
# Airtightness – measurements and measurement methods

Johnny Kronvall



Byggforskningsrådet

# Airtightness – measurements and measurement methods

Johnny Kronvall

Layout: Elisabeth Sedig, Informationsprojekt AB

D8:1980

ISBN 91-540-3201-6

Swedish Council for Building Research, Stockholm, Sweden.

Spångbergs Tryckerier AB, Stockholm 1980.

# **Preface**

In June, 1977 the Airtightness Group of the Swedish Council for Building Research appointed a number of reference groups to deal with different problem areas within the overall field of airtightness. One of these groups worked on problems gathered under the heading of "Measurements and measurement methods", with myself as project leader. Much of the contents of this publication has developed within the group, and I am extremely grateful to all the group members for their help with ideas and work in general.

Almost all the personnel in the Division of Building Technology of the Lund Institute of Technology have been engaged, in one way or another, in the research work into airtightness aspects which has been done here during the last few years, and I would like to thank them for their efforts.

Johnny Kronvall

# **Contents**

| 1              | Introduction                                      |  |  |  |  |  |
|----------------|---------------------------------------------------|--|--|--|--|--|
| 2              | Methods of measurement 8                          |  |  |  |  |  |
| 2.1            | Quantitative measurements 8                       |  |  |  |  |  |
| 2.1.1          | Tracer gas method 8                               |  |  |  |  |  |
| 2.1.2          | Pressure method                                   |  |  |  |  |  |
| 2.2            | Qualitative measurements                          |  |  |  |  |  |
| 2.2.1          | Thermography                                      |  |  |  |  |  |
| 3              | Measurement results 41                            |  |  |  |  |  |
| Appe           | ndix 1: Data from measurements of airtightness 43 |  |  |  |  |  |
| Appe           | ndix 2: Standard form for recording data 55       |  |  |  |  |  |
| Litera         | ture                                              |  |  |  |  |  |
| <b>Summary</b> |                                                   |  |  |  |  |  |

# 1 Introduction

This paper describes different methods of measuring the airtightness of whole buildings, and reproduces the greater part of the results of measurements which have been made in different places, primarily using the pressure method but also using the tracer gas method to some extent.

The pressure method is described together with the recommended method (SP 1977:1) published by the National Swedish Authority for Testing, Inspection and Meteorology, which is explained and commented upon where necessary.

A number of variations of the tracer gas method, as used for measuring the ventilation in a building, whether continuously or occasionally, are described, together with descriptions of suitable equipment.

Calculations of the possible error magnitudes have been made for both methods, and can serve as bases for qualified evaluations of the accuracy of the methods.

An up-to-date version of the computer-processed data file relating to airtightness measurements which have been made forms one appendix, while a standard form used for recording field data and measurements forms the other. The computerized data schedule is at present operated by the Division of Building Technology of the Lund Institute of Technology.

# 2 Methods of measurement

#### 2.1 QUANTITATIVE MEASUREMENTS

Two methods are at present available for the measurement of airtightness of entire buildings: the tracer gas method and the pressure method. The tracer gas method is used to measure the ventilation rate of a building under ambient weather conditions. The principle of the pressure method is that a powerful fan is employed to create a pressure difference across the building envelope (walls, roof, floor structures etc.), and the resulting air flow through the fan is measured at constant pressure difference.

## 2.1.1 Tracer gas method

The tracer gas method can be used to measure the amount of ventilation in delimited spaces, such as (semi-detached) houses, apartments in apartment buildings, offices etc. The ventilation rate is usually dependent upon the ambient weather conditions, and so the results of tracer gas measurements can therefore vary considerably with weather and wind.

It can be seriously questioned whether tracer gas measurements are properly representative of the airtightness characteristics of a building. The term 'ventilation rate', expressed as the number of air changes per unit time, is also confusing and, to a certain degree, misleading, even when it is used to describe natural ventilation.

The mixing action between outdoor air leaking into a building and the indoor air lies somewhere between the limits of perfect mixing (immediate and homogeneous) and no mixing at all. This latter extreme can mean that the outdoor air either passes the indoor air in some way without mixing with it, or that it propels the 'old' air before it like a front. However, this is a problem which is more closely related to air quality than to the energy losses due to (uncontrolled) ventilation.

The main elements in tracer gas measurements are a suitable gas and an instrument (a gas analyser) which can measure the concentration of the tracer gas in the volume under investigation (the house, apartment etc.). Time must also be measured. Depending upon the actual details of the equipment and methods, measurements can be made in accordance with one of the following variants:

□ decreasing gas concentration

□ constant gas concentration

 $\square$  constant gas emission.

#### Decreasing gas concentration

This method is that which is most commonly used in Sweden.

A small quantity of gas is discharged in the house, apartment, etc., sufficient to enable it to be measured by a gas analyser. When the concentration has (hopefully) become uniform throughout the test volume — which can be accelerated by 'mixing' the air, by some means such as by using fibre-board sheets as paddles or by placing small propeller fans here and there — measurements are made of how the concentration of tracer gas decreases with time. The ventilation rate of the test volume can then be calculated from the following expression:

$$n = \frac{1}{t} \cdot \ln \frac{c_0}{c_t}$$
 [1]

#### where:

n = ventilation rate, air changes/h

 $t = time from when gas concentration = c_0, h$  $c_0 = gas concentration at the start of the period$ 

 $c_t$  = gas concentration at time t, h

As the mixing between the tracer gas and the air in the building can never be essentially perfect, measurements made at a single point in the test space are not reliable measures of the condition of the space as a whole. This problem can be dealt with in practice — or rather, got round of — by means of one of the following three alternatives.

- 1. Air is collected at a number of points and mixed together, after which the concentration of tracer gas in the mixture is used in calculating the ventilation rate.
- 2. The rate of decrease of concentration is measured at several points, and the measurement point which exhibits a rate of decrease which is nearest to the average rate from all points is selected and used thereafter.
- 3. The decrease in concentration is measured at several points and the average value is used when calculating the ventilation rate.

If the 'average rate of decrease' is the function which is required, then Alternatives 2 and 3, with 3 being the more reliable, are reasonable approximations. Estimations derived from Alternative 1 are hampered by a time-dependent 'displacement error' which is affected by how the fresh air mixes with the air in the building. In spite of this, this alternative is that which is most often used, presumably due to the simple procedure.

Advantages of the decreasing gas concentration method are: ☐ It is relatively easy to perform the measurements and to analyse the result. The disadvantages are: ☐ It is difficult to evaluate how reliably the measured results reflect the actual ventilation rate of the space under investigation. □ Sometimes (e.g. if there is a significant volume of tracer gas trapped in enclosed volumes such as furniture etc.), the gas concentration does not decrease exponentially, which makes it difficult to analyse the results. ☐ The initial preparations in attaining a uniform concentration of tracer gas require either a complicated system of hoses for discharging the gas at many points simultaneously or an artificial agitation of the air in the space under investigation which to some extent can alter the

# Constant gas concentration

natural equilibrium conditions.

This variant is suitable for continuous measurement of the ventilation rate in a given space. Tracer gas is supplied to the space under investigation in one place and the gas concentration is measured in another. The gas discharge is controlled so that the gas concentration level at the point of measurement is stable. This can be arranged by some form of automatic control equipment. In the ideal case of 'complete mixing', it is possible to calculate the ventilation rate directly from the known discharge rate of the tracer gas. An alternative method is to permit the gas concentration to vary between an upper and a lower limit. When the concentration reaches the lower limit (c<sub>u</sub>), more tracer gas is released to bring the gas concentration up to the upper limit (c<sub>ö</sub>). Tracer gas emission is then stopped. The time between these toppings-up is then a measure of the rate of ventilation. See Figure 1.

The advantage of the constant gas concentration method are:

☐ The method permits continuous measurement of the ventilation rate to be performed.

C<sub>0</sub>C<sub>0</sub>C<sub>0</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>C<sub>1</sub>-

FIG. 1. Tracer gas concentration as a function of time with intermittent supply of tracer gas controlled by the gas concentration.

The disadvantages are:

- ☐ The apparatus and auxiliary equipment are more complicated than in the other tracer gas measurement methods.
- ☐ There is always a time lag between the gas release and reaction of the gas analyser, which can introduce errors into the analysis.

## Constant gas emission

This variant is very similar to the previous method. It is thus also suitable for continuous measurements. The emission of tracer gas is constant during the measurement process, and the gas concentration which can be read off from the gas analyser serves as a measure of the ventilation rate. A reduced ventilation rate gives an increased gas concentration and vice-versa.

The advantages of the constant gas emission method are:

- ☐ The method permits continuous measurement of the ventilation rate.
- ☐ The instrumentation is simpler than for the constant gas concentration method.

The disadvantages are:

- ☐ Considerable variations in the gas concentration can arise due to changing weather conditions around the building, and few gas analysers have a sufficiently long scale to cover these variations.
- □ Quite a long stabilisation period is necessary before the main measurements can start, i.e. when equilibrium concentration has been attained. Tracer gas is consumed during this period and this method is the most wasteful of gas of the three methods.
- ☐ It is not particularly easy to arrange a completely constant rate of gas emission.

| Measuring equipment and measurement procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Some equipment is common to all three methods:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul><li>□ a suitable tracer gas,</li><li>□ a gas analyser and</li><li>□ some means of measuring time.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| What gases are suitable for use as tracers, and what are the requirements for such gases? A number of characteristics of an ideal tracer gas have been defined by various people, among them Bargetzi et al. (1977) and Honma (1975).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>□ The gas concentration must be measurable with good accuracy, even when highly diluted.</li> <li>□ The gases present in ordinary air should not affect the tracer gas analysis.</li> <li>□ The gas should be cheap and easily available.</li> <li>□ Adsorption and absorption of the gas in walls and furniture etc. should be insignificant.</li> <li>□ The tracer gas should have good chemical stability and not react chemically with the air or the surroundings.</li> <li>□ The gas should not be a health hazard when breathed in the concentrations used in measuring.</li> <li>□ The gas must not be flammable or explosive.</li> <li>□ The density of the gas should be as close to that of air as possible.</li> <li>□ The gas should not normally be present in ordinary air.</li> <li>□ There should be no 'natural' source of the tracer gas in</li> </ul> |
| the test space during measuring.  Hitchin and Wilson (1967) have prepared a table of several of these parameters for a number of possible tracer gases. See Table 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

As far as is known, there is no tracer gas which meets all these requirements, but the gases which have been used and are used do at least meet some of them. Previously, hydrogen and helium were used to a large extent. However, both these gases have densities which differ considerably from that of air. Hydrogen is also flammable and, in certain concentrations with air, explosive. However, both are easy to detect with a katharometer which measures the thermal conductivity of the gas mixture.

