\
n_{50} & =\text { number of cycles at } 50 \% \text { furnace load }(x=0,5)
\end{align*}
\]

One cycle consists of one on-cycle and one off-cycle. The length of these in seconds are given by:
\[
\begin{align*}
& t_{\text {on }}=\frac{3600 x}{n}  \tag{B2}\\
& t_{\text {off }}=\frac{3600}{n}-t_{\text {on }} \tag{83}
\end{align*}
\]

It is assumed that the flue gas temperature during on- and off-cycle can be represented by exponential functions. In the general case the on-cycle temperature is given by (see figure BI):
\[
\begin{equation*}
\theta=\left(\theta_{o n}-\theta_{\text {off }}\right)\left(1-e^{-\frac{t+a}{\tau_{o n}}}\right)+\theta_{\text {off }} \tag{B4}
\end{equation*}
\]
where: \(\quad t=\) elapsed time from the moment the burner started \(\tau_{\text {on }}=\) time constant
The "a" in Eq. (B4) is found by using it with \(t=0\) and \(\theta=\theta_{\text {start }}\).
The off-cycle temperature, when the air circulation fan is running, is given by:
\[
\begin{equation*}
\theta_{\text {on }}-\left(\theta_{\text {on }}-\theta_{\text {off }}\right)\left(1-e^{-\frac{t+b}{T} \text { offl }}\right) \tag{B5}
\end{equation*}
\]
where: \({ }^{+}=\)elapsed time from the moment the burner shut off \({ }^{\top}\) offl \(=\) time constant .

The " \(b\) " in Eq. (B5) is found by using it with \(t=0\) and \(\theta=\theta\)
- The time, \(t\), from the burner shuts off to the time when the stoprculation fan shuts off is found by using Eq. (B5) with \(\theta=\theta_{\text {fan }}\).
The off-cycle temperature, when the air circulntinn fan is not operating, is given by:
\[
\begin{equation*}
\theta=\theta_{f a n}-\left(\theta_{f a n}-\theta_{o f f}\right) \cdot\left(1-e^{-\frac{t-t_{f a n}}{T_{o f f ?}}}\right) \tag{B6}
\end{equation*}
\]
where: \(t=\) same as \(t\) in \(E_{1}\). (B5)
\({ }^{T}\) off2 \(=\) time constant
The temperature \(\theta\) end at the end of the off-cycle, as calculated by Eq. (B6) or (B5) has to be the same as the temperature at the start of the on-cycle. Actual calculations are started by assuming \(\theta_{\text {start }}\). If \(\theta\) end deviates to much from \(\theta_{\text {start, }}\) the calculations are done over again with \(\theta_{\text {start }}=\theta\) end. The process is repeated as many times as necessary to get the two temperatures equal.

If other constituents than carbon and hydrogen are neglected for fuel oil no 2, the amount of flue gas per weight unit of fuel is given by:
\[
\begin{equation*}
G_{\text {flue }}=0,0144 \cdot \alpha(8 c+24 h)+1 \tag{B7}
\end{equation*}
\]
where: \(c \quad=\%\) carbon by weight in the fuel
\(\begin{array}{ll}h & =\% \text { hydrogen " " " " " } " \\ \alpha & =\text { amount of air supplied for combur }\end{array}\)
\(\alpha \quad=\) amount of air supplied for combustion to the amount of air theoretically required

The weight of water wapor formed by combustion of one weight unit of fuel is given by:
\[
\begin{equation*}
G_{\mathrm{H}_{2 \mathrm{O}}}=\frac{8,5}{100} \mathrm{~h} \tag{BR}
\end{equation*}
\]

When the capacity of the burner nozzle is given, the flue loss per on-cy=le is:
\[
\begin{aligned}
& L_{o n}=\int_{0}^{t} \frac{k}{3600} \quad \gamma \cdot C p \cdot[0,0144 \cdot \alpha \cdot(8 c+24 h)+1]\left(\theta-\theta_{o f f}\right) d t \\
& +\frac{k}{3600} \cdot \gamma \cdot \frac{8,5}{100} h \cdot W \cdot t_{o n}
\end{aligned}
\]
where: \(k=\) capacity of burner nozzle (gph)
\[
\begin{aligned}
\gamma & =\text { spesific weight of fuel } \\
W & =\text { heat of vaporization of water at room temperature }\left(\theta_{\text {off }}\right) . \\
c_{\eta} & =\text { specific heat of flue gas }
\end{aligned}
\]

The barometric damper will always try to keep constant draft over the furnace. In this case, at steady state operation, the weight flow of flue gas will be constant. Even at off-cycle, when the furnace is cooling down, the mass flow of air through the furnace will be fairly constant if the main resistance to air flow is the air intake of the burner. In this case the off-cycle loss per cycle is:
\[
\begin{equation*}
L_{\text {off }}=\int_{0}^{t} \operatorname{Dkf}_{\text {flue }} C_{p}\left(\theta-\theta_{\text {off }}\right) d t \tag{B10}
\end{equation*}
\]
where: \(D=\) air flow through the furnace at off-cycle to the flow of flue gas at on-cycle.

When both \(L_{o n}\) and \(L_{\text {off }}\) are found the furnace efficiency is simply given by:
\[
\begin{equation*}
n=1-\frac{\left(L_{o n}+L_{o f f}\right) n}{k \cdot H H V \cdot x} \tag{BII}
\end{equation*}
\]
where: \(H H V=\) higher heating value of fuel
Other losses, such as heat loss from the furnace, are not taken into account as they give a positive heat input to the house.

Curves for furnace efficiency as a function of load, calculated with Eq. (Bll), are shown in Figure B 2. The figure shows clearly how important it is to keep the off-cycle air flow through the furnace as low as possible.


FIGURE B2.
Furnace efficiency as a function of furnace load factor.

HOLDAY

A subroutine which, except for easter, identifies the Norwegian national holidays.

INPUT
MO Month of the year
JAY
Day of the month
NDAY
Day of the week (Sunday \(=1\), etc.)

OUTPUT
JOL Holiday indicator \(=\left\{\begin{array}{l}0 \text { Not holiday } \\ 1 \text { Holiday }\end{array}\right.\)

\section*{CALCULATION SEQUENCE}
1. Set JOL equal to 1 for the following situations:
\[
\text { If } \begin{aligned}
\mathrm{MO} & =1 \text { and JAY }=1 \\
\text { MO } & =5 \text { and JAY }=1 \\
\text { MO } & =5 \text { and JAY }=17 \\
\text { MO } & =12 \text { and JAY }=25 \\
M O & =12 \text { and JAY }=26
\end{aligned}
\]
2. Otherwise set JOL equal to 0 .

HOTWTR

A subroutine which simulates an electric hot water heater with storage (see Figure 1). The thermostat will try to keep the water heater completely charged all the time.

INPUT
QHWT
QSMAX
QINMAX
QS

Average hot water demand for the hour in question,W Maximum heat storage capacity of the water heater, Wh Maximum electric power input to the water heater, \(W\) Stored heat in the water heater at the beginning of the hour, Wh

OUTPUT
QS

QIN

IQ
Stored heat in the water heater at the end of the hour, Wh Average electric power input for the hour in question, W
0 if the heater was able to meet the demand, 1 if not.


Figure 1
Simulation of hot water heater with storage

\section*{CALCULATION SEQUENCE}
1. CASE 1:

The water heater contains the maximum possible amount of heat (QSMAX) at the beginning of the hour:
a) QHWT is less or equal to QINMAX:
\[
\begin{aligned}
& \text { QIN }=\text { QHWT } \\
& \text { QS }=\text { QSMAX (as before) }
\end{aligned}
\]
b) QHWT is greater than QINMAX:

QIN = QINMAX
QS = QSMAX - (QHWT - QINMAX)
2. CASE 2:

The water heater is not completely charged at the beginning of the hour ( \(Q S\) < QSMAX):
a) QHWT is less than QINMAX:

QIN \(=\) QHWT \(+(\) QSMAX - QS \()\)
QS = QSMAX
If QIN calculated above turns out to be greater than QINMAX then:

QIN = QINMAX
QS = QSOLD + (QINMAX - QHWT)
b) QHWT is greater than QINMAX:

QIN = QINMAX
QS = QS-(QHWT - QINMAX)
3. If any of the above calculation make \(Q S\) negative it means that the demand could not be met. In this case:
\[
\begin{aligned}
\text { QIN } & =\text { QINMAX } \\
Q S & =0 \\
I Q & =1
\end{aligned}
\]

Fig. l shows an example of how the electrical input and the amount of stored heat will vary according to the hot water demand.

INFILT

A subroutine which calculates air flow through cracks in the external walls of a house. It is assumed that there are no pressure losses inside the house, i.e. all the internal doors are open.