Sulphur hexafluoride (SF<sub>6</sub>) is the most commonly used tracer gas in North America for ventilation investigations. See, for example, Harrje et al.(1975). Concentrations as low as  $10^{-7}\%$  can be measured with a gas analyser based on the electron capture principle. This means that, in a typical house, a volume of gas equal to that of half a ping-pong ball is sufficient to enable a measurement to be made. A disadvantage, however, is that a gas analyser of this type is relatively expensive. Sulphur hexafluoride has been successfully used in the USA and Canada for continuous measurements of building ventilation rates. The reference mentioned gives a

| Vapour or gas              | Density<br>compared to<br>dry air at NTP | Maximum concentration possible (% by vol) | Top limit to concentration | Minimum<br>concentration<br>detectable<br>(% by vol) | Method of measurement of minimum | Notes |
|----------------------------|------------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------------|----------------------------------|-------|
| Hydrogen (H <sub>2</sub> ) | 0.07                                     | 1.1                                       | a                          | 0.02                                                 | i                                | I     |
| Helium (He)                | 0.14                                     | 1.2                                       | a                          | 0.03                                                 | i                                | -     |
| Water gas                  | 0.5                                      | 0.08                                      | ď                          | 0.001                                                | iii                              | III   |
| (H <sub>2</sub> and CO)    |                                          | (2)                                       | (a)                        | · · · · ·                                            |                                  | III   |
| Water vapour               |                                          | (-)                                       | ()                         |                                                      |                                  |       |
| (H <sub>2</sub> O)         | 0.6                                      | 2.5                                       | a                          | 0.2                                                  | iii                              | IV    |
| Ammonia                    | 0.6                                      | 10-3                                      | ď                          | ~10-4                                                | vi-                              | I III |
| $(NH_3)$                   |                                          | (2.5)                                     | (a)                        |                                                      |                                  |       |
| Carbon                     | 1.0                                      | 0.04                                      | ď                          | 0.0005                                               | iii                              | I III |
| monoxide (CO)              |                                          | (13)                                      | (b)                        |                                                      |                                  |       |
| Ethane                     |                                          | ,                                         |                            |                                                      |                                  |       |
| $(C_2H_6)$                 | 1.0                                      | 2.5                                       | ь                          | 0.5                                                  | i                                | I     |
| Argon (41A)                | 1.4                                      | $\sim 10^{-10}$                           | С                          | ~10 <sup>-9</sup>                                    | ii                               |       |
| Carbon                     |                                          |                                           |                            |                                                      |                                  |       |
| dioxide (CO <sub>2</sub> ) | 1.5                                      | 2                                         | a & d                      | 0.0001                                               | iii                              | IV    |
| Nitrous                    |                                          |                                           |                            |                                                      |                                  |       |
| oxide (N <sub>2</sub> O)   | 1.5                                      | 2                                         | a                          | 0.0001                                               | iii                              |       |
| Acetone                    |                                          |                                           |                            |                                                      |                                  |       |
| $(C_3H_6O)$                | 2.0                                      | 1                                         | a                          | 0.01                                                 | iv                               | II    |
| Krypton (85Kr)             | 2.9                                      | ~10-10                                    | c                          | ~10 <sup>-9</sup>                                    | ii                               |       |
| Chloroform                 | 4.2                                      | 0.001                                     | d                          | 0.05                                                 | v                                | III   |
| (CHCl <sub>3</sub> )       |                                          | (0.3)                                     | (a)                        |                                                      |                                  |       |
| Xenon (133Xe)              | 4.6                                      | ~10-10                                    | č                          | ~10 <sup>-9</sup>                                    | ii                               |       |

Key: a-To maintain density of air/tracer mixture within

1 per cent of air density

b-Inflammable limit

c-Permissible radiation level in occupied area

d-Maximum safe concentration for occupied area

i-Katharometer ii-Geiger counter

iii-Infra-red absorption

v-Analysis

v—Acoustic vi—Colorimetric

I-Combustible (but not inflammable at these concen-

trations) II—Odour

III—Toxic

IV—Unsteady background concentration

Table 1. List of important properties of a number of tracer gases. Source: Hitchin and Wilson (1967).

good description of the type of equipment which has been used for this application. North American homes often have hot air heating, i.e. hot air is circulated by a fan or fans from a hot air boiler to the various rooms. It is thus easy to inject the necessary small quantity of tracer gas into the air stream close to the boiler, from where the air and gas mixture is distributed to the various rooms. The measuring point is situated at the air inlet for the air returning to the boiler, to which the air/gas mixture, which has not disappeared through ventilation, returns.

Nitrous oxide,  $N_2O$ , also known as laughing gas, is the most commonly used tracer gas in Europe. The gas analyser used with this gas is based on the principle of measuring the change in the infra-red absorption characteristic of the air/nitrous oxide mixture. The analyser which is often used — at least in Sweden — works with tracer gas concentrations up to 0.1%, a range which has shown itself suitable for this type of measurement. For an individual single-family house with a volume of, say, 300 m³, this means that 0.3 m³ of

nitrous oxide are required, or about 0.5 kg of gas. Nitrous oxide is available in cylinders of various sizes, of which the most suitable in terms of capacity and ease of handling is probably the 7.5 kg cylinder. In September 1978, the cost of one of these cylinders was about Skr. 200 (US\$ 50). The density of the gas is 1.7 kg/m³ at NTP, and so is fairly near that of air. As far as is known, no problems have been reported with stratification or in mixing the gas to a homogeneous mixture with air. A gas analyser which is commonly used is shown in Figure 2.

Strictly, time measurement requires nothing more complicated than an ordinary watch, although some form of recorder is strongly recommended. This plots the gas concentration while the paper is fed out at a known velocity. This recommendation is particularly relevant for the constant gas concentration and constant gas emission methods, although it also helps when using the decreasing gas concentration method. Typical traces are shown in Figure 3.

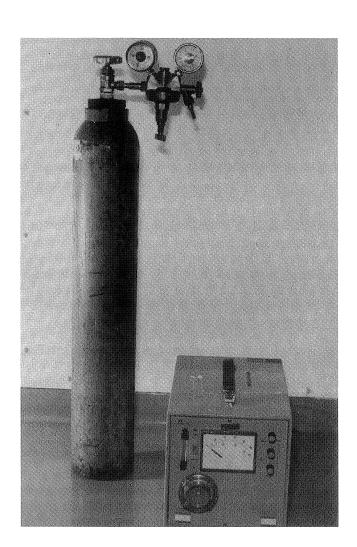



FIG.2. Gas analyser (URAS 7 N) and 7.5 kg cylinder of nitrous oxide ( $N_2O$ ).

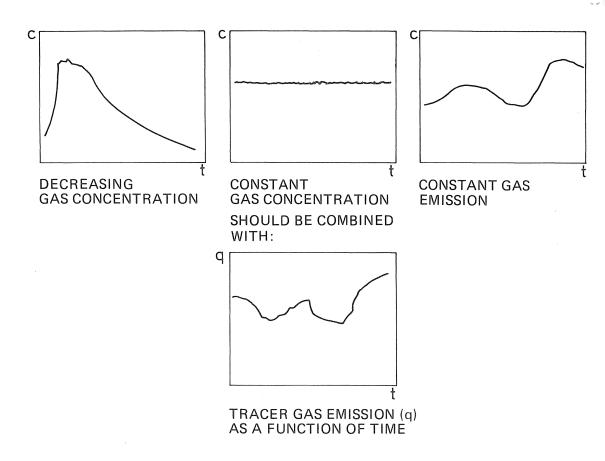



FIG.3. Typical traces from pen recorders for different measurement methods.

### Measurement principles

The concentration of tracer gas in a test space can be expressed by:

$$c_t = c_b + \frac{q}{nV} (1 - e^{-nt}) + c_0 \cdot e^{-nt}$$
 [2]

#### where:

 $c_t$  = tracer gas concentration at time t, h

q = any addition of tracer gas, m<sup>3</sup>/h

n = rate of ventilation, air changes/h

V = volume of the space investigated, m<sup>3</sup>

t = time, h

 $c_0$  = tracer gas concentration at time t = 0 (over and above  $c_h$ )

c<sub>h</sub> = background concentration of tracer gas in normal air

#### Derivation:

Tracer gas production q is started at time t = 0. This assumes that at t = 0:

$$c_t = c_b + c_0$$

The following balance equation can be derived:

$$q \cdot dt - (c_t - c_b) \cdot n \cdot V \cdot dt = \frac{dc}{dt} dt \cdot V$$

$$\frac{dc}{dt} + n (c_t - c_b) = \frac{q}{V}$$

$$\frac{dc}{dt} + n \cdot c_t = n c_b + \frac{q}{V}$$

This is a first order non-homogeneous differential equation. It can be solved by adding the solution of the homogeneous equation to the solution of the non-homogeneous equation.

The homogeneous equation is:

$$\frac{dc}{dt} + nc = 0$$

Put 
$$c = A \cdot e^{-\lambda t}$$

$$-\lambda Ae^{-\lambda t} + n A e^{-\lambda t} = 0 \Rightarrow \lambda = n \Rightarrow c = A \cdot e^{-nt}$$

The non-homogeneous equation is satisfied by:

$$c = \frac{1}{n} \left( n \cdot c_b + \frac{q}{V} \right) = c_b + \frac{q}{nV}$$

Adding gives:

$$c = A \cdot e^{-nt} + c_b + \frac{q}{nV}$$

The initial condition  $c = c_b + c_0$  when t = 0 gives:

$$c_b + c_0 = A \cdot 1 + c_b + \frac{q}{nV} \Leftrightarrow A = c_0 - \frac{q}{nV}$$

$$c = (c_0 - \frac{q}{nV})e^{-nt} + c_b + \frac{q}{nV} = c_b + \frac{q}{nV}(1 - e^{-nt}) + c_0 e^{-nt}$$

#### Decreasing gas concentration

In this case there is no gas emission (q) during measurement, i.e. q = 0. Equation (2) then becomes:

$$c_t = c_b + c_0 e^{-nt}$$
 [3]

The gas analyser is calibrated before measurement so that the background concentration  $c_b$  gives a scale zero indication, which means that the instrument readings are the same as  $c_t$  –  $c_b$ , which magnitude is here called c.

$$c = c_0 \cdot e^{-nt}$$

$$\frac{c}{c_0} = e^{-nt}$$

Taking logarithms, we get:

$$\ln c - \ln c_0 = -nt$$

$$1n c_0 - 1n c = nt$$

$$n = \frac{1}{t} \cdot \ln \frac{c_0}{c}$$
 [4]

Plotting the tracer gas concentration as a function of time on a linear/logarithmic graph makes it easy to check that the gas concentration is falling off exponentially and thus there is no local gas source or sink which is distorting the results.

As  $\ln \frac{c_0}{c}$  can be written as  $\ln c_0 - \ln c$ , the quantity n is the same as the slope of the line in a linear/logarithmic graph connecting the plotted readings. See Figure 4.

Statistical theory enables us to determine how many measurements of ln c are necessary to give the required degree

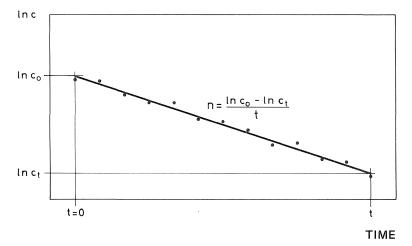



FIG. 4. Evaluation of tracer gas measurements from the decreasing gas concentration method by extracting a straight line from the measurement results when plotted on a linear/logarithmic graph.

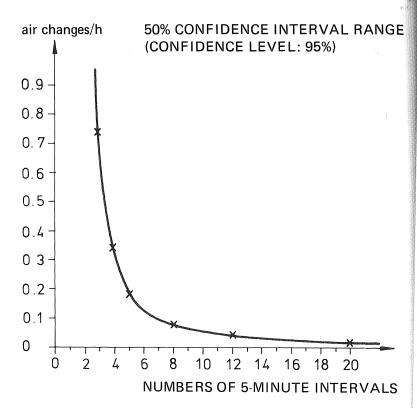



FIG.5. The 50% confidence interval expressed in ventilation rate for different numbers of 5-minute intervals during the measurement period.

| Ventilation rate,<br>air changes/h | f <sub>max</sub> , air<br>changes/h | Necessary number of 5-minute intervals | Time<br>required, h |
|------------------------------------|-------------------------------------|----------------------------------------|---------------------|
| 0.1                                | 0.01                                | 25                                     | 2.1                 |
| 0.2                                | 0.02                                | 18                                     | 1.5                 |
| 0.4                                | 0.04                                | 12                                     | 1.0                 |
| 0.6                                | 0.06                                | 10                                     | 0.8                 |
| 0.8                                | 0.08                                | 8                                      | 0.7                 |
| 1.0                                | 0.10                                | 7                                      | 0.6                 |

Table 2. Time required for ventilation rate measurements for different ventilation rates.

for accuracy for n. This can be determined as follows:

If we assume that the gas analyser and recorder together introduce an error in the concentration measurements, equal to the standard deviation, of  $\pm 2.5\%$  of full-scale deflection, the result is that the standard deviation with the commonly used gas analyser is  $\pm 25$  ppm. As logarithms are taken first after this, we must investigate the effect which it can have on ln c for c = 1025 and for c = 975 ppm. The respective values of ln c are 6.932 and 6.882, i.e.  $\pm$ s = 0.049, where s is the standard deviation. The error in the time measurement is assumed to be zero.

Blom (1969), for example, states the following confidence interval for slope determination using linear regression methods:

$$I_n = n^* \pm t_{p/2} (N - 2)_* s / \sqrt{S_{uu}}$$

where

n\* = estimated slope magnitude

 $t_{p/2}(N-2)$  = the value of the so-called t-distribution, where p is the confidence level and N is the number of intervals

$$S_{uu} = \sum_{k=1}^{n} (k \cdot \Delta t)^2 - \frac{\left\{ \sum_{k=1}^{n} k \right\}^2}{n}$$

If the confidence level is set at 95%, i.e. that the result, in simple terms, is 95% certain, the graph in Figure 5 can be drawn.

If we wish to measure the ventilation rate n with error limits of  $\pm f_{max}$  (= the confidence interval), and if  $f_{max}$  must not exceed 0.1 n, i.e. it must not deviate from n by more than 10%, the number of intervals must exceed or be the same as the number of intervals given in Table 2 for the different ventilation rates. (Table 2 is derived from Figure 5.)

# Constant gas concentration

In this case,  $c_t - c_b = c$  is held at a constant level by adjusting q to the ventilation rate n. A flow balance equation for this case then becomes:

$$\frac{dc}{dt} \cdot V \cdot dt = \frac{dq}{dt} dt - \frac{dn}{dt} \cdot dt \cdot c \cdot V$$
 [5]

We maintain dc/dt = 0

$$\frac{dq}{dt} = c \cdot V \cdot \frac{dn}{dt}$$

$$\frac{dq}{dt} \cdot \frac{dt}{dn} = c \cdot V$$

$$\frac{dq}{dn} = c \cdot V$$

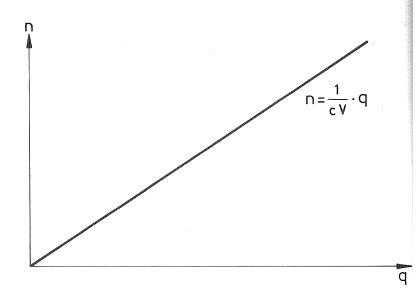



FIG.6. Ventilation rate as a function of the supply of tracer gas.

The relationship between q and n is thus linear, as shown in Figure 6.

It is thus necessary to choose a suitable value of tracer gas concentration so that the ventilation rates which are expected can be held, allowing for the possibilities of variations in q and of the volume concerned. (Alter the slope of the line

$$n = \frac{1}{c} \cdot \frac{1}{V} \cdot q.)$$

Measurements cannot start until a constant gas concentration has been attained. How long can this take? With a gas supply rate of q, the concentration c is given by:

$$c = \frac{q}{nV} (1 - e^{-nt})$$

Figure 7 shows how the  $(1 - e^{-nt})$  factor increases with time for different values of n. The figure shows that the time until equilibrium is attained can be considerable at low ventilation rates.

### Constant gas emission

Tracer gas is supplied at a uniform rate  $q (m^3/s)$  during measurements. From equation (2)

$$c_t = c_b + \frac{q}{nV}(1 - e^{-nt}) + c_0 \cdot e^{-nt}$$

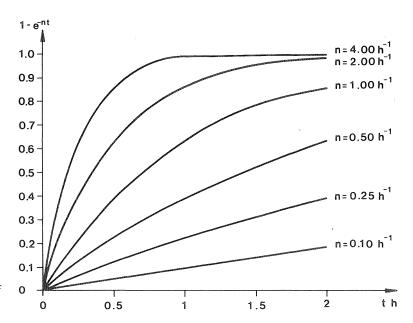



FIG.7.  $(1 - e^{-nt})$  as a function of time for different values of ventilation rate n.

Put 
$$c_0 = 0$$
,  $c = c_t - c_b$ 

$$c = \frac{q}{nV}(1 - e^{-nt})$$
 [6]

If the ventilation rate is constant (= n) from the time that the gas is first discharged, the stabilization sequence will be the same as that for the previous variant. See Figure 7.

When  $(1 - e^{-nt}) = 1$ , the ventilation rate is:

$$n = \frac{q}{c \cdot V}$$
 [7]

The ventilation rate n is thus inversely proportional to the gas concentration. The gas concentration q must therefore be chosen so that the concentration c is maintained within the scale range of the gas analyser for the air change rates which are expected.

$$q = c \cdot V \cdot n$$

The interaction between n, q and c for an individual single-family house or similar building with a volume of 300 m<sup>3</sup> is shown in Figure 8.

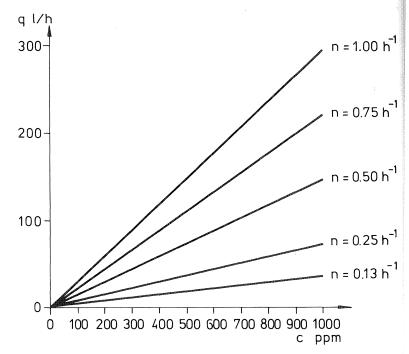



FIG.8. The flow of tracer gas for continuous gas measurement for different ventilation rates and gas concentrations. Volume =  $300 \text{ m}^3$ .

In the interests of accuracy, it is not desirable to work with the absolutely lowest concentrations which can be indicated by the gas analyser. If, however, it is desired to be able to record a wide range of air changes, there is a difficult question of balance to be solved. A low value of q enables a large interval of measurable n to be obtained. From Figure 8 it can be seen that if q = 75 l/h it should be possible to measure ventilation rates down to  $0.25 \text{ h}^{-1}$  before the gas analyser gives a full-scale deflection. On the other hand, higher ventilation rates would give such a low gas concentration that the accuracy of determining c begins to be in doubt.

### 2.1.2 Pressure method

A proposal for the formulation of Standard Method Description SP 1977:1, issued by the National Swedish Authority for Testing, Inspection and Meteorology, is presented here to serve as a description of the pressure method. This proposal was prepared by the 'Measurements and Measurement Methods' reference group within the Swedish Council for Building Research airtightness group. It reads as following:

# Application

This test method is used to determine the airtightness of the enclosing surfaces of a building or part of a building (e.g. an apartment). The method is primarily applicable to residential buildings.

# Principle

The test is performed by generating a pressure difference between the interior and exterior of the building (apartment) and measuring the air leakage which arises due to the pressure difference. The air leakage at a given pressure difference is given as a measure of the tightness of the building.

# Test equipment

A suitable controllable fan is required, having sufficient capacity to produce a pressure difference of ±55 Pa. At a back pressure of 55 Pa, the following fan capacities are likely to be necessary:

Apartments in an apartment building
Single-family house

A flow meter to measure the air flow through the fan is required.