INPUT
WDIR Wind direction, degrees clockwise from north
WSPD Wind speed at the nearest meteorological site, \(\mathrm{m} / \mathrm{s}\)
TOUT
TIN
HIO (50)

OUTPUT
SUMG
The algebraic sum of all the air flows through the cracks in the walls, kg/s
IERR \(\quad 0\) if the iteration process (Newton Raphson's method) to find inside air pressure does converge. If it does not converge, IERR is set to 1.
WFLOW \((50,2)\) The weight flows of air through the different walls of the house:
```

WFLOW(n,l) furnace is on
WFLOW(n,2) " " off

```

BLANK COMMON (See Appendix A)
COMMON BLOCKS \(F\), \(G\) and \(H\) (See Appendix A)

\section*{CALCULATION SEQUENCE}
1. Transform indoor and outdoor temperature to degrees Kelvin:
\[
\begin{aligned}
& \mathrm{TO}=\mathrm{TOUT}+273 . \\
& \mathrm{TI}=\mathrm{TIN}+273 .
\end{aligned}
\]
2. Transform wind speed at the meteorological site, WSPD, to wind speed at the building site:
\[
\text { WSPEED }=\text { WCOEF } * \text { WSPD }
\]
3. For each external surface calculate the wind's angle of attack, WANG, relative to surface azimuth angle, WAZ:
\[
\begin{aligned}
& \text { WANG }=\mid \text { WAZ }- \text { WDIR } \mid \\
& \text { if WANG }>180 \text {. then WANG }=360 .- \text { WANG }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Shape no. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
H/B & 1 & 1 & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(3 / 2\) & \(3 / 2\) & \(3 / 2\) \\
L/B & 1 & 2 & 1 & 2 & 4 & 1 & 2 & 4 \\
\hline
\end{tabular}

Tabie 1
Building shapes (see also Eigure l)
4. Find the proper column, \(K\), of Table 2 ("long walls"), Table 3 ("short walls") or Table 4 (roofs). "Long walls" and "short walls" are defined in Figure l:
\[
K=\text { WANG } / 45 .+1.51
\]

NOTE: For the walls the correct rows of Table 2 or Table 3 are already found by the input routine CARDIN. The row for the long walls is stored in array FWCPA, the row for the short walls in SWPCA.
5. For roof surfaces with tilt angle, TILT, find the correct row, ISLOPE, of Table 3:
```

ISLOPE = TILT/15. + 1.51
If ISLOPE > 4 then ISLOPE = 4

```
6. Store the correct pressure coefficient in the array \(C\) :

If the surface, \(I\), is a long wall:
\[
C(I)=F W P C A(K)
\]

If the surface is a short wall:
\[
C(I)=S W P C A(K)
\]

If the surface is a roof:
\[
C(I)=\text { RPCA(ISLOPE, } K)
\]


Ficure 1
Definition of building shape
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Builä. \\
shape
\end{tabular}} & \multicolumn{6}{|c|}{ Angle of attack } \\
\cline { 2 - 6 }\(^{\circ}\) & \(45^{\circ}\) & \(90^{\circ}\) & \(135^{\circ}\) & \(180^{\circ}\) \\
\hline 1 & 0.8 & 0.4 & -0.8 & -0.6 & -0.6 \\
\hline 2 & 0.8 & 0.4 & -0.7 & -0.8 & -0.6 \\
\hline 3 & 0.7 & 0.4 & -0.7 & -0.6 & -0.4 \\
\hline 4 & 0.7 & 0.4 & -0.5 & -0.7 & -0.5 \\
\hline 5 & 0.7 & 0.4 & -0.3 & -0.7 & -0.6 \\
\hline 6 & 0.7 & 0.4 & -0.8 & -0.7 & -0.7 \\
\hline 7 & 0.8 & 0.4 & -0.7 & -0.8 & -0.6 \\
\hline 8 & 0.8 & 0.5 & -0.5 & -0.8 & -0.7 \\
\hline
\end{tabular}

Table 2
Pressure coefficients for long walls
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Build. \\
shape
\end{tabular}} & \multicolumn{5}{|c|}{ Angle of attack } \\
\cline { 2 - 6 } & \(0^{\circ}\) & \(45^{\circ}\) & \(90^{\circ}\) & \(135^{\circ}\) & \(180^{\circ}\) \\
\hline 1 & 0.7 & 0.4 & -0.8 & -0.6 & -0.6 \\
\hline 2 & 0.8 & 0.4 & -0.7 & -0.6 & -0.2 \\
\hline 3 & 0.8 & 0.4 & -0.8 & -0.5 & -0.4 \\
\hline 4 & 0.7 & 0.3 & -0.9 & -0.6 & -0.2 \\
\hline 5 & 0.8 & 0.3 & -0.9 & -0.5 & -0.2 \\
\hline 6 & 0.7 & 0.4 & -0.8 & -0.6 & -0.7 \\
\hline 7 & 0.7 & 0.3 & -0.7 & -0.7 & -0.4 \\
\hline 8 & 0.8 & 0.2 & -0.8 & -0.7 & -0.3 \\
\hline
\end{tabular}

Table 3
Pressure coefficients for short walls
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{l} 
Roof \\
angle
\end{tabular}} & \multicolumn{5}{|c|}{ Angle of attack } \\
\cline { 2 - 6 } & \(0^{\circ}\) & \(45^{\circ}\) & \(90^{\circ}\) & \(135^{\circ}\) & \(180^{\circ}\) \\
\hline \(0^{\circ}\) & \(-0,8\) & \(-0,8\) & \(-0,6\) & \(-0,8\) & \(-0,8\) \\
\hline \(15^{\circ}\) & \(-0,9\) & \(-0,9\) & \(-0,6\) & \(-0,8\) & \(-0,7\) \\
\hline \(30^{\circ}\) & \(-0,8\) & \(-0,5\) & \(-0,6\) & \(-0,8\) & \(-0,6\) \\
\hline \(45^{\circ}\) & 0. & \(-0,1\) & \(-0,7\) & \(-0,8\) & \(-0,7\) \\
\hline
\end{tabular}

Table 4
Pressure coefficients for roofs.

The factors in Tables 1,2 and 3 are average numbers obtained from Reference 6.
7. The expression for the weight flcw of air through a crack is derived in the following which is copied from Reference 11.

The amount of air flowing through a crack in an outside wall depends on the size of the crack and the pressure difference between inside and outside. In most cases the resistance to air flow within the house is negligible. For the purpose of infiltration calculations the house can then be regarded as a box, as shown in Figure 1.


FIGURE 1
Infiltration model
The air flow thrnigh the creck between 0 and \(i\) in Figure 1 is given bv,
\[
\begin{equation*}
Q_{o i}=\left(\frac{P_{0}-P_{i}}{R_{o i}}\right)^{n} \tag{2}
\end{equation*}
\]
where:
\[
\begin{aligned}
& R_{o i}=\text { "resistance" of the crack } \\
& P_{o}=\text { static pressure at o } \\
& P_{i}=4 \quad " \quad \text { " } \quad \text { " } \\
& n=\text { flow exponent (usually } n=0,66 \text { ) }
\end{aligned}
\]

The resistance, \(R\), can be derived from data given in handbooks. ASHRAE Handbook of Fundamentals \({ }^{l}\) for instance, gives air flow per unit lenth of crack, or unit area of wall, for a set of pressure differences. Values for different types of windows, doors and walls are given. To find \(R\), first multiply the handbook value by the length of the crack, or area of the wall, then use Eq. (2) and solve for \(R(n=0,66)\).

The static pressure at point \(\circ\) in Figure \(l\) is given by:
\[
\begin{equation*}
P_{0}=c \rho_{0} \frac{v_{w}^{2}}{2}-\rho_{0} g h \tag{3}
\end{equation*}
\]
where:
\(c=\) wind pressure coefficient
\(\rho_{0}=\) density of outdoor air
\(\mathrm{v}_{\mathrm{w}}=\) wind speed
\(g=\) gravitational acceleration
\(h=\) distance between reference level and crack

The static pressure at point \(i\) is given by:
\[
\begin{equation*}
P_{i}=x-\rho_{i} g h \tag{4}
\end{equation*}
\]
where:
\(\mathrm{x}=\) inside pressure at reference level
\(\rho_{i}=\) density of indoor air
The density of air is given by the gas equation:
\(\rho=\frac{P_{\text {atm }}}{R_{g} T}\)
where:
\(P_{\text {atm }}=\) atmospheric pressure
\(\mathrm{R}_{\mathrm{g}}=\) gas constant for air
\(T=\) absolute temperature
Using Eq. (2), (3), (4) and (5) the weight flow from o to i can be expressed as:
\(G_{o i}=\left\{\frac{P_{a t m} g}{R_{O i}{ }^{n} R_{g} T_{O, i}} \frac{P_{a t m}}{R_{g}}\left[\frac{c}{\frac{v_{r}}{2}} \frac{r_{i}^{2}}{T_{O}}-g h\left(\frac{1}{T_{O}}-\frac{1}{T_{i}}\right)\right]-x\right\}^{n}\)
where:
To, \(i=T o\) when the air flow is from 0 to \(i\)
\(T_{0, i}=T_{i}\) when the air flow is from \(i\) to \(o\)
Positive direction of air flow is from outside to inside.
In an actual simulation a crack, such as the one in Figure 1 , will represent all the cracks in an external wall of a room. This equivalent crack should be located halfway between floor and ceiling.
8. In the expression for the weight flow through a crack, Eq. (6) above, the inside pressure \(X\) is unknown. To find \(X\) the Newton Raphson's method is used:
a. The previous hour's values are used as initial values
b. For each external wall having cracks calculate the weight flow of air through the cracks using Eq. (6) above. Also calculate the derivative of the weight flow with respect to \(X\)
\[
\text { i.e. } \frac{d G o i}{d x}
\]
c. Calculate the algebraic sum, SUMG, of all the weight flows. Also calculate the algebraic sum, SUMDG, of all the derivatives.
d. If the house has a hot air system, call the subroutine CHMNEY to get the weight flow of gases up the chimney. This routine also returns the derivative of the weight flow with respect to \(X\). Add the weight flow and the derivative to SUMG and SUMDG respectively.
e. The correction to X is given by:
\[
D X=- \text { SUMG/SUMDG }
\]
f. A new and better value of X is now given by:
\[
x=x+D X
\]
g. The solution is reached when the absolute value of SUMG has become less than a predetermined small value, (condition of mass balance). If not so, steps b. to f. is done over again until the solution is reached (if the solution is not reached after 20 iterations the program will stop and print a message).

LEEP

A subroutine which determines whether a year is a leap year or not.