 $1200 \, m^3/h$ 

 $2000 \, m^3 / h$ 

The probable error in flow measurement, m, calculated as below, must not exceed  $\pm 6\%$ . However, the accuracy does not need to exceed that corresponding to a value of 0.1 air changes/h.

$$m = \sqrt{m_1^2 + m_2^2}$$
...

where  $m_1, m_2 \dots$  represent the errors of the individual components in the measuring chain.

The flow meter should be installed in accordance with its manufacturer's instructions, observing such matters as minimum straight run before the measuring points etc.

A micromanometer for measuring pressure differences between 0 and  $\pm 55$  Pa with an accurancy of  $\pm 2$  Pa is required.

The fan and flow meter should be able to be reversed so that measurements can be made in both directions of flow through the walls.

#### Test conditions

The indoor and outdoor temperatures should be measured, and the wind direction and velocity be determined. Testing should not be carried out if the wind velocity, measured at head height at a (preferably) open place (e.g. on the windward side of the house) exceeds 8 m/s, or if the temperature difference between interior and exterior exceeds 30°C.

### Test procedure

All ventilation openings should be sealed before the test. Examples of this work are as follows:

Close all disc valves. (Do not forget the ventilator(s) in a larder.)

Do not alter the settings of present fittings: tape them over instead.

Seal the cooker fan and cooker exhaust canopy.

Seal any ventilators beside or forming part of windows with tape.

Clothes-drying cupboards connected to exhaust ducts should be sealed at the duct.

Fireplaces should be sealed over the grate or in the chimney. Seal the letterboxes.

Any drain traps (floor drains, sinks, basins, lavatories etc.) not filled with water should be filled or taped over.

All areas which are normally heated to more than  $+10^{\circ}$  C should be regarded as forming part of the volume to be tested. Doors to boiler rooms, garages etc. should be kept shut, while doors within the test area should be left open.

One external door, or a window, should be replaced by a wooden panel etc. fixed in place and carefully sealed with tape etc.

A hole should be made in the panel to accept the fan discharge duct, and another one for the passage of a small tube or hose. This tube should be connected to the pressure gauge which measures the difference between interior and exterior pressure. For an individual single-family house the end of the tube can be placed a few metres from the wall of the house at ground level. It should be terminated by a tee-piece, and can be fitted with some form of damper such as a box filled with mineral wool etc. Figure 1 shows how the various items are arranged.

The test should consist of a set of at least four sets of readings of the air flow as a function of pressure difference, uniformly distributed over a pressure range of 20-55 Pa and performed for both internal overpressure and internal underpressure.

If the flow meter used is of the type which measures mass flow (e.g. orifice plate, pitot tube etc.), the mass flows should be converted to volume flows. Guidelines for this conversion are given in an appendix.

When calculating the building volume, internal dimensions should be used. Reductions should be made for internal walls and floors within the volume under investigation, but not for cupboards etc.

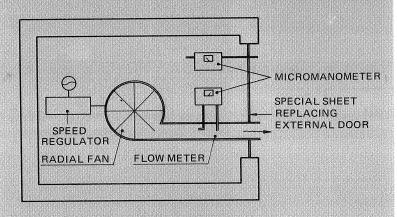



FIG. 1. Measuring equipment: schematic diagram.

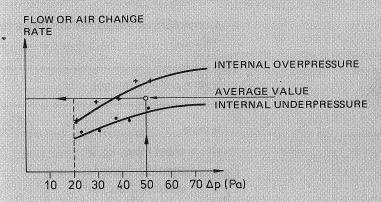



FIG. 2. Example of test results in graph form.

Tightness is normally specified in terms of the average value of the air flows at 50 Pa overpressure and underpressure, as read from the graphs. If the value has to be obtained by means of extrapolation, this should be specifically stated. The graph should be attached to the report.

# Commentary

The method is quick and reliable. It produces a quantitative measure of the building tightness which can be used in several contexts, such as manufacturing inspection, comparison between buildings and standard requirements. It should, however, be realized that the method only provides a measure of the tightness of all the enclosing sur-

faces, and the result is not directly usable for the calculation of the building's air change rate under natural conditions. The natural pressure differences which arise in a building are of different magnitude in different parts of the building. The method described here gives no indication of the size of the individual leaks or where they are situated. However, it is possible to localize the leaks and to evaluate their size by using an infra-red camera or an anemometer during the phase with internal underpressure.

Normally, the air flows resulting from internal overpressure and underpressure are dissimilar. This can be due to the fact that certain leaks behave like non-return valves: outward-opening windows, for example, have a greater leakage with internal overpressure than with internal underpressure. It can also be due to the fact that the natural pressure differences give rise to leakage which is not measured during testing. However, by calculating the average values of the flows, an unambiguous value for the building is obtained.

# Correction of measured air flows for temperature

The continuity condition for compressible flow is given by:

$$\dot{\mathbf{m}} = \rho \dot{\mathbf{V}} = \mathbf{constant}$$
 [8]

where

m = mass flow, kg/h

 $\rho$  = density, kg/m<sup>3</sup>

 $\dot{V}$  = volume flow, m<sup>3</sup>/h

The density of air at different temperatures can be calculated from the general gas laws.

$$p \cdot V = nRT = \frac{m}{M} \cdot R \cdot T$$
 [9]

where

p = gas pressure = 101.325 kPa at normal pressure, Pa

V = gas volume, m<sup>3</sup>

n = number of mols of the gas

R = general gas constant =  $8.3143 \text{ J/mol} \cdot \text{K}$  (Nm/mol · K)

= gas temperature, K

m = mass of a given gas quantity, kg

VI = molecular mass of the gas = 28.96 · 10<sup>-3</sup> kg/mol for normal air, g/mol The density  $\rho = m/V$  is obtained from:

$$\rho = \frac{P \cdot M}{R \cdot T}$$

Substituting values for dry air at normal pressure, we obtain:

$$\rho = \frac{101.325 \cdot 10^3 \cdot 28.96 \cdot 10^{-3}}{8.3143 \cdot T} = \frac{352.9}{T}$$
 [10]

i.e.

$$\rho = \text{constant } \cdot \frac{1}{T}$$
 [11]\*

When pressure testing, cold air is often blown into the building when testing for internal overpressure, and warm interior air is discharged through the leaks. These temperatures are indicated by  $T_{\boldsymbol{u}}$  and  $T_{\boldsymbol{i}}$  (K) respectively.

# Internal overpressure

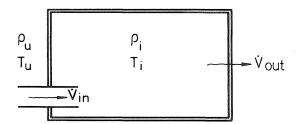



FIG. 9. Internal overpressure: nomenclature.

In order to meet the continuity condition (Equation 8), the following equation must be satisfied:

$$\dot{m}_{in} = \dot{m}_{out}$$
 [12]

or

$$\rho_{\rm u} \cdot \dot{V}_{\rm in} = \rho_{\rm i} \cdot \dot{V}_{\rm out}$$
 [13]

As the density is inversely proportional to the absolute temperature (Equation 11), we get:

constant 
$$\cdot \frac{1}{T_u} \cdot \dot{V}_{in} = constant \cdot \frac{1}{T_i} \cdot \dot{V}_{out}$$
 [14]

$$\dot{V}_{out} = \frac{T_i}{T_u} \dot{V}_{in}$$
 [15]

As  $\dot{V}_{ut}$  is the interesting quantity, in terms of the building leakage behaviour, the measured volume flow into the building should be corrected in accordance with Equation (15).

If the flow meter used during testing primarily measures the mass flow — which is the case for such measuring devices as orifice plates, pitot tubes etc. — the result must be converted to a volume flow. This type of flow meter normally measures a pressure difference  $\Delta p$  which is a measure of the magnitude of the flow in accordance with:

$$\Delta p = constant \frac{\rho(T) \cdot V^2}{2 \cdot A}$$
 [16]

where:

the constant is specific to the meter used.

A = cross-sectional area of the measuring tube

$$\dot{\mathbf{V}} \sim \sqrt{\Delta \mathbf{p} \cdot 2 \cdot \mathbf{A}/\rho(\mathbf{T})}$$

For two temperatures  $T_1$  and  $T_2$  with the same pressure difference  $\Delta p$ , we get:

$$\dot{V}_{T_1} = \text{constant } / \sqrt{\rho(T_1)}$$
 [17]

$$\dot{V}_{T_2} = \text{constant } / \sqrt{\rho (T_2)}$$
 [18]

and

$$\frac{\dot{V}_{T_1}}{\dot{V}_{T_2}} = \sqrt{\frac{\rho(T_2)}{\rho(T_1)}}$$
 [19]

The temperature for which the measuring device is calibrated is called  $T_k$ , and  $T_1$  is replaced by  $T_u$ , the outdoor air temperature. This gives:

$$\dot{V}_{T_u} = \sqrt{\frac{\rho(T_k)}{\rho(T_u)}} \cdot \dot{V}_{T_k}$$
 [20]

But, from Equation (11)

 $\rho(T) = \text{constant/T}$ 

Which means that we can write:

$$\dot{V}_{T_u} = \dot{V}_{in} = \sqrt{\frac{T_u}{T_k}} \dot{V}_{T_k}$$
 [21]

If the indoor temperature  $T_i$  and the calibration temperature  $T_k$  are the same, we get, from Equation (15):

$$\dot{V}_{out} = \frac{T_i}{T_u} \dot{V}_{in} = \frac{T_i}{T_u} \sqrt{\frac{T_u}{T_i}} \cdot \dot{V}_{T_i} = \sqrt{\frac{T_i}{T_u}} \cdot \dot{V}_{T_i}$$
 [22]

# Internal underpressure

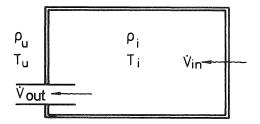



FIG. 10. Internal underpressure: nomenclature.

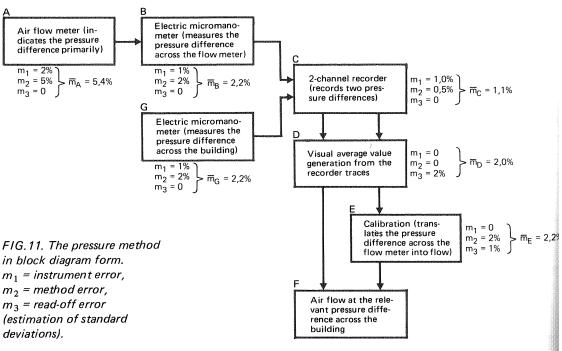
With corresponding reasoning to that in the internal overpressure case, we get:

$$\dot{V}_{in} = \frac{T_u}{T_i} \dot{V}_{out}$$
 [23]

As before, this expression is valid for flow meters which measure the mass flow only if  $T_i = T_k$ , i.e. the temperature for which the flow meter is calibrated.