INPUT
JAHR Year AD

OUTPUT
LEEP
Leap year index \(=\left\{\begin{array}{l}0 \text { Not leap year } \\ 1 \text { Leap year }\end{array}\right.\)

CALCULATION SEQUENCE

If (JAHR - 1900) is evenly divisible by 4 , then LEEP \(=1\), otherwise LEEP \(=0\)

MAIN PROGRAM

INPUT

None

\section*{OUTPUT}

BLANK COMMON (See Appendix A)
COMMON BLOCK H ( " ")

\section*{CALCULATION SEQUENCE}
1. The nominator \(z\)-transfer coefficients for transformation of heat gains by radiation to cooling load are assigned values as given in the following table:
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
Light 1) \\
Structure
\end{tabular} & \begin{tabular}{c} 
Medium 2) \\
Structure
\end{tabular} & \begin{tabular}{c} 
Heavy 3) \\
Structure
\end{tabular} \\
\hline \(\mathrm{v}_{0}\) & 0.224 & 0.197 & 0.187 \\
\(\mathrm{v}_{1}\) & -0.044 & -0.067 & -0.097 \\
\hline
\end{tabular}
1) Approx. 145 kg of building material per sq. meter of floor area (furniture included)
2) Approx. \(345 \mathrm{~kg} / \mathrm{m}^{2}\)
3) Approx. \(635 \mathrm{~kg} / \mathrm{m}^{2}\)
2. The nominator \(Z\)-transfer coefficients for transformation of heat gains by conduction to cooling load are assigned values as given in the following table:
\begin{tabular}{|c|l|c|c|}
\hline & \begin{tabular}{c} 
Light \\
Structure
\end{tabular} & \begin{tabular}{c} 
Medium \\
Structure
\end{tabular} & \begin{tabular}{c} 
Heavy \\
Structure
\end{tabular} \\
\hline\(v_{0}\) & 0.703 & 0.681 & 0.676 \\
\(v_{1}\) & -0.523 & -0.551 & -0.586 \\
\hline
\end{tabular}
3. The nominator Z-transfer coefficients for transformation of heat gains from incadecent lights exposed in the room air to cooling load are assigned values as given in the following table:
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
Light \\
Structure
\end{tabular} & \begin{tabular}{c} 
Medium \\
Structure
\end{tabular} & \begin{tabular}{c} 
Heavy \\
Structure
\end{tabular} \\
\hline \(\mathrm{v}_{0}\) & 0.0 & 0.0 & 0.0 \\
\(\mathrm{v}_{1}\) & 0.50 & 0.50 & 0.50 \\
\(\mathrm{v}_{2}\) & -0.32 & -0.37 & -0.41 \\
\hline
\end{tabular}
4. The nominator \(Z\)-transfer coefficients for deviation of space temperature from an assumed constant value of \(20^{\circ} \mathrm{C}\) are given in the following table (the heating/cooling loads are calculated using \(20^{\circ} \mathrm{C}\) room temperature). The coefficients have the dimension \(\mathrm{W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)\) :
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
Light \\
Structure
\end{tabular} & \begin{tabular}{c} 
Medium \\
Structure
\end{tabular} & \begin{tabular}{c} 
Heavy \\
Structure
\end{tabular} \\
\hline\(x_{0}\) & 9.539 & 10.277 & 10.504 \\
\(x_{1}\) & -9.823 & -10.731 & -11.072 \\
\(x_{2}\) & 0.284 & 0.454 & 0.568 \\
\hline
\end{tabular}

The \(x\) coefficients given in the table are for a room with zero heat conductance to the surrounding spaces and are normalized to unit floor area. To get the \(\mathrm{x}_{\mathrm{j}}\) coefficients for a room with a total conduktance K between room air and surroundings and infiltration rate \(\mathrm{Vl}_{t}\) it is necessary to make the following corrections:
1) Multiply each \(x_{j}\) value by room floor area
2) \(T O x_{0}\) add: \(K+c p \cdot V l_{\tau}\)
3) To \(x_{1}\) add: \(K+c p \cdot \mathrm{Vl}_{\tau-1} \cdot b_{1}\)
\[
\begin{aligned}
\text { where: } \mathrm{cp}= & \text { specific heat of air }(\mathrm{J} / \mathrm{kg}) \\
\mathrm{b}_{1}= & \text { one of the common denominator factors } \\
& \text { given in the table below }
\end{aligned} \quad \begin{aligned}
\mathrm{VI}_{\tau}, \mathrm{VI}_{\tau-1}= & \text { infiltration rate }(\mathrm{kg} / \mathrm{s}) \text { for the present } \\
& \text { and previous hour }
\end{aligned}
\]
5. The common denominator \(Z\)-transfer coefficients to be used with all the nominator coefficients above are assigned values as given in the following table:
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{c} 
Light \\
Structure
\end{tabular} & \begin{tabular}{c} 
Medium \\
Structure
\end{tabular} & \begin{tabular}{c} 
Heavy \\
Structure
\end{tabular} \\
\hline \(\mathrm{b}_{0}\) & 1.0 & 1.0 & 1.0 \\
\(\mathrm{~b}_{1}\) & -0.82 & -0.87 & -0.93 \\
\hline
\end{tabular}
6. How to use these coefficients is explained in Chapter 22 of the 1972 ASHRAE Handbook of Fundamentals /l/. For example to find the cooling load, \(Q_{\tau}\), at time \(\tau\) when the heat gain, \(Q_{\tau}\), is given in the form of time series, i.e. the value of the heat gain at equally-spaced points in time (one hour interval), the following calculation is necessary:
\[
Q_{\tau}=v_{0} q_{\tau}+v_{1} q_{\tau-1}+v_{2} q_{\tau-2}+\ldots \ldots-b_{1} Q_{\tau-1}
\]
7. The array RPCA is assigned values for wind pressure coefficients for roofs (see Table 4 of the documentation of the INFILT subroutine).
8. The subroutine CARDIN which reads the input card deck is called.
9. The subroutine CALCUL where the hour by hour simulation takes place is called.

NDOW

A subroutine which determines the day of the week.

\section*{INPUT}

JR Year AD

MO Month of the year

JAY Day of the month

OUTPUT
NDOW Week day indicator \(=\left\{\begin{array}{l}1 \text { if Sunday } \\ 2 \text { if Monday } \\ 3 \text { if Tuesday } \\ 4 \text { if Wednesday } \\ 5 \text { if Thursday } \\ 6 \text { if Friday } \\ 7 \text { if Saturday }\end{array}\right.\)

\section*{CALCULATION SEQUENCE}
1. Let JST (1) \(=31, \operatorname{JST}(2)=59, \operatorname{JST}(3)=90, \mathrm{JST}(4)=120\)
\(\operatorname{JST}(5)=151, \operatorname{JST}(6)=181, \operatorname{JST}(7)=212, \operatorname{JST}(8)=243\)
\(\operatorname{JST}(9)=273, \operatorname{JST}(10)=304, \operatorname{JST}(11)=334, \operatorname{JST}(12)=365\)
2. Let \(N=\) Integer part of \(J R / 4\)
```

ND = N-485
IY = 2, IAAD = 2
If ND = 0, go to (4)
If ND is less than 0, ND = -ND and IADD = - 2

```
3. Repeat the following steps ND times
```

IY = IY - LADDD
If IY is greater than 7, IY = IY - 7
If IY is equal to 0, IY = 7
If IY is less than 0, IY + 7

```
4. Let \(\mathrm{MD}=\mathrm{JR}-\mathrm{N} * 4\)

> If MD is equal to 0 , \(\operatorname{IWK}=\mathrm{IY}\)
> 1, \(I W K=I Y+2\)
> 2, \(I W K=I Y+3\)
> 3, \(I W K=I Y+4\)

If IWK is greater than 7, IWK = IWK - 7
5. Repeat the following for \(j=1\) through 12 .

If MO is equal to \(j\), let JDAY \(=J S T(j)-31+J A Y-1\)
6. If \(M D\) is equal to 0 and \(M O\) is greater than 2 , JDAY \(=J D A Y+1\)
7. \(N T X=\) Integer part of JDAY/7

NDX \(=\) JDAY - 7* NTX + IWK

If \(N D X\) is greater than 7, let NDS = NDX - 7
8. Let NDOW \(=\) NDX

\section*{OUTPT 2}

A subroutine which prints detailed hour by hour results from the simulation.

INPUT
WFLOW \((50,2)\) The weight flows of air through the different walls (cracks) of the house:

WFLOW ( \(n, 1\) ) when furnace is on
WFLOW ( \(n, 2\) ) when furnace is off

IHOUR
IDAY
MONTH
IDWEEK
JOL
ICNT

JCNT

KCNT

FLF
WSPEED
WDIR

Hour of the day Day of the month Month of the year Day of the week (Sunday \(=1\), etc.)
Holiday Indicator \(\left\{\begin{array}{l}0 \text { Not Holiday } \\ 1\end{array}\right.\)
Pointer to the location of the present hour value in arrays containing data for the present and the previous six hours (i.e. seven values are stored).

Pointer to the location of the present hour value in arrays containing data for the present and the previous hour.

Pointer to the location of the present hour value in arrays containing data for the present and the previous three hours.

Furnace load factor ( \(0 . \leq \operatorname{FLF} \leq 1.0\) )
Wind speed at the meteorological site, m/s
Wind direction, degrees clockwise from north

BLANK COMMON (See Appendix A)
COMMON BLOCK E (See Appendix A )

\section*{OUTPUT}

Printout of detailed hour by hour results from the simulation as shown in Chapter 4 of the User's Manual.

REDFAC

A subroutine which calculates the sunlit area factor of a window shaded by the window sash, vertical fins and a horizontal overhang (see Fig. 1 ).

Sunlit area factor means sunlit area enclosed by the window sash divided by the total area enclosed by the sash.

INOTE:
It is assumed that fins and overhang have "infinite" lengths.


Figure 1
Window with fins and overhang

INPUT
Al
Width of right fin (see Fig. l )
A2
Width of left fin (see Fig, l )
B1 Distance between right fin and window sash (see Fig. 1 )
B2 Distance between left fin and window sash (see Fig. 1 )
C
Depth of window sash (see Fig. l )

D
E VB

VH
SAZIM
SALT
WAZIM
EIA
TIIT

Width of overhang (see Fig. 1 )
Distance between overhang and window sash (see Fig. 1 )
With of window sash (see Fig. l )
Height of window sash (see Fig. 1 )
Solar azimuth angle in degrees (clockwise from north)
Solar altitude angle in degrees
Wall azimuth angle in degrees (clockwise from north)
Cosine of the solar angle of incidence
Wall tilt angle in degrees (vertical walls 90 degrees)

OUTPUT
REDFAC
Sunlit area factor. ( \(0.0 . \leqslant \operatorname{REDFAC} \leqslant 1.0,0.0\) if the window is completely shaded, 1.0 if it is not shaded at all).