If  $T_i \neq T_k$ ,  $V_{out}$  must be corrected:

$$\dot{V}_{T_{i}} = \dot{V}_{out} = \sqrt{\frac{T_{i}}{T_{k}}} \dot{V}_{T_{k}}$$
 [24]


### Accuracy of measurement

The final result from an airtightness measurement using the pressure method is the air leakage per unit of volume for a given pressure difference between the interior and exterior of the building. Measurement thus includes two main components: air flow measurement and pressure measurement. According to Svensson (1977), a measurement error can be regarded as consisting of three components, namely the instrument error  $m_1$ , the method error  $m_2$  and the read-off error  $m_3$ . The Probable Measurement Error  $\overline{m}$  is then calculated from the following expression:

$$\overline{m} = \sqrt{m_1^2 + m_2^2 + m_3^2}$$
 [25]

Figure 11 shows a block diagram of the different elements of the pressure method.

The air flow measurement and the pressure measurement are regarded as two parallel sequences.



# Temperature correction of flow measurements - summary

Alternative 1: Flow meter measuring volume flow (hot-wire anemometer etc.)

Internal overpressure

$$Q_{\ddot{o}} = \frac{T_i}{T_u} Q_{avl}$$

Internal underpressure

$$Q_u = \frac{T_u}{T_i} Q_{avl}$$

Alternative 2: Flow meter measuring mass flow (orifice plate, pitot tube etc.)

Internal overpressure

$$Q_{\ddot{o}} = \underbrace{\frac{T_{\dot{i}}}{T_{\dot{u}}} \cdot \sqrt{\frac{T_{\dot{u}}}{T_{\dot{k}}}} Q_{avl}}_{general} = \underbrace{\sqrt{\frac{T_{\dot{i}}}{T_{\dot{u}}}} \cdot Q_{avl}}_{if T_{\dot{i}} = T_{\dot{k}}}$$

Internal underpressure

$$Q_{u} = \underbrace{\frac{T_{u}}{T_{i}} \cdot \sqrt{\frac{T_{i}}{T_{k}}}}_{\text{general}} Q_{avl} = \underbrace{\frac{T_{u}}{T_{i}}}_{\text{if } T_{i} = T_{k}} Q_{avl}$$

Where:

 $Q_{\ddot{o}}$  = corrected volume flow for overpressure measurements,

Q<sub>II</sub> = corrected volume flow for underpressure measurements, m<sup>3</sup>/h

 $T_i$  = indoor air temperature, K  $T_u$  = outdoor air temperature, K

 $T_k$  = the air temperature for which the measuring device is calibrated, K (normally 20°C = 293 K)

 $Q_{avl}$  = flow from calibration graph or table,  $m^3/h$ , at the calibration temperature

### Air flow measurement

From expression [25] the probable measurement error for flow measurement  $\overline{m}_{O}$  is given by:

$$\overline{m}_{Q} = \sqrt{\overline{m}_{A}^{2} + \overline{m}_{B}^{2} + \overline{m}_{C}^{2} + \overline{m}_{D}^{2} + \overline{m}_{E}^{2}}$$
 [26]

This treatment regards the errors as statistically independent, which is also likely to be the case in practice. Using the estimated measurement errors given in Figure 11, we get:

$$\overline{m}_{0} = \sqrt{5.4^{2} + 2.2^{2} + 1.1^{2} + 2.0^{2} + 2.2^{2}} = \sqrt{44.05} = 6.48\%$$

This is thus the magnitude of the probable error in 'pure' flow determination.

#### Pressure measurement

Similarly, chain G-C-D-F must be traversed:

$$\overline{m}_{\Delta p} = \sqrt{m_G^2 + m_C^2 + m_D^2}$$
 [27]

i.e.

$$\overline{m}_{\Delta p} = \sqrt{2.2^2 + 1.1^2 + 2.0^2} = \sqrt{10.05} = 3.2\%$$

This error can probably increase when there is a gusty wind, which would primarily result in the read-off error  $m_3$  in Frame D in Figure 11 increasing. Assume that  $m_D^D=5\%$ . This means that  $\overline{m}_D=5\%$ , causing  $\overline{m}_{\Delta p}$  to increase to

$$\sqrt{2.2^2 + 1.1^2 + 5.0^2} = 5.6\%.$$

The above reasoning has shown that if selected (realistic) conditions are chosen it is possible to determine a pair of values ( $\Delta p$ ,Q) within the range ( $\Delta p \pm 0.06 \Delta p$ , Q  $\pm 0.06 Q$ ).

According to the proposed method of working given under Section 2.1.2, at least four such pairs of values should be obtained during the test, uniformly distributed within the range 20–55 Pa (see Figure 12). From these points, a curve can be drawn in.

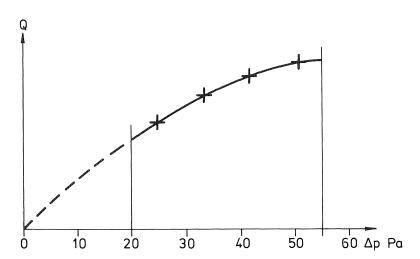



FIG.12.  $Q - \triangle p$  diagram for pressure testing.

Statistical theory indicates that this should cause the errors (= the standard deviations) in  $\Delta p$  and Q to be reduced:

The new quantities are called  $\overline{m}_{\Delta p}^{\,\,tot}$  and  $\overline{m}_{Q}^{\,\,tot}$  respectively.

The number of pairs of values obtained is n.

$$\overline{m}_{\triangle p}^{\text{tot}} = \overline{m}_{\triangle p} / \sqrt{\overline{n}}$$
 [28]

$$\overline{m}_{Q}^{\text{tot}} = \overline{m}_{Q} / \sqrt{n}$$
 [29]

Four pairs of equations give the following numerical result

$$\overline{m}_{\triangle p}^{\, tot} = 0.06/2 = 0.03$$

$$\overline{m}_{Q}^{\text{tot}} = 0.06/2 = 0.03$$

# The final result

The final result of the test should be an air flow at a pressure difference  $\Delta p = 50$  Pa across the building. In order to relate the errors in the pressure and flow measurements, the relationship between Q and  $\Delta p$  must be studied. This can often be expressed as:

$$Q = f(\triangle p) = A \cdot \triangle p^{B}$$
 [30]

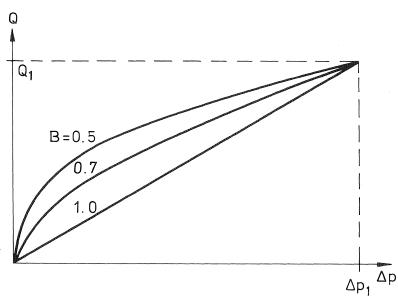



FIG.13. The leakage flow Q as a function of the pressure difference  $\triangle p$  across the building for different values of exponent B in the expression  $Q = A \cdot \triangle p^B$ .

The differential of  $f(\Delta p)$  is expressed:

$$dQ = f'(\triangle p) \ d(\triangle p) = A \cdot B \cdot \triangle p^{B-1} \cdot d(\triangle p)$$
 [31]

A is calculated so that, for different values of B, Q is equal to a given value of  $Q_1$  at pressure difference  $\Delta p_1$ . See Figure 13.

$$A = \frac{Q_1}{\Delta p_1^B}$$
 [32]

Substituting the expression for A in (31), we get:

$$dQ = \frac{Q_1}{\Delta p_1^B} \cdot B \cdot \Delta p^{B-1} d(\Delta p)$$
 [33]

This expression makes it possible to study how an error in the determination of the pressure difference across a building,  $\Delta p$ , affects determination of the leakage flow Q.

For 
$$\triangle p = \triangle p_1$$

$$dQ = \frac{Q_1}{\Delta p_1^B} \cdot B \cdot \Delta p_1^{B-1} \cdot d(\Delta p) = \frac{Q_1 \cdot B}{\Delta p_1} d(\Delta p)$$
 [34]

or

$$\frac{dQ}{Q_1} = B \frac{d(\Delta p)}{\Delta p_1}$$
 [35]

i.e. the relative errors in  $\Delta p$  and Q are proportional, with the exponent B as the constant of proportionality.

The final probable error  $\overline{m}_{Q}^{final}$  in the air flow consists of an independent component,  $\overline{m}_{Q}^{tot}$ , and a portion which is dependent upon the error in  $\Delta p$  and is equal to  $B \cdot \overline{m}_{Q}^{tot}$ .

$$\overline{\mathbf{m}}_{\mathbf{Q}}^{\text{final}} = \sqrt{(\overline{\mathbf{m}}_{\mathbf{Q}}^{\text{tot}})^2 + (\mathbf{B} \cdot \overline{\mathbf{m}}_{\Delta p}^{\text{tot}})^2}$$

Substituting real values, we get:

$$\overline{m}_{O}^{\text{final}} = \sqrt{0.03^2 + (0.5 \cdot 0.03)^2} = 0.03$$
 for B = 0.5

$$\overline{m}_{Q}^{\text{final}} = \sqrt{0.03^2 + (0.7 \cdot 0.03)^2} = 0.04$$
 for B = 0.7

$$\overline{m}_{O}^{final} = \sqrt{0.03^2 + (1.0 \cdot 0.03)^2} = 0.04$$
 for B = 1.0

This calculation thus enables it to be shown that the result of the pressure measurement method - i.e. the air flow at 50 Pa pressure difference - can be given with an accuracy of  $\pm 4\%$ .

This is the result obtained if the measuring equipment is composed as indicated in the block diagram in Figure 11. However, in some cases liquid manometers are used for pressure measurement. This means that component C (Figure 11) is eliminated from the flow and pressure measurements. Components B and G are replaced by liquid manometers with the following estimated errors:

B, G: 
$$m_1 = 5\%$$
 instrument error

$$m_2 = 2\%$$
 method error

$$m_3 = 4\%$$
 read-off error

This means that  $\overline{m}_B = \overline{m}_G = \sqrt{25 + 4 + 16} = 6.7\%$ 

Component D is replaced by manual visual averaging of the height of the liquid columns. With this procedure, m<sub>3</sub> is estimated to (at least) 10%, i.e.  $m_D = 10\%$  and gives:

$$\overline{m}_{Q} = \sqrt{\overline{m}_{A}^{2} + \overline{m}_{B}^{2} + \overline{m}_{D}^{2} + \overline{m}_{E}^{2}} =$$

$$= \sqrt{5.4^{2} + 6.7^{2} + 10.0^{2} + 2.2^{2}} = 13.3\%$$

Similarly:

$$\begin{split} \overline{m}_{\triangle p} &= \sqrt{\overline{m}_{G}^{2} + \overline{m}_{D}^{2}} = \sqrt{6.7^{2} + 10.0^{2}} = 12.0 \\ \overline{m}_{Q}^{tot} &= 13.3/\sqrt{n} = 13.3/2 = 6.7\% \\ \overline{m}_{\triangle p}^{tot} &= 12.0/\sqrt{n} = 12.0/2 = 6.0\% \\ \overline{m}_{Q}^{final} &= \sqrt{6.7^{2} + (0.7 \cdot 6.0)^{2}} = 7.9\% \end{split} \qquad \text{if } B = 0 \end{split}$$

This means that the final probable error in the determination of the air flow at 50 Pa, using liquid manometers instead of electric manometers with recorders, is 8% instead of the 4% as would be expected in the latter case.

if B = 0.7

#### Measurement precision

The above reasoning has been primarily concerned with the likely accuracy (or perhaps more correctly, inaccuracy) of measurement, i.e. how near to a true value it is possible to come for each individual test. However, it is also desirable to be able to use the measurements on other occasions and for other applications. The whole concept of precision is tied to this view.

The wind velocity around a building, together with the temperature difference between internal and external air, generates 'natural' pressure differences across the building envelope. These pressure differences affect the measurement results by superimposing themselves on the pressure difference generated by the fan.

# The effect of wind

The wind pressure p acting on a surface is generally expressed by

$$p = \mu \cdot \frac{\rho \cdot v^2}{2}$$
 [36]

#### where:

 $\mu$  = the shape factor; see Figure 14

 $\rho$  = the density of air, kg/m<sup>3</sup>

v = the wind velocity, m/s

The magnitude of the shape factor varies from place to place across the external surface of the building. Using a mass balance equation for inward- and outward-flowing air, an internal reference pressure can be calculated. If the building is exposed to wind alone, this internal reference pressure can also be expressed as an internal shape factor, shown as -0.4 in Figure 14.

Starting from Figures 14 and 15 as a basis, Lind et al (1976) have prepared a diagram which shows how the quotient of the air flow in windy conditions,  $Q_{wind}$ , and the air flow in calm conditions,  $Q_{calm}$ , depends upon the wind velocity and the pressure difference during pressure testing. See Figure 16.

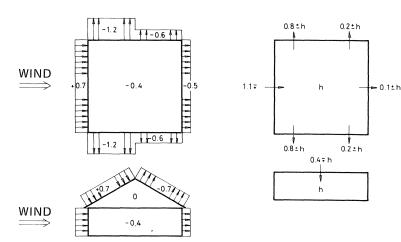



FIG. 14. Shape factors for a building acted upon by wind. Source: Lind et al (1976).

FIG.15. The resulting shape factors due to overpressure and underpressure measurements. Source: Lind et al (1976).

Figure 16 indicates that the pressure test measurement method is more sensitive to disturbance due to the effects of wind when measuring with internal overpressure than when measuring with internal underpressure. This is due to the fact that underpressure naturally arises inside a building against which the wind is blowing.

When carrying out overpressure measurements, a wind velocity of 8 m/s can create a 10% variation of the flow, whereas for underpressure measurements a wind velocity of 10 m/s is necessary to produce the same effect. (Cf. the limit of 8 m/s in the measurement method proposal in Section 2.1.2.)

## The effect of temperature difference

The difference in indoor and outdoor air temperatures causes chimney effect – an air pressure difference between the indoor and outdoor air. There is normally a linear pressure distribution between the top and the bottom of the building so that, depending upon where the leaks in the building envelope are, there must be a height where the pressure difference is zero. See Figure 17.

The pressure difference,  $\Delta p$ , can approximately be expressed

$$\Delta p = 4.35 \cdot 10^{-2} \cdot h(v_i - v_u) \text{ (Pa)}$$
 [37]

where:

= the height to the level where  $\triangle p = 0$  m (normally equal to half the height of the build-

 $v_i$  and  $v_{ij}$  = indoor and outdoor air temperatures (°C) respectively

For a single-storey individual house, h can be taken as 1.5 m.

$$\Delta p = 4.35 \cdot 10^{-2} \cdot 1.5 \ (v_i - v_u) = 6.53 \ (v_i - v_u) \cdot 10^{-2}$$

The average pressure difference across the facade is half this magnitude.

$$\Delta p = 3.26 (v_i - v_u) \cdot 10^{-2}$$

For 
$$v_i - v_{ij} = 30^{\circ}$$
C,  $\Delta p \approx 1$  Pa

In other words, the temperature difference between the indoor and the outdoor air (the chimney effect) evidently has little effect except for high rise buildings.

OWIND
OCALM

1.0
0.8
10m/s
0.6
0.4
0.2
0.2
0
-60 -48 -36 -24 -12 0 12 24 36 48 60
UNDERPRESSURE (Pa)

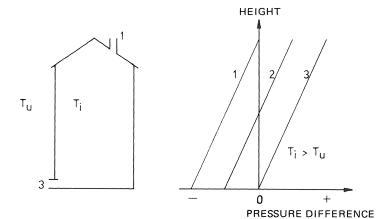
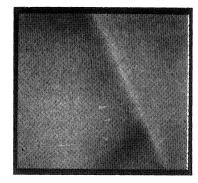

OVERPRESSURE (Pa)

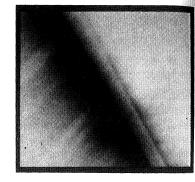
FIG.16. Diagrammatic illustration of how the measurement precision, when using the pressure test measurement method, depends upon the wind velocity and the magnitude of the overpressure or underpressure during the test. Source: Lind et al (1976).

FIG.17. The pressure conditions in a building due to the chimney effect.

- 1. An opening only at the top.
  2 Openings uniformly distrib-
- 2. Openings uniformly distributed (=leaks).
- 3. An opening only at the bottom.

Source: Nevander & Samuelson (1976).





## 2.2 QUALITATIVE MEASUREMENTS

# 2.2.1 Thermography

The most commonly used qualitative testing method for the investigation of airtightness of buildings is the infrared or thermal camera. It is particularly useful for investigating, primarily at site, the position of leaks and, to a certain degree, for quantifying the effect of the leaks. By introducing an underpressure in the building, e.g. by using the cooker exhaust canopy fan, leaks can be easily traced with the camera. This effect, of course, is due to the fact

FIG. 18. Thermograph pictures of the joint between an external wall and the sloping ceiling on the upper floor of a 1 1/2-storey single-family house. The picture on the left shows how warm air is leaking through the joint (light grey colour) under natural pressure conditions. When a 50 Pa internal underpressure is applied, a considerable inflow leakage of cold air arises, as can be seen from the dark grey areas in the right-hand picture. The air velocity at the edge of the crack was  $0.5-2 \, m/s$ .





that the colder external air, in entering the building, cools the surfaces adjacent to the leak, causing them to become 'visible' to the camera. In connection with thermography, measurements are often made with a sensitive anemometer of the air velocity in connection with local leaks revealed and documented by the thermal camera. Figure 18 is an example of the pictures obtained.

The equipment used for thermography, together with a description of the method of working, has been carefully and exhaustively described by Axén and Pettersson (1977 and 1979), so no further description is necessary here.

# 3 Measurement results

The Division of Building Technology of Lund Institute of Technology administers, for the time being, a computer file of recorded results obtained from actual pressure and/or tracer gas measurements on buildings. At present, information is provided for the file by the various Institutes of Technology, the National Swedish Authority for Testing, Inspection and Meteorology, BPA Byggproduktion AB, the National Association of Tenants' Savings and Building Societies, AB Skånska Cementgjuteriet, Ytong AB and the Tyrén group of companies. At the end of June 1978 the file contained results of measurements on 384 individual single-family houses, 43 apartments and 1 industrial building. Recently constructed buildings dominate among the material, and only a few older buildings have been measured. The printout reproduced in Appendix 1 contains about a further score of individual single-family houses, over and above the 384 as at the end of June, 1978. The file has aroused international interest, and is therefore written in English.

Table 3 is a summary of the measured results at the end of June 1978.

| Category                                                                                  | No. | n <sub>50</sub><br>Average<br>value | Air changes/h<br>Standard<br>deviation |
|-------------------------------------------------------------------------------------------|-----|-------------------------------------|----------------------------------------|
| Detached single-family                                                                    |     |                                     |                                        |
| houses and linked houses                                                                  |     |                                     |                                        |
| made of wood                                                                              | 205 | 3.66                                | 1.24                                   |
| single-storey                                                                             | 70  | 3.79                                | 1.32                                   |
| 1 1/2-storey                                                                              | 135 | 3.52                                | 1.18                                   |
| Detached single-family houses of lightweight concrete                                     | 12  | 1.98                                | 1.46                                   |
| Detached single-family houses<br>and linked houses of light-<br>weight concrete & wood,   |     |                                     |                                        |
| single-storey                                                                             | 9   | 2.23                                | 0.67                                   |
| 1 1/2-storey                                                                              | 17  | 3.74                                | 0.76                                   |
| Row houses of wood                                                                        | 49  | 3.14                                | 1.36                                   |
| single-storey                                                                             | 33  | 2.89                                | 1.02                                   |
| 1 1/2-storey                                                                              | 16  | 3.65                                | 1.56                                   |
| Row houses with party walls and floor structures of concrete. Curtain walls with studding |     |                                     |                                        |
| frame.                                                                                    | 5   | 1.72                                | 0.18                                   |
| Block of flats of concrete and with curtain walls                                         | 23  | 0.96                                | 0.34                                   |

Table 3. Summary of results of pressure testing. The data relates to houses built after 1976-01-01.

# Appendix 1

Data from measurements of airtightness

# Description of and commentaries on the data file on the following pages

- Col. 1 Object number.