\section*{CALCULATION SEQUEIVCE}
1. If \(E N A \leqslant 0.0\) the sun is not shining on the wall. No calculations are necessary (return from subroutine).
2. Calculate the difference between solar and wall azimuth angle and decide if window is shaded by right or left fin.
\[
F I=S A Z I M-W A Z I M
\]

If \(F I \leqslant 0.0\) then \(A:=A l\) and \(B=B l\) (Fig. 1 )
If \(\mathrm{FI}>0.0\) then \(\mathrm{A}=\mathrm{A} 2\) and \(\mathrm{B}=\mathrm{B} 2\) (Fig. 1 )

Two special cases may accur
a) If SAZIM \(\leqslant 90\) degrees and WAZIM \(\geqslant 270\) degrees then
\[
\begin{aligned}
\mathrm{FI} & =360+\mathrm{FI} \\
\mathrm{~A} & =\mathrm{A} 2 \\
\mathrm{~B} & =\mathrm{B} 2
\end{aligned}
\]
b) If SAZIM \(\geqslant 270\) degrees and \(W A Z I M \leqslant 90\) degrees then
\[
\begin{aligned}
F I & =360-F I \\
A & =A I \\
B & =B I
\end{aligned}
\]

From this point on the absolute value of FI is used in the calculations.
3. If (TIII + OMGA) \(\geqslant 180\) degrees then the window is completely shaded. I.e. REDFAC \(=0.0\) and no further calculations are necessary.
4. Calculate shading by horizontal overhang (Fig. 2 )


Figure 2
Shading by horizontal overhang

No shāow from overhang if TILT + OMEGA \(\leqslant 90.0\)
In this case the window is shaded by the lower horizontal part of the window sash (Fig. 3 ).

The width of tine shadow is given by \(\mathrm{VS}=\mathrm{C} / \mathrm{TAN}(\mathrm{TILT}+\mathrm{OMEGA})\)


Figure 3
Shading by the lower horizontal part of
the window sash

If TIIT + ONEGA > 90.0
\[
\begin{aligned}
& \mathrm{VS}=-(\mathrm{D}+\mathrm{C}) / \text { TAN (TILT }+ \text { OMEGA) }-\mathrm{E} \\
& \text { If VS }<-\mathrm{C} / T A N(T I L T+O M E G A) \text { then the } \\
& \text { window is shaded by the upper horizontal part } \\
& \text { of the window sash. VS is then given by } \\
& \mathrm{VS}=-\mathrm{C} / \text { TAN (TILT }+ \text { OMEGA) }
\end{aligned}
\]
5. Calculate shading by vertical fins. (Fig. 4 a and b)

From Fig. 4 a and b we get
\[
\mathrm{HS}=(\mathrm{A}+\mathrm{C}) \times T A N(F I) /(\operatorname{SIN}(T I I T)+\operatorname{COS}(T I L T) \neq \operatorname{TAN}(Q M E G A))-B
\]

Also calculate
\[
\mathrm{HS} 1=\mathrm{C} \neq \operatorname{TAN}(F I) /(\operatorname{SIN}(T I L T)+\operatorname{COS}(T I L T) \times \operatorname{TAN}(O N E G A))
\]

IF HS < HSl then the window is shaded by the vertical part of the window sasin and
\[
\mathrm{HS}=\mathrm{HS} 1
\]

IF FI happens to be equal to or very close to 90.0 or 270.0 degrees we get
\[
\begin{aligned}
& \mathrm{HS}=(\mathrm{A}+\mathrm{C}) /(\operatorname{COS}(\mathrm{TILT}) \nVdash \mathrm{TAN}(\mathrm{SALT}))-\mathrm{B} \\
& \mathrm{HSI}=\mathrm{C} /(\operatorname{COS}(\mathrm{TIIT}) \nVdash \operatorname{TAN}(\mathrm{SALT}))
\end{aligned}
\]
6. Calculate sunlit area factor
\[
\text { REDFAC }=(\mathrm{VH}-\mathrm{VS}) \times(\mathrm{VB}-\mathrm{HS}) /(\mathrm{VH} \approx \mathrm{VB})
\]

If \(\mathrm{VS} \geqslant \mathrm{VH}\) or \(\mathrm{HS} \geqslant \mathrm{VB}\) then \(\mathrm{REDFAC}=0.0\)


Horizontal
projection of sun's ray

b)

Figure \(4 a\) ) and b)
Shading by vertical fins

SHGB

A subroutine which calculates solar heat gain through single pane windows.

INPUT
RDIR Intensity of direct solar radiation normal to window, \(\mathrm{W} / \mathrm{m}^{2}\)

RDIF Intensity of diffuse solar radiation falling on window, \(\mathrm{w} / \mathrm{m}^{2}\)
\(\left.\begin{array}{l}\text { RO } \\ \text { RI }\end{array}\right\} \quad \begin{aligned} & \text { Thermal resistance } \\ & \text { surface }, \mathrm{m}^{2 \mathrm{O}^{\circ}} \mathrm{C} / \mathrm{W}\end{aligned}\)

SHAW
Sunlit area factor

SC Shading coefficient if the window is shaded by drapes or blinds

TDIR \(\}\) Transmission factors of direct and diffuse radiation TDIF \(\}\)

ADIRO Absorption factor of direct solar radiation through window pane

ADIFO
Absorption factor of diffuse radiation through window pane

Note: When the value of SC is given, these Transmission and Absorption factors should be for the standard \(1 / 8^{\prime \prime}\) thick double strength glass.

Space temperature, \({ }^{\circ} \mathrm{C}\)

TDB
Ambient outside air temperature, \({ }^{\circ} \mathrm{C}\)

OUTPUT
QRAY
Radiant heat gain through glass, \(\mathrm{W} / \mathrm{m}^{2}\)

QCON Conductive heat gain through glass, \(\mathrm{W} / \mathrm{m}^{2}\)

\section*{CALCULATION SEQUENCE}
1. Calculate inward flowing fraction of the radiation absorbed by the window pane
\[
F O=\mathrm{RO} * \mathrm{U}
\]
2. Calculate components of solar load
a) Direct
\[
\text { QDIR }=\text { SHAW } * \text { RDIR }
\]
b) Diffuse
\[
\text { QDIF }=\text { RDIF }
\]
c) Transmitted
\[
\text { QTRANS }=\text { QDIF * TDIF }+ \text { QDIR *TDIR }
\]
d) Absorbed
\[
\text { QABS }=\text { QDIF * ADIFO * FO + QDIR * ADIRO * FO }
\]
3. Calculate solar heat gain through glass
\[
Q R A Y=S C * \text { (QTRANS }+Q A B S)
\]
4. Calculate heat conduction through glass
\[
Q C O N=U *(T D B-T)
\]

SOLTAB

A subroutine which finds the necessary number of different solar radiation values that are needed to calculate energy consumption of a given building.

INPUT
BLANK COMMON

OUTPUT
NORAD Number of different combinations of azimuth and tilt angles. The program will handle max. 20 combinations.
\(\operatorname{AZTILT}(20,2)\) Azimuth (AZTILT\((n, 1)\) ) and tilt angles (AZTILT (n, 2) ) for max. 20 combinations.

\section*{CALCULATION SEQUENCE}

The routine examines the azimuth and tilt angles of all the external surfaces to find the number of unique combinations of azimuth and tilt angles.

SUNI

A subroutine to calculate the daily solar radiation data.

INPUT
IDOY Day of Year, 1 to 366

TL Tangent of Latitude angle

\section*{OUTPUT}

SUNRAS Hourly angle (radians) when solar altitude is zero

DEABC (l) Tangent of declination angle, TAN \(\delta\)

DEABC (2) Equation of time, ET, hours

DEABC(3) Apparent solar constant, A, BTU/hr-sq ft

DEABC(4) Atmospheric extinction coefficient, B

DEABC (5) Sky diffuse factor, C

Table l lists, as function of date, five variables related to solar radiation. These variables are declination angle, \(\delta\); the equation of time, ET; the apparent solar constant, \(A\); the atmospheric extinction coefficient, \(B\); and sky diffuse factor, \(C\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline DATE & \[
\stackrel{\delta}{\text { DEGREES }}
\] & \[
\begin{aligned}
& \text { ET } \\
& \text { HOURS }
\end{aligned}
\] & \[
\begin{gathered}
\text { A } \\
\text { Btu per } \\
(h r)(s q f t)
\end{gathered}
\] & \begin{tabular}{l}
B \\
AIR MASS \({ }^{-1}\)
\end{tabular} & C \\
\hline Jan. 21 & -20.0 & -. 190 & 390 & 0.142 & 0.058 \\
\hline Feb. 21 & -10.8 & -. 230 & 385 & 0.144 & 0.060 \\
\hline Mar. 21 & 0.0 & -. 123 & 376 & 0.156 & 0.071 \\
\hline Apr. 21 & 11.6 & . 020 & 360 & 0.180 & 0.097 \\
\hline May 21 & 20.0 & . 060 & 350 & 0.196 & 0.121 \\
\hline June 21 & 23.45 & -. 025 & 345 & 0.205 & 0.134 \\
\hline JuTy 21 & 20.6 & -. 103 & 344 & 0.207 & 0.136 \\
\hline Aug. 21 & 12.3 & -. 051 & 351 & 0.201 & 0.122 \\
\hline Sept. 21 & 0.0 & . 113 & 365 & 0.177 & 0.092 \\
\hline Oct. 21 & -10.5 & . 255 & 378 & 0.160 & 0.073 \\
\hline Nov. 21 & -19.8 & . 235 & 387 & 0.149 & 0.063 \\
\hline Dec. 21 & -23.45 & . 033 & 391 & 0.142 & 0.057 \\
\hline
\end{tabular}

Table 1
Values of \(\delta, E T, A, B\) and \(C\) for northern hemisphere

Table 1 could be stored in the computer memory, but this would necessitate an interpolation procedure. In order to avoid such a problem and to save computer core, Tand, ET, A, B and C are expressed in Fourier Series form and the values are calculated as a function of the day of the year, \(d\), from the following truncated Fourier series.