  Indicates the sequential number in an arbitrary number series chosen by each testing group.
- Col. 2 Year of building.
  Gives the two last figures in the year.
- Col. 3 The number of floors in the building tested.
- Col. 4 Production method.

P = Prefabricated

V = Volume ele-

ments

S = Surface elements

S = Site-built

Col. 5 Type of building

D = Detached house R = Row house

L = Linked house

S = Split level house

Col. 6 Predominant structural material.

W = Wood

= Lightweight con-

crete

V = Lightweight concrete and wood

= Concrete

B = Brick

M = Concrete with curtain walls.

Col. 7 Ventilation system.

S = Natural ventilation

F = Mechanical ex-

haust

FT = Mechanical supply and

exhaust

X = FT + heat exchanger

Col. 8 Window opening direction.

O = Outwards I = Inwards

B = Both directions used

Col. 9 Foundation type.

C = Crawl space

F = Floor slab on

ground

B = Cellar (basement)

- Col. 10 Volume of building in m<sup>3</sup> (i.e. volume tested). Determined in accordance with SP 1977:1.
- Col. 11 Envelope area of the building in m<sup>2</sup> (test volume). This includes all surfaces through which air can leak and which bound the test volume. Walls and floors below ground level are not included, nor is the area of the foundation raft where the house is founded directly on the ground.

- Col. 12 Ratio of volume and envelope area. Given to one decimal place.
- Col. 13 Total window and door area, m<sup>2</sup>, calculated from the external dimensions over frames, jambs, etc.
- Col. 14 Air leakage at 50 Pa, internal overpressure, m<sup>3</sup>/h.
- Col. 15 Air leakage at 50 Pa, internal underpressure, m<sup>3</sup>/h.
- Col. 16 Air leakage at 50 Pa per volume unit, m<sup>3</sup>/m<sup>3</sup> · h, or air changes/h, internal overpressure. Given to one decimal place.
- Col. 17 Air leakage at 50 Pa per volume unit, m³/m³·h, or air changes/h, internal underpressure. Given to one decimal place.
- Col. 18 Air leakage at 50 Pa per unit surface area (envelope area), m³/m² · h, internal overpressure. Given to one decimal place.
- Col. 19 Air leakage at 50 Pa per unit surface area (envelope area), m<sup>3</sup>/m<sup>2</sup> · h, internal underpressure. Given to one decimal place.
- Col. 20 Air changes rate, air changes/h, under ambient weather conditions. Multiplied by 100. This indicates the ventilation rate with the controlled ventilation system and devices sealed.
- Col. 21 Outdoor air temperature, °C. Given in whole degrees with + or as required.
- Col. 22 Indoor air temperature, °C.
- Col. 23 Wind velocity in the vicinity of the building, m/s.
- Col. 24 Wind direction, given as N, NE, E, SE, S, SW, W, NW.