where
\[
\begin{aligned}
& \omega=2^{*} \pi / 366 .=0.01721 \\
& \mathrm{~d}=\text { IDOY }
\end{aligned}
\]

The proper Fourier coefficients are given in Tabel 2
\begin{tabular}{|r|l|c|c|c|c|c|c|}
\hline & \multicolumn{1}{|c|}{\(\mathrm{A}_{0}\)} & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\) & \(\mathrm{~B}_{3}\) \\
\hline Tan \(\delta\) & -.00527 & -.4001 & -.003996 & -.00424 & .0672 & 0.0 & 0.0 \\
ET & \(0.696 \times 10^{-4}\) & .00706 & -0.0533 & -0.00157 & -0.122 & -0.156 & -.00556 \\
A & 368.44 & 24.52 & -1.14 & -1.09 & .58 & -0.18 & .28 \\
B & .1717 & -.0344 & .0032 & .0024 & -.0043 & 0.0 & -.0008 \\
C & .0905 & .0410 & .0073 & .0015 & -.0034 & .0004 & -.0006 \\
\hline
\end{tabular}

Table 2
Fourier coefficients

\section*{CALCULATION SEQUENCE}
1. Calculate Tand, ET, A, B and C using the following equation where \(I\) varies from 1 to 5 and coefficients take on values shown in Table 2
\[
\begin{aligned}
\operatorname{DEABC}(I)=A_{0} & +A_{1} * \mathrm{Cl}+\mathrm{A}_{2} * \mathrm{C} 2+\mathrm{A}_{3} * \mathrm{C} 3 \\
& +\mathrm{B}_{1} * \mathrm{~S} 1+\mathrm{B}_{2} * \mathrm{~S} 2+\mathrm{B}_{3} * \mathrm{~S} 3
\end{aligned}
\]
where
\[
\begin{aligned}
& C l=\cos (\omega * d) \\
& S I=\sin (\omega * d)
\end{aligned}
\]
and by trigometric identity
\[
\begin{aligned}
& C 2=\cos (2 * \omega * d)=C 1 * C 1-S 1 * S 1 \\
& C 3=\cos (3 \omega * d)=C 1 * C 2-S 1 * S 2 \\
& S 2=\sin (2 * \omega * d)=2 * S 1 * C 1 \\
& S 3 \quad \sin (3 * \omega * d)=C l * S 2+S l * C 2
\end{aligned}
\]
2. Calculate sun rise angle
\[
\begin{aligned}
\text { SUNRAS }=\cos ^{-1}\left(-T L * \text { DEABC (1)) } \quad \begin{array}{l}
\text { (NOTE: } \operatorname{Cos}^{-1} \text { is the } \\
\text { same as arccos) }
\end{array}\right.
\end{aligned}
\]
which is obtained from general equation
\[
\sin (h)=\sin (\delta) * \sin (L)+\cos (\delta) * \cos (L) * \cos (t)
\]
(this equation is RAYCOS(3); see subroutine SUN2 for derivation)
where
\[
\begin{aligned}
& \mathrm{H}=\text { solar altitude, radians } \\
& \mathrm{L}=\text { latitude, radians } \\
& \mathrm{t}=\text { hour angle, radians }
\end{aligned}
\]
and where SUNRAS is gotten by setting \(h=0\), and solving for \(t\).

NOIE!
This subroutine calculates the apparent solar constant, \(A\), in BIU/hr-sq ft. In programs using SI-units A should be transformed to \(\mathrm{W} / \mathrm{m}^{2}\) immediately after the call of the routine.
Actually, in the ENCORE program neither A nor B as calculated by this routine is used. Immediately after the call of the routine they are replaced by values given by Lunelund (Reference, whose values are derived from measurements made in Scandinavia

SUN2B

A subroutine to calculate the hourly solar radiation data.

INPUT
H Hour angle,radians (calculated in main program)
\(\left.\begin{array}{ll}\text { DEABC(1) } & \text { Tangent of declination angle } \\
\text { DEABC(2) } & \text { Equation of time, hours } \\
\operatorname{DEABC}(3) & \text { Apparent solar constant, } \mathrm{W} / \mathrm{m}^{2} \\
\operatorname{DEABC}(4) \\
\text { DEABC(5) Atmospheric extinction coefficient }\end{array}\right\}\)\begin{tabular}{l} 
Calculated \\
in sunl
\end{tabular}

SL
Sin of latitude angle

CL Cosine of latitude angle

CN Clearness number

OUTPUT
RAYCOS(1) Direction cosine of sun in x-cirection (EAST)

RAYCOS(2) Direction cosine of sun in \(y\)-direction (NORTH)

RAYCOS(3) Direction cosine of sun in z-direction (UPWARD)

RDN
Intensity of direct normal solar radiation, \(\mathrm{W} / \mathrm{m}^{2}\)

BS
Brightness of sky, \(\mathrm{W} / \mathrm{m}^{2}\)

\section*{CALCULATION SEQUENCE}
1. Calculate direction cosines of sun


Figure 1
Coordinate system used in the calculations
From the schematic presented above, the direction cosines are as follows:
\[
\begin{aligned}
& \operatorname{RAYCOS}(1)=\cos (e)=\cos (h)^{*} \sin (A Z) \\
& \operatorname{RAYCOS}(2)=\cos (n)=\cos (h)^{*} \cos (A Z) \\
& \operatorname{RAYCOS}(3)=\operatorname{sIN}(h)
\end{aligned}
\]
where \begin{tabular}{rl}
\(\mathrm{h}=\) & altitude of sun measured from \\
& horizontal, degrees \\
\(\mathrm{AZ}=\) & azimuth of sun measured from north \\
& towards east, degrees
\end{tabular}

From spherical trigonometry , the following relationships hold
\[
\begin{aligned}
& \sin (h)=\sin (\delta) * \sin (L)+\cos (\delta) * \cos (L) * \cos (t) \\
& \cos (A Z)=(\sin (\delta) * \cos (L)-\cos (\delta) * \sin (L) * \cos (t)) / \cos (h) \\
& \sin (A Z)=-(\cos (\delta) * \sin (t)) / \cos (h)
\end{aligned}
\]
where \(\delta=\) declination of sun, degrees
\(\mathrm{L}=\) station latitude, degrees
\(t\) = hour angle of sun measured from south towards west, degrees

Substitution gives
```

RAYCOS(1) = - - cos(\delta)*sin(t)
RAYCOS(2) = sin! ()*\operatorname{cos(L)-cos(\delta)*sin(L)*\operatorname{cos(t)}}\mathbf{L}=\operatorname{los}
RAYCOS(3) = sin(\delta)*\operatorname{sin}(L)+\operatorname{cos}(\delta)*\operatorname{cos}(L)*\operatorname{cos}(t)

```
2. Calculate intensity of direct normal solar radiation
a) If RAYCOS(3) is \(\leq 0.001\), sun has not risen yet, and therefore set
\begin{tabular}{ll}
\(\operatorname{RAYCOS}(3)\) & \(=0.0\) \\
\(\operatorname{RDN}\) & \(=0.0\) \\
BS & \(=0.0\)
\end{tabular}
b) If RAYCOS(3) is greater than 0.001 , sun is up, and therefore
\[
\begin{aligned}
& \operatorname{RDN}=\operatorname{DEABC}(3) * \operatorname{CN} * \operatorname{EXP}(-\operatorname{DEABC}(4) / \operatorname{RAYCOS}(3)) \\
& \operatorname{BS}=\operatorname{DEABC}(5) * \operatorname{RDN} /\left(C N^{*} \mathrm{CN}\right)
\end{aligned}
\]

Value of clearness number, \(C N\), for \(U S\) can be gotten from Figure 2


Fig. 2 Clearness numbers of non-industrial atmosphere in United States
Clearness numbers for Europe is not available, but Figure 2 gives a good indication on possible values

SUN3B
A subroutine which calculates solar data depending upon orientation of a surface. Values for cloudy days are calculated according to D. G. Stephenson and K. Kimura (Reference 12).

INPUT
WT Surface tilt angle from horizontal, radians

WA Surface azimuth angle, radians, clockwise from north

RAYCOS Direction cosines of sun's ray

RDN
Intensity of direct normal solar radiation, \(\mathrm{W} / \mathrm{m}^{2}\) (already corrected for cloud cover)

BS
Brightness of sky (diffuse sky radiation on horizontal surface), \(\mathrm{w} / \mathrm{m}^{2}\)

ROG
Ground reflectivity

CC
Cloud cover

CCF Cloud cover factor

OUTPUT
GAMMA Cosine of angle between zenith and outward normal of surface

ETA Cosine of the solar angle of incidence, \(\eta\)

RDIR
Intensity of direct solar radiation on surface, \(\mathrm{W} / \mathrm{m}^{2}\)

RDIF
Intensity of diffuse radiation on surface, \(\mathrm{W} / \mathrm{m}^{2}\)

RTOT

BG Intensity of total radiation on surface, \(\mathrm{w} / \mathrm{m}^{2}\) Brightness of ground, \(W / \mathrm{m}^{2}\)

For a pictorial illustration of the various angles referred to in SUN3, see Figures 1 and 2.


\section*{Figure 1}

Definition of angles


\section*{Figure 2}

Schematic showing apparent path of sun and hour angle

\section*{CALCULATION SEQUENCE}
1. Calculate brightness of ground under a cloudless sky
\[
\mathrm{BG}=\mathrm{ROG} *(\mathrm{BS}+\mathrm{RDN} * \mathrm{RAYCOS}(3))
\]
2. Calculate the factors \(Y Y\) and \(R K\)
\[
\text { Let } \begin{aligned}
\mathrm{X} & =\mathrm{RAYCOS}(3) \\
\mathrm{YY} & =0.309-0.137 * \mathrm{X} 0.394 * \mathrm{X} * \mathrm{X} \\
\mathrm{RK} & =\mathrm{X} /(\mathrm{DEABC}(5)+\mathrm{X})+(\mathrm{CN}-1 .) /(1 .-\mathrm{YY})
\end{aligned}
\]
3. Calculate the intensity of direct, diffuse and total radiation on a horizontal surface under a cloudless sky
```

Direct: RDIRH = RDN*RAYCOS(3)
Diffuse: RDIFH = BS
Total: RTOTH = RDIRH+RDIFH

```
4. Calculate the intensity of direct radiation on a horizontal surface under a cloudy sky
```

RDIRHC = RTOTH*RK*(1.-CC/10.)

```
5. Calculate the direction \(\operatorname{cosines}(\alpha, \beta\) and \(\gamma\) ) of the normal to the surface. By definition
\[
\begin{aligned}
& \alpha=\cos (W T)=C W T \\
& \beta=\sin (W A) \sin (W T)=\text { SWA SWT } \\
& \gamma=\cos (W A) \sin (W T)=C W A S W T
\end{aligned}
\]

Since most building surfaces have tilt angles that are generally either \(0^{\circ}\) (roofs) or \(90^{\circ}\) (walls) and azimuth angles that generally coincide with the four cardinal directions of the compass \(\left(0^{\circ}, 90^{\circ}\right.\), \(180^{\circ}\) and \(270^{\circ}\) ) much computer computation time can be saved by checking for these conditions and setting the values of the sin(WT), \(\cos (W T), \sin (W A)\) and \(\cos (W A)\) directly instead of letting the computer software evaluate the sine and cosine.

Therefore, the following preliminary checks have been made part of SUN 38.
a) If WT \(=0.0 \operatorname{RAD}\left(0^{\circ}\right)\), surface is horizontal facing upward
\(\mathrm{CWT}=\cos (0)=1.0\)
\(\mathrm{SWT}=\sin (0)=0.0\)
b) If WT \(=1.5708 \operatorname{RAD}\left(90^{\circ}\right)\), surface is vertical
\(\mathrm{CWT}=\cos (90)=1.0\)
\(\mathrm{SWT}=\sin (90)=0.0\)
c) For all other tilt angles
\(\mathrm{CWR}=\cos (\mathrm{WT})\)
\(\mathrm{SWT}=\sin (\mathrm{WT})\)
d) If WA \(=0.0 \mathrm{RAD}\left(0^{\circ}\right)\)
\(\mathrm{CWT}=\cos (0)=1.0\)
\(\operatorname{SWT}=\sin (0)=0.0\)
e) If WA \(=1.5708 \mathrm{RAD}\left(90^{\circ}\right)\)
\(\mathrm{CWT}=\cos (90)=0.0\)
SWT \(=\sin (90)=1.0\)
f) If \(W A=3.1416 \operatorname{RAD}\left(180^{\circ}\right)\)
\[
\begin{aligned}
\mathrm{CWT}=\cos (180) & =-1.0 \\
\mathrm{SWT}=\sin (180) & =0.0
\end{aligned}
\]
g) If WA \(=4.7114 \operatorname{RAD}\left(270^{\circ}\right)\)
\[
\mathrm{CWT}=\cos (270)=0.0
\]
\[
\mathrm{SWT}=\sin (270)=-1.0
\]
h) For all other azimuth angles
\[
\begin{aligned}
& \mathrm{CWT}=\cos (W A) \\
& \mathrm{SWT}=\sin (W A)
\end{aligned}
\]
6. Calculate ETA, the cosine of the incident radiation on the surface
\[
\begin{aligned}
\operatorname{ETA}=\cos (\eta)= & \alpha * \operatorname{RAYCOS}(3)+\beta * \operatorname{RAYCOS}(1) \\
& +\gamma * \operatorname{RAYCOS}(2)
\end{aligned}
\]
7. Calculate the intensity of the direct normal solar radiation for cloudy and cloudless sky
a) If ETA \(\leq 0.0\), sun is not up yet
\[
R D I R=0.0
\]
\[
\text { RDIRC }=0
\]
b) If ETA>0.0, sun is up
```

RDIR = RDN*ETA
RDIRC = RDIR*RDIRHC/RDIRH

```
8. Calculate the intensity of diffuse radiation for a cloudless sky
a) If WT \(\leq 0.7854 \mathrm{RAD}\left(45^{\circ}\right)\) surface is oriented toward sky RDIF \(=B S\)
b) If WT > 2.35619 RAD ( \(135^{\circ}\) ), surface is oriented toward ground RDIF \(=B G\)
c) If WT between \(45^{\circ}\) and \(135^{\circ}\), diffuse radiation is estimated using curve shown in Figure 3
```

If ETA < -0.2,
y=0.45
If ETA \geq-0.2,
y = 0.55 + 0.437*ETA + 0.313*ETA**2

```
        Then RDIF \(=y^{*} B S+0.5 * B G\)
9. Calculate total radiation incident upon surface under a cloudless sky
\[
\text { RTOT }=\mathrm{RDIR}+\mathrm{RDIF}
\]


Figure 3 Ratio of diffuse sky radiation incident upon a vertical surface to that incident upon a horizontal surface during clear days
10. Calculate the intensity of diffuse radiation on a horizontal surface under a cloudy sky
\[
\text { RDIFHC }=\text { RTOTH* }(C C F-R K *(1 .-C C / 10 .))
\]
11. Calculate the intensity of diffuse and total radiation for a cloudy sky
```

Diffuse: RDIFC = RDIF*RDIFHC/RDIFH
Total: RTOTC = RDIRC+RDIFC

```
12.

If \(C C>0,5\) then
\[
\begin{aligned}
\text { RDIF } & =\text { RDIFC } \\
\text { RDIR } & =\text { RDIRC } \\
\text { RTOT } & =\text { RTOTC }
\end{aligned}
\]
3. REFERENCES
1. ASHRAE Handbook of Fundamentals, New York 1972.
2. Stephenson, D.G., Equations for Solar Heat Gain through windows. Solar Energy, Vol. IX, No. 2, April-June 1965, page 81-86.
3. NECAP - NASA Energy and Cost Analyses Program Energineering Manual, NASA Lanqley Research Center 1975.
4. Davenport, A.G., Wind Loads on Structures, Technical paper no. 88 of the Division of Building Research, National Research Council. Ottawa 1960.
5. Stephenson, D.G. and Mitalas, G.P., Calculation of Heat Conduction Transfer Functions for Multi layer Slabs. ASHRAE Transactions, Vol. 77, Part II, 1971, p. ll7-126.
6. Chien, N., Feng, Y., Wang, H.J., Siao, T.T., Wind Tunnel Studies of Pressure Distribution on Elementary Building Forms, Iowa Institute of Hydraulic Research, State University of Iowa City, 1954.
7. Bonne, U.,Torborg, T.H.,Janssen, J.E., Diqital Simulation of the Performance of Combustion Heating Systems, AIChE l5th Annual Regional Symposium, Twin City Section, Bloomington, Minnesota, February 1975.
8. Bonne, U., Johnson, A.E., Thermal Efficiency in NonModulating Combustion Systems, Proceedings of the conference on Improved Efficiency in HVAC Equipment and Components for Residential and Small Commercial Buildings, Purdue University, nctober 1974.
9. Mitalas,G.P. and Arseneault,J.G., FORTRAN IV nrogram to calculate Z-transfer functions for the calculation of transient heat transfer through walls and roofs, DBR computer program no. 33, Division of Building Research, National Research Council, Ottawa 1972.
10. Larsen, B.T., Energy Consumption of Residential Buildings. The Computer program ENCORE, Part l, User's Manual, Norwegian Building Research Institute Computer Program Library, Program No. 12, Oslo 1977.
11. Larsen, B.T., Digital Simulation of Energy Consumption in Residential Buildings. Presented at International CIB Symposium on Energy Conservation in the Built Environment. Building Research Station, Garston, 6-8 April 1976.
12. Stephenson, D. G. and Kimura K., Solar Radiation on Cloudy Days, ASHRAE Transactions, Vol. 75, Part I, 1969.

APPENDIX A

Variables in common blocks

IWALL \((50,5) \quad\) Contains data for maximum 50 walls. For each wall, \(K\), the following data are stored:
\((K, 1)=\) the room on one side of the wall
IWALL \((K, 2)=\) the room on the other side of the wall
\(\operatorname{IWALL}(K, 3)=\) wall type (construction type)
IWALL \((\mathrm{K}, 4)=\) no. of windows in the wall
IWALL \((K, 5)=\) no. of doors in the wall

WALL \((50,5) \quad\) Contains data for maximum 50 walls. For each wall, \(K\), the following data are stored:

WALU \((K, 1)=\) wall orientation i.e. the clockwise angle between north and the wall normal

WALL ( \(\mathrm{K}, 2\) ) = wall tilt angle
WALL \((\mathrm{K}, 3)\) = wall net area (areas of windows and doors not included)

WALL \((K, 4)=\) flow resistance for the cracks in the wall WALU \((K, 5)=\) flow exponent for the cracks in the wall

WINDOW(20) Contains the areas of maximum 20 windows

IWINDO (20)
Contains the type of maximum 20 windows

JW \((20,3) \quad\) Contains data on windows. For each wall having windows the following data are stored:
\(\operatorname{NOW}(\mathrm{K}, \mathrm{I})=\) wall no.
\(\operatorname{NOW}(\mathrm{K}, 2) \quad=\) first window in this wall
\(\operatorname{NOW}(\mathrm{K}, 3) \quad=\) last window in this wall

If there is only one window in a wall \(\operatorname{NoW}(\mathrm{K}, 2)=\operatorname{NoW}(\mathrm{K}, 3)\).
Number of windows in a wall is given by:
\(\mathrm{n}=\operatorname{NOW}(\mathrm{K}, 3)-\operatorname{NON}(\mathrm{K}, 2)+1\)
The windows in each wall will always be in consecutive order, i.e. if a wall has three windows they will have the numbers: \(j, j+1, j+2\).
\begin{tabular}{|c|c|}
\hline \(\operatorname{NOD}(20,3)\) & Same as NOW except that NOD contains data on doors \\
\hline \(\operatorname{IWIR}(20,15)\) & \begin{tabular}{l}
The walls each room (max. 20) are made up of. Each room can have maximum 15 walls. \\
If room no. K has 6 walls, then: \\
\(\operatorname{IWIR}(K, 1), \operatorname{IWIR}(K, 2), \ldots ., \operatorname{IWIR}(K, 6)\) will be non-zero.
\end{tabular} \\
\hline \(\operatorname{ISR}(20,15)\) & The rooms on the "other side" of the walls in IWIR, i.e. the rooms that surround each room. \\
\hline DOOR (20) & Contains the areas of maximum 20 doors. \\
\hline IDOOR (20) & Contains the type of maximum 20 doors. \\
\hline NOWIR (20) & No. of walls in each room. \\
\hline \multirow[t]{4}{*}{WDATA \((5,3)\)} & Data for maximum 5 window types. \\
\hline & \begin{tabular}{l}
For each window type, \(k\), the following data are stored: \\
WDATA \((K, 1)=\) window U-value, no shutters
\end{tabular} \\
\hline & WDATA \((\mathrm{K}, 2)=\) window U-value, with shutters \\
\hline & WDATA \((K, 3)=\) window shading coefficient \\
\hline DDATA (5) & U-values for maximum 5 door types \\
\hline DZWALL ( 10,7 ) & "d-coefficients" of the \(z\)-transfer functions for maximum 10 wall types (for definition of "d-coefficients", see Chpt. 22 in ASHRAE Handbook of Fundamentals). Each wall type may have up to 7 "d-coefficients". \\
\hline BZWALL \((10,7)\) & "b-coefficients" of the \(z\)-transfer functions for maximum 10 wall types. \\
\hline CZWALL (10) & Sum of the "c-coefficients" of the \(z\)-transfer functions for maximum 10 wall types. \\
\hline UWALL (10) & U-value for maximum 10 wall types \\
\hline WSABS (10) & Solar absorbtivity for maximum 10 wall types \\
\hline DSABS (5) & Solar absorbtivity for maximum 5 door types \\
\hline
\end{tabular}
\(\operatorname{ISCD}(5)\)

FCA (20)

FCB (20)

FCAl (20)

FCBI (20)

FWPCA(5)

SWPCA (5)
\(\operatorname{RPCA}(4,5)\)

Shading type code for maximum 5 window types:
ISCD \(=1\) inside shading devices
ISCD \(=0\) outside shading -"-

Reduction factors for room "v-coefficients" (max. 20 rooms) when windows do not have shutters (see Chpt. 22 in ASHRAE Handbook of Fundamentals).

Similar to FCA, but windows have shutters.

Total conductivity to the surroundings for each room (max. 20), when windows do not have shutters.

Similar to FCAl, but windows have shutters.

Wind pressure coefficients for the "long walls" of the house for 5 different angles of attack:
\(0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}\)

Similar to FWPCA, except that these are coefficients for the"short walls" of the house.


Wind pressure coefficients for 4 different roof angles \(\left(0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}\right)\) and 5 different angles of attack \(\left(0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}\right)\).

If roof angle is more than \(45^{\circ}\), the values for walls are used.

In calculations using FWPCA, SWPCA, RPCA interpolation is used. I.e. for angles of attack between \(22.5^{\circ}\) and \(67.5^{\circ}\) the values for \(45^{\circ}\) is used, for roof angles between \(7.5^{\circ}\) and \(22.5^{\circ}\) the value for \(15^{\circ}\) is used and so on.

ICIP (20) Data for max. 20 outside pressure points:
Long walls : \(\operatorname{ICTP}(i)=1\)
Short walls: \(\operatorname{ICTP}(i)=2\)
Roofs : \(\operatorname{ICTP}(i)=3\)

RNAME (40) Name of computer run (the two first cards in the input card deck).

IPERS \((15,24) \quad\) Maximum 15 schedules for heat gain from people. The array contains values that are per cents (integers) of values given in PERS.

With schedule no. 2 the heat gain from people at 12 hr is given by:
\(Q=\operatorname{PERS}(2) * \operatorname{IPERS}(2,12) / 100\).

PERS(15) See description of IPERS above.
\(\operatorname{ICLSCH}(20,24)\)

RCL (20)

IVLSCH \((20,24)\)

RVL (20)

IEQUTP \((8,24)\)

Maximum 20 schedules for heat gain from "constant" lights. "Constant" means that the lighting level depends only on the schedule, i.e. time of the day.

ICLSCH contains values that are per cents of values given in RCL.

See description of ICLSCH above.

Maximum 20 schedules for heat gain from "variable" lights. "Variable" means that the lights are on
if: a) The room is occupied
and b) Solar heat gain through windows is less than RLCRIT \(\mathrm{w} / \mathrm{m}^{2}\) floor area. RLCRIT is given a value in the CARDIN routine.

IVLSCH contains values that are per cents of values given in RVL.

See description IVLSCH above.

Maximum 8 schedules for heat gain from electrical equipment.

EQUIP (8)

IWATER \((7,24)\)

WATER (7)

ITHERM \((8,24)\)

IWCODE \((20,5)\)

IHCODE \((20,5)\)

IRCODE (20)

FLAREA (20)

The array contains values that are per cents of values given in EQUIP.

See description of IEQUIP above.

Maximum 7 schedules for hot water consumption.

The array contains values that are per cents of values given in WATER.

See description of IWATER above.

Maximum 8 schedules for thermostat setpoints. The array contains deg \(C\) stored as integers.

For maximum 20 rooms the array contains information on which schedules to use for working days. For room no. K these schedules are used:
```

$\operatorname{IWCODE}(\mathrm{K}, 1)=$ occupancy schedule
$\operatorname{IWCODE}(\mathrm{K}, 2)=$ const.light "
$\operatorname{IWCODE}(K, 3)=$ var. " "
$\operatorname{IWCODE}(\mathrm{K}, 4)=$ equipment "
$\operatorname{IWCODE}(\mathrm{K}, 5)=$ thermostat setpoint schedule

```

Similar to IWCODE, except that it contains schedules for holidays. Sundays and Saturdays are also considered as holidays.

Weight codes for maximum 20 rooms:
\(\operatorname{IRCODE}(\mathrm{K})=1:\) light weight constr.
IRCODE \((K)=2:\) medium " "
\(\operatorname{IRCODE}(\mathrm{K})=3\) : heavy " "

The definition of light, medium and heavy is the same as in Chpt. 22 in ASHRAE Handbook of Fundamentals.

Floor areas for max. 20 rooms.
\begin{tabular}{|c|c|}
\hline PERIM (20) & Perimeter length for maximum 20 roans. \\
\hline RLEVEL (20) & \begin{tabular}{l}
Room level relative to the "pressure reference level" (usually the ground) for maximm 20 rooms. \\
If the ground is used as reference level, then RLEVEL contains distances between ground and a point halfway between floor and ceiling in the room. Positive direction is upwards by definition.
\end{tabular} \\
\hline ISDAYI & Shutter data: \\
\hline ISDAY2 & Shutters are on if day of the year (IDOY) and hour of \\
\hline IHOURI & the day (IHOUR) are as follows: \\
\hline IHOUR2 & IDOY < ISDAY or IDOY \(\geqslant\) ISDAY2 \\
\hline & and \\
\hline & IHOUR \(\geqslant\) IHOUR1 or IHOUR \(\leqslant\) IHOUR2. \\
\hline RLCRIT & See description of IVLSCH above. \\
\hline WCOEF & Coefficient that relates the wind speed measured 10 m above ground at meteorological site and the wind speed at the building site at the level of the edge of the roof. \\
\hline & To get the wind speed at the building site multiply wind speed at meteorological site by WCOEF. \\
\hline JAHR & Year of weatherdata used in the calculations \\
\hline RLAT & Building lattitude \\
\hline RLONG & Building longitude \\
\hline ITZİ & Building time zone \\
\hline CN1 & Clearress number; summer \\
\hline CN2 & Clearness number, winter \\
\hline
\end{tabular}
\(\operatorname{VZRMl}(3,2)\)
\(\operatorname{VZRM2}(3,2)\)
\(\operatorname{VZRM3}(3 ; 2)\)

WZRM (3)
\(\operatorname{GZAIR}(3,3)\)
\(\operatorname{GZAIR}(1, i)=\) light weight constr.
\(\operatorname{GZAIR}(2, i)=\) medium \(\quad "\)
\(\operatorname{GZAIR}(3, i)=\) heavy " "

GZAIR are nominator coefficients.
WZRM are the corresponding denominator coefficients.

NROOM
No. of rooms in the building.

NWALL
No. of walls " "
NOCCUP

LIGHTI No. of constant light schedules
\begin{tabular}{ll} 
LIGHT2 & No. of variable " \\
NEQUIP & No. of equipment schedules
\end{tabular}

NTHERM

NWATER

IWALLT

IWINDT

IDOORT

NOPT

ISHAPE

ISTART

IEND

ISYSTM
Heating system type
ISYSTM \(=1\) hot air oil fired system ISYSTM \(=2\) electr. resistance heaters in each room

ERMAX (20)

TRANGE (20)

QSMAX

QTINMAX

Maximum capacity (heat output)
of the room heaters (max. 20 roams)

Proportional bands of the room
thermostats (max. 20 rooms)

Heat storage of hot water heater

Maximum capacity of hot water heater element

Which hot water consumption schedule to use for each day of the week IDHTW(1) \(=\) the schedule for Sundays and holidays \(\operatorname{IDHTW}(2)=\) the schedule for Monday etc.

GWALL \((50,7,2) \quad\) Heat gains through walls (max. 50) for the present and the previous 6 hours.

The necessity of the third dimension of the array is due to the fact that internal walls separate two rooms (A and B, say). When calculating the room gains and room loads the temperature of the room in question is assumed to be \(20^{\circ} \mathrm{C}\) whereas the surrounding rooms have their actual temperatures. Thus the heat gain from room A to room B will usually not be the same as the heat gain from room B to room A. GWALL ( \(i, j, 1\) ) will be the gain to the room with the lowest room number. GNALL ( \(\mathrm{i}, \mathrm{j}, 2\) ) will be the gain to the room with the highest room number.

RLWALL \((50,2,2) \quad\) The heating loads due to the corresponding gains stored in GWALL. Loads for the present and the previous hour are stored (second dimension of the array).

RLWIND (20,2) Loads due to windows (max.20) for the present and the previous hour.

GNINDC \((20,2) \quad\) Gains due to conduction through windows (max. 20) for the present and the previous hour.
\(\operatorname{RLDOOR}(20,2,2) \quad\) Loads due to doors (max.20) for the present and the previous hour. For explanation of the third dimension of the array see GWALL.
\(\operatorname{GDOOR}(20,2) \quad G a i n s\) due to doors (max. 20) for the present and the previous hour.

RTEMP \((20,7) \quad\) Room temperatures (max. 20 rooms) for the present and the previous 6 hours.

RLROOM \((20,3)\) Total room loads (max. 20 rooms) for the present and the previous 2 hours.
\begin{tabular}{|c|c|}
\hline DEABC (5) & Constants for solar radiation calculations (see documentation of subroutine SUN1). \\
\hline RAYCOS (3) & Present hour direction cosines of the direct solar beam. \\
\hline \(\operatorname{AZTILT}(20,2)\) & Azimuth and tilt angles for max. 20 surfaces:
\[
\begin{aligned}
& \operatorname{AZTILT}(K, 1)=\text { azimuth angle } \\
& \operatorname{AZTIIT}(K, 2)=\text { tilt angle }
\end{aligned}
\] \\
\hline RIN (120) & Hourly weather data for one day. I.e. 24 values of dry bulb temperature, cloud cover, cloud type, wind speed, and wind direction (the values for hour 01 come first, the the values for hour 02, and so on). \\
\hline DBT (7) & Outside dry bulb temp. for the present and the previous 6 hours. \\
\hline \(\operatorname{RADDIR}(20,7)\) & Direct solar radiation falling on max. 20 surfaces having different orientations. Values for the present and the previous 6 hours are stored. \\
\hline \(\operatorname{RADDIF}(20,7)\) & Similar to RADDIR, but diffuse radiation. \\
\hline CLC (7) & Cloud cover factors for the present and the previous 6 hours. \\
\hline FC(20) & When windows have shutters on, \(F C\) is equal to FCB, otherwise FC is equal to FCA (FCA and FCB are stored in blank cormon). \\
\hline AOIN (20) & Present hour values of the cosines of the angles of incidence between the direct solar beam and the surfaces stored in AZTILT. \\
\hline GWINDS \((20,2)\) & Solar heat gain through windows (max.20) for the present and the previous hour. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\operatorname{RLOCC}(20,2)\) & Room loads (max. 20 rooms) due to occupancy for the present and the previous hour. \\
\hline \(\operatorname{RLIGHT}(20,2)\) & Similar to RLOCC, but loads due to lights. \\
\hline RLEQP \((20,2)\) & Similar to RLOCC, but loads due to electrical equipment. \\
\hline \(\mathrm{VL}(20,3)\) & VL is equal to 1.0 if variable lights are on (otherwise VL is zero). Data for the present and the previous 2 hours are stored: \\
\hline & \(\mathrm{VL}(2,1)=1.0\) means that variable lights in room no. 2 are on for the present hour. \\
\hline ER \((20,2)\) & Heat output of room heaters (max. 20 rooms) for the present and the previous hour. \\
\hline RT1 (20) & When calculating roam heat gains and loads the temperatures of the surrounding rooms are needed. However, when starting the calculation for a given hour these are not known yet. As a first approximation the previous hour's temperatures are used (they are stored in RTl). When new room temperatures are found, they are compared with the temperatures stored in RT1. If the largest difference is more than a certain limit, the newly calculated temperature are stored into RTI and a new calculation is made. This goes on until the largest difference becomes less than the limit. \\
\hline \(\operatorname{QINF}(20,2)\) & Infiltration loads for each room (max.20) for the present and the previous hour. \\
\hline HOIW & Hot water demand for the present hour. \\
\hline QHWT & Electrical power input to the hot water heater for the present hour. \\
\hline QS & Amount of heat stored in the hot water heater at the end of the present hour. \\
\hline
\end{tabular}
\(\left.\begin{array}{ll}\text { A. } 3 \text { Variables in cormon block G } \\
\text { FLF } & \begin{array}{l}\text { Furnace load factor } \\
\text { FLF = on-time/total time }\end{array} \\
\text { CYCTES } & \text { No. of cycles/hr }\end{array}\right]\)\begin{tabular}{ll} 
On-time per cycle (sec.) \\
TON & Off-time per cycle (sec.)
\end{tabular}\(\quad\)\begin{tabular}{ll} 
Average flue gas temperature during on-cycle
\end{tabular}

\section*{A. 4 Variables in common block H}

RN50 No. of burner cycles at \(50 \%\) furnace load ( \(F L F=0.5\) see description of carmon block G)

SSTON
Steady state on-cycle flue gas temperature

SSTOFF Steady state off-cycle "flue gas" temperature

ONTC
Time constant for increase of flue gas temperature during on-cycle

OFFTCl
Time constant for decrease of flue gas temperature during off-cycle when air circulation fan is on

OFFTC2
Similar to OFFICl, but air circulation fan is off

SPDIA Smoke pipe diameter

CHSL Inside side length of chimney

DRAFT Draft setting at barometric damper

DFACT Weight flow of air through the furnace at off-cycle divided by the weight flow of flue gases at on-cycle

GPH

SPIGIH Length of smoke pipe

BENDS

CHLGITH

TOP
Burner nozzle capacity (U.S.Gallons per hour)

No. of smoke pipe bends

Chimney length (for use in pressure loss calculations)

Distance between pressure reference level and top of chimney

BOTTOM
Distance between pressure reference level and center of furnace
\begin{tabular}{ll} 
FANTMP & \begin{tabular}{l} 
Flue gas temperature when air circulation fan \\
shuts off
\end{tabular} \\
CBAIR & \begin{tabular}{l} 
Air supplied for combustion divided by the \\
theoretically necessary sunply
\end{tabular}
\end{tabular}

\section*{A. 5 Variables in cormon block DUT:P}

IDOUT The day of the year when the user wants detailed hour by hour printout.

\section*{A. 6 Variables in cormon block PLOT}

IPLOT

> IPLOT \(=1\) if the user wants to store data
> in file 7 for later plotting. For each hour of the heating season the following data are written to the file:
day of the month
month
hour of the day
outdoor dry bulb temperature
wind speed
cloud cover
heat output in room no. 1
room temperature in room no. 1
```

heat output in room no. K room temperature in room no. K

```

\section*{A. 7 Variables in cormon block CLIMA}

ISYNOP Synoptic station number of the meteorological station that has supplied the input weather tape.

\section*{A. 8 Variables in conmon block SHADE}

HORIZ (18) The height of the horizon (degrees) in the directions
\(20^{\circ}, 40^{\circ}, 60^{\circ}, \ldots, 360^{\circ}\) degrees clockwise from north
\(\operatorname{FIAOV}(20,9) \quad\) Measures that describe the window sash, vertical fins, and horizontal overhang for each window (max. 20) . For window no. K the following data are stored:
\[
\begin{aligned}
& \text { FIAOV }(\mathrm{K}, \mathrm{l})=\text { width of right } \\
& \text { vertical fin } \\
& \operatorname{FIAOV}(\mathrm{K}, 2)=\text { distance between } \\
& \text { right fin and sash } \\
& \operatorname{FIAOV}(\mathrm{K}, 3)=\text { width of left } \\
& \text { vertical fin } \\
& \operatorname{FIAOV}(\mathrm{K}, 4)=\text { distance between } \\
& \text { left fin and sash } \\
& \text { FIAOV (K,5) = width of horizontal } \\
& \text { overhang } \\
& \operatorname{FIAOV}(K, 6)=\text { distance between } \\
& \text { overhang and sash } \\
& \text { FIAOV }(\mathrm{K}, 7)=\text { depth of sash } \\
& \text { FIAOV(K,8) = width of sash } \\
& \operatorname{FIAOV}(\mathrm{K}, 9)=\text { height of sash }
\end{aligned}
\]

\section*{APPENDIX B}

\section*{Program restrictions}
When preparing data for the program the user must be aware of the restrictions listed below. The restrictions are due to core storage allocation (array declarations) in the program. The program does not check the input to see if the limits are exceeded:
Max. no. of walls.............................. 50
" " " rooms.............................. 20
" " " walls in a room ................: 15
" " " windows ...........................: 20
" \("\) " doors................................ 20
" " \("\) wall types ....................... 10
" " \(\quad\) window types .................... 5
" " " door types ....................... 5
" " " occupancy schedules............. 15
" " " const. light schedules......... 20
" " " var. light schedules........... 20
" " " equipment schedules ........... 8
" " " hot water cons. schedules.....: 7
" " "thermostat setpoint schedules.: 8

\section*{APPENDIX C}

\section*{Description of weather tape}

In order to be accepted by the ENCORE program the weather tape should be as described below. The records must be in unformatted (binary) form.
First record:
\begin{tabular}{|l|l|}
\hline ISTNR & IAAR \\
\hline
\end{tabular}
where:
```

ISTNR - synoptic no. of the meteorological station
IAAR - year of weather data

```

The information in the first record is checked against input data to the ENCORE program to make shure that correct weather data are used in the calculations.

One record for each day of the year:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline MIJD & IDATO & ISNO & TEMP (1) & SKYDK (1) & SKYTP (1) & VHAST (1) & VRETN (l) & TEMP (2) \\
\hline
\end{tabular}
where:


\section*{APPENDIX D}

Description of output file

The following data are written unformatted (binary) on file(unit 7) for later plotting or other use. One record for each hour of the year:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline IDAY & MONTH & IHOUR & DBT & WSPEED & CLC & ER(I) & RTEMP (I) & \(\ldots\) & ER(K) \\
\hline
\end{tabular}
where:


ER(K) - heat output in room no. \(K\)
RTEMP (K) - room temperature in room no. \(K\)```


[^0]:    ${ }^{\mathrm{x})}$ The set of cards consisting of cards nos. $40,41,42$ and 43 is repeated as many times as there are walls. I.e. this set of cards completely describes one wall with windows and doors.

[^1]:    $\mathrm{X}_{\text {This }}$ card is used only if there are windows in the wall