Separate copies of the data file can be ordered from: Byggnadsteknik I, LTH, Box 725, S-220 07 LUND, SWEDEN.

```
1 OBJECT NUMBER
2 YEAR OF ERECTION
3 NUMBER OF STOREYS
   PRODUCTION
                                 P=PREFABRICATED
                                                                     V=VOLUME ELEMENT
                                 SESURFACE ELEMENT
                                 S∞BUILT ON SITE
5 HOUSE SITE
                                 D=DETACHED HOUSE
                                                                     R=ROW HOUSE L=LINKED HOUSE
                                 S#SPLIT LEVEL HOUSE
                                                                     L=LIGHT WEIGHT CONCRETE C=CONCRETE
6 MATERIAL
                                 M≈MOOD
                                 V≈LIGHT WEIGHT CONCRETE & WOOD
                                 B=BRICK
                                                                     M=CONCRETE/CURTAIN WALL
7 VENT. SYSTEM
                                 S≡NATURAL VENTILATION
                                                                     F≈EXHAUST AIR
                                 FT=BALANCED
                                                                     X≈FT & HEAT EXCHANGER
8 WINDOW OPENING DIRECTION
                                 0∞OUTWARDS
                                                                     I=INWARDS B=BOTH DIRECTIONS
                                 C=CRAWL-SPACE BASEMENT
                                                                     B=BASEMENT STOREY
 9 GROUND
                                 F≖FLOOR SLAB ON GROUND
10 VOLUME, M3
11 AREA OF HOUSE ENCLOSURE, M2
12
   VOLUME/AREA
13 AREA OF WINDOWS AND DOORS
14 AIR LEAKAGE AT 50 PA, POSITIVE PRESSURE DIFFERENCE , M3/H
15 AIR LEAKAGE AT 50 PA, NEGATIVE PRESSURE DIFFERENCE , M3/H
16 AIR CHANGE RATE AT 50 PA, POSITIVE PRESSURE DIFFERENCE, M3/M3/H
17 AIR CHANGE RATE AT 50 PA, NEGATIVE PRESSURE DIFFERENCE, M3/M3/H
18 SPECIFIC AIR LEAKAGE AT 50 PA, POSITIVE PRESSURE DIFFERENCE, M3/M2/H
19 SPECIFIC AIR LEAKAGE AT 50 PA, NEGATIVE PRESSURE DIFFERENCE, M3/M2/H
20 VENTILATION RATE AT PREVAILING WEATHER CONDITIONS, (AIR CHANGES/HOUR) #100
21 OUTSIDE TEMPERATURE, CENTIGRADES
   INSIDE TEMPERATURE, CENTIGRADES
23 WIND VELOCITY, M/S
24 WIND DIRECTION
HOUSES
CTH CHALMERS UNIVERSITY OF TECHNOLOGY
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 77 1.5 PV D W F C 380 315 1.2 1820 1900 4.8 5.0 5.8 6.0 21 -6 21 1
                                     1640 1500 4.3 4.0 5.2 4.8 6 +20 23
2 77 1 5 PV D W F C 381 315 1 2
                                     1475 1400 3.9 3.7 4.7 4.4 12 +2 23 3
                                     1310 1310 3 4 3 4 4 2 4 2 9 +13 23
 2 77 1 5 PV D W F
                    C 381 315 1 2
 3 77 1.5 PV D W F
                    C 370 315 1.2
                                     2370 2270 6.4 6.1 7.5 7.2 22 0 21 1
                                     1930 2030 5 2 5.4 6.1 6.3 42 +20 26 10
3 77 1 5 PV D W F
                    C 370 315 1 2
 4 77 1 5 PV D H F
                                     1860 1840 4 9 4 9 5 8 5 7 32 +2 21 12
                    C 779 715 1 2
 4 77 1.5 PV D W F C 379 315 1.2
                                     1850 1810 4.9 4.8 5.9 5.7 11 +11 22 3
 5 77 1.5 PV D W F
                    C 375
                           1. 2
                                     1950 2015 5.2 5.4 6.2 6.4 29 +4 21 3
 5 77 1 5 PV D W F
                    C 375
                              1. 2
                                     1870 1960 5.0 5.2 5.9 6.2 19 +23 25 10
 6 77 1.5 PV D W F
                    C 381 315 1 2
                                     1710 1760 4.5 4.6 5.4 5.6 15 +2 22 2
                                     1540 1500 4.0 3.9 4.9 4.8 12 +14 21 2
 6 77 1.5 PV D W F
                    C 381 315 1.2
                    C 379 315 1.2
                                     1415 1440 3.7 3.8 4.5 4.6 19 +3 21 5
 7 77 1. 5 PV D W F
 7 77 1 5 PV D W F
                    C 379 315 1.2
                                     1350 1330 3.6 3.5 4.3 4.2 9 +12 20 6
                                     1600 1540 4 2 4 1 5 1 4 9 13 +7 23 4
8 77 1 5 PV D W F
                    C 380 315 1.2
 8 77 1.5 PV D W F
                    C 380 315 1.2
                                     1500 1420 4 0 3 774 8 4 5 8 +13 22 2
 9 77 1.5 PV D W F C 373 315
                                     1870 1970 4.9 5.2 5.8 6.1 22 +3 23 1
 9 77 1. 5 PV D W F
                                     2020 2070 5.3 5.5 6.3 6.3 12 +15 21 0
                    C 373 315
                                     1290 1310 3.4 3.5 4.1 4.2 10 +7 22 3
10 77 1.5 PV D W F
                    C 379 315
                                     1290 1310 3.4 3.5 4.1 4.2 6 +12 22
10 77 1 5 PV D W F
                    C 379 315 1.2
                                     1450 1530 3.8 4.0 4.6 4.9 18 -3 20
11 77 1 5 PV D W F
                    C 381 315 1 2
11 77 1 5 PV D W F
                    C 381 315 1.2
                                     1449 1519 3 8 4 9 4 5 4 8 13 +18 26 5
12 77 1 5 PV D W F
                    C 380 315 1 2
                                     1520 1710 4.0 4.5 4.8 5.4 21 +3 22
12 77 1.5 PV D W F
                    C 380 315 1.2
                                     1620 1670 4. 3 4. 4 5. 2 5. 3 7 ±22 28
13 77 1.5 PV D W F
                    C 379 315 1.2
                                     1560 1580 4.1 4.2 5.0 5.0 32 -2 22
13 77 1.5 PV D W F
                    C 379 315 1.2
                                     1590 1550 4.2 4.1 5.1 4.9 9 +22 26 2
                    C 380 315 1 2
                                     1350 1460 3.6 3.8 4.3 4.5 13 +2 23
14 77 1 5 PV D W F
14 77 1 5 PV D W F
                    C 380 315 1.2
                                     1360 1380 3.6 3.6 4.3 4.3 8 +17 23 5
                                     1550 1810 4.1 4.8 4.9 5.8 12 +7 21 2
15 77 1.5 PV D W F
                    C 380 315 1.2
15 77 1.5 PV D W F
                    C 380 315 1.2
                                     1520 1500 4 0 4 0 4 8 4 8 9 +16 22 4
16 77 1.5 PV D W F C 379 315 1.2
                                     1550 1620 4.1 4.3 4.9 5.2 12 +11 21 2
                                     1580 1500 4.2 4.0 5.1 4.8 7 +16 23 3
16 77 1.5 PV D W F C 379 315 1.2
```

```
17 77 1.5 PV D W F C 378 315 1.2
                                   1930 2010 5.1 5.3 6.1 6.4 11 +11 19 2
17 77 1.5 PV D W F
                   C 379 315 1.2
                                   1840 1980 4.9 5.0 5.8 6.0 19 +10 18 8
18 77 1.5 PV D W F C 382 315 1.2
                                   1248 1360 3.3 3.6 4.0 4.3 8 +7 24 3
19 77 1.5 PV D W F
                   C 380 315 1.2
                                   1380 1270 3.6 3.3 4.3 4.0 12 +26 24
20 77 1 5 PV D W F
                   C 380 315 1.2
                                   1920 1870 5.1 4 9 6 1 6 0 18 +10 24 2
29 77 1 5 PV D W F
                   C 379 315 1. 2
                                   1790 1790 4 7 4 7 5 7 5 7 23 +6 20 3
21 77 1.5 PV D W F
                   C 382 315 1 2
                                    970 930 2.5 2 4 3.1 2.9 8 +12 22
                                   1010 1070 2.6 2.8 3.2 3.4 8 +20 25
21 77 1.5 PV D W F C 382 315 1.2
22 77 2 PV D W F B 415
                                   2000 2030 4.8 5.0
                                                          11 +12 23
22 AFTER TIGHTENING MEASURES
                                   1800 1700 4.3 4.1
                                                          15 +18 22 0
23 77 2 PV D W F
                                   2450 2500 5.0 5.1
                                                          39 +1 21 5
                  B 491
23 AFTER TIGHTENING MEASURES
                                                           9 +19 19
                                   1860 1690 3.8 3.4
24 77 1 PV D W F C 276
                                   1710 1740 6.2 6.3
                                                          18 +5 20 1
24 77 1 PV D W F
                   C 276
                                   1730 1530 6 3 5 5
                                                           6 +16 21
                                                                    1
25 77 2 PV D W F 8 419
                                   2370 2290 5.7 5.5
                                                          32 +3 21 3
25 77 2 PV D W F 8 419
                                   2340 2110 5.6 5.0
                                                           € +17 23
26 77 2 PV D W F 8 415
                                   2100 2040 5.1 4.9
                                                          16 +7 20
                                                                    1
26 77 2 PV D W F 8 415
                                   2080 1940 5.0 4.7
                                                          18 +14 18
      1 PS D 8 F O F 336 245 1 4 29 1510 1360 4 5 4 0 6 2 5 6 10 -4 17 1
27 77
2 PS D B X O B 545 345 1.6 29 1400 1290 2.6 2 4 4.1 3.7 10 -2 20 1 E
29 77
30 77 1.5 P5 0 W F 0 F 324 214 1.5 31 2580 2340 8.0 7.2 12 11 22 -2 19 1 E
31 78 1.5 PS D W 5 B F 334
                                   1500 1360 4.5 4.1
                                                              -3 20
32 77 1.5 PS D W S B F 324
                                   1530 1220 4.7 3.8
                                                              -6 21 3
33 78 1.5 PS D W S B F 324
                                   1540 1280 4.8 4.0
34 78 1. 5 PS D W 5 B F 334
                                  1500 1360 4.5 4.1
                                                              -3 20
                                                                    1
35 78 1.5 PS D W F B F 292 292 1.0 22 280 240 1.0 0.8 1.0 0.8
                                                              +1 21 1
KTH THE ROYAL INSTITUTE OF TECHNOLOGY
1 2 3 4 5 6 7 8 9 10 11 12 13 14
                                         15 16 17 18 19 20 21 22 23 24
                                            1. 2
1 76 1 PSRC
                   F
                            0.9
                                                  11
                                            1. 2
276 1 PSRC
                            0.9
                                                   11
 3 76 1 PS R C
                   F
                             0.9
                                            1.5
                                                   14
 4 76 1 PS D C
                   F
                            1. 0
                                            1. 7
                                                   1.6
                                                                    1
 5 76 1 PS D C
                   F
                            1. 0
                                            1.0
                                                   1.0
                                                                    1
 6 76 1 PS D C
                   F
                            1.0
                                            ав
                                                   97
                                                                    1
                   F
 7 76 1 PS D C
                            1. 3
                                            20
                                                   2.7
                   F
 8 76 1 PS D C
                            1. 3
                                            2.2
                                                   3. 0
9 76 1 PS D C
                   F
                            1. 3
                                            2.1
                                                   2.7
10 76 1 PS R W
                   ۶
                                               2.8
                                                                    2
11 76 1.5 5 D W
                            1. 4
                   F
                                            4. 7
                                                  6.5
12 76 1.5 5 D W
                   F
                            1.4
                                            5.1
                                                   7.0
13 76 1 PS D W
                   F
                            1.1
                                            7 1
                                                   7 4
                                                                    3
                   F
14 76 1 PS D W
                            1. 1
                                            3. 1
                                                   7 4
                                                                     3
                   F
15 76 1 PS D W
                            1. 1
                                            3. 8
                                                   4. 1
                                                                     3
                   F
16 76 1 PS D W
                                            3. 8
                                                   4.2
                            1. 1
17 76 1 PS D W
                   F
                             1.1
                                            4.1
                                                   4.5
LTH LUND INSTITUTE OF TECHNOLOGY
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 76 1 5 PV D W FT O C 374 312 1 2 1930 1594 5 2 4 3 6 2 5 1 20 +1 12 7
2 75 1 PV D W FT O C 288 353 0.8
                                   1730
                                           5.9
                                                   4.9
                                                          16 +5 20 6
3 69 1 5 P5 D W S O C 418 369 1 1
                                   1770
                                            4. 2
                                                   4.8
                                                          29 +10 21
 4 69 1. 3 PS D W S O C 418 369 1. 1
                                                          39 +9 20
 5 69 1 PV R W F O F 122 126 1 0
                                    800
                                            5.6
                                                   6. 4
                                                          19 +10 23
                                                                    g
6 76 1. 3 PV D W F O F 215 190 1. 1
                                    740
                                                           7 +18 24
                                            3. 5
                                                   3.9
 7 76 1.5 SY D W F O F 215 190 1.1
                                    740
                                            3. 5
                                                   3.9
                                                          10 +14 22 5
 8 65 1 SDW SOC 300 380 0.8
                                   3190
                                                          34 +9 22
                                            99
                                                   8 4
9 76 1 PS D W FT O F 285 349 0.8
                                    940
                                            7 4
                                                   27
                                                           6 +19 23 4
10 76 1 PS D W FT O F 285 349 0.8
                                    660
                                            2.4
                                                   1. 9
                                                           3 +18 24
11 76 2 5 D L FT 0 C 393 346 1.1
                                    490
                                            1. 2
                                                  1 4
                                                           6 +9 17 <2
12 74 2 SDL FOB 548 244 2.2
                                    850
                                            1.6
                                                   3. 5
                                                            +14 23 (2
13 77 1 PS D W S O F 218 345
                                   1050
                                            4. 8
                                                            6 +4 10 4
                                                   3. 9
14 77 1 PS D W S O F 214 180 1.2
                                        485
                                             2. 3
                                                      2.7 15 +6 11 4
15 76 1 5 PV D W FT O F 457 338 1 4
                                   2106
                                           4.8 6.5
                                                          33 +4 22
                                   1421 1511 2.9 3.0 4.6 4.9 15 +2 10 2
16 77 1.5 5 D W F O F 497 308 1.6
17 77 1.5 5 D W F O F 345 243 1.4
                                   1350 1269 3.9 3.7 5.6 5.2 22 +1 22
18 77 1 5 D W F O F 214 181 1 2
                                    583 598 2.7 2.8 3.2 3.3 9 +7 21 2
19 76 1 PS D W F O C 252 313 0.8
                                   709 590 2.8 2.7 2 3 2.2 19 +2 22 6
```

```
2818 2115 6.9 5.2 9.8 9.6 41 +6 20 5
20 77 1.5 P5 D L F I F 409 286 1.4
21 77 1.5 5 D W F O F 378 281 1.4
                                     1859 1675 4 9 4 4 6 6 6 0 20 +8 21 2
22 77 1.5 S D W F O F 378 281 1.4
                                     1740 1524 4.6 4.0 5.2 5.4 12 +10 22 2
23 77 1.5 PS D W F O F 276 201 1.4
                                     1160 1239 4. 2 4. 3 5. 8 4. 5 22 +10 15 4
24 77 1.5 S D W F I F 347 251 1.4
                                      938 919 2.7 2.6 3.7 3.7 10 +11 20 0
                                     2180 2180 9.2 9.2 9.6 9.6 41 +12 21 2
25 77 1 5 P5 R W F O C 238 228 1 R
                                     1449 1229 6 1 5 1 6 8 5 7 17 +19 21 6
26 77 1.5 P5 R W F D C 238 228 1.0
                                      670 690 2 1 2 1 2 6 2 7 12 +14 18 2
27 77 1 SOW FOF 327 255 1.3
28 75 1.5 P5 D W 5 I F 366 262 1.4
                                     1585 1446 4.3 4.0 6.0 5.5 20 +18 22 2
29 77 1.5 PS D W FT O F 431 273 1.6
                                      912 910 2.1 2.1 3.3 3.3 3 +18 14 2
30 76 1.5 S D W S F 280 225 1.2
                                      620 MEAN 2.5
                                                     3. 1
31 76 1.5 5 D W S
                   F 342 222 1.5
                                      923 MERN 2.7
                                                      4.2
32 76 1.5 5 D W S F 342 222 1.5
                                     1505 MEAN 4.4
                                                      6.7
33 77 1.5 P5 D W F
                   C 377 298 1.3
                                     1450 1092 3.8 2.9 4.9 3.7 23 +6 20 3 SW
34 77 1.5 PS D W F C 412 315 1.3
                                     1304 1362 3.2 3.3 4.1 4.3 22 +6 20 3 W
                                     1386 1499 3.7 4.0 4.7 5.0 30 +6 20 3 SW
35 77 1.5 P5 D W F C 377 298 1.3
36 77 1 % S D U F D F 378 281 1 4
                                      605 397 1.6 1.1 2.2 1.4 12 0 20
                                                                        4 F
                                      726 559 1.9 1.5 2.6 2.0 09
37 77 1.5 5 D W F O F 378 281 1.4
                                                                  0 20 6 E
38 77 1.5 P5 D C F O F 371 266 1.4 24 1100 MEAN 3.0
                                                    4. 5
                                                             13
39 77  1 P5 0 C F 0 F 256 214 1. 2 19 1025 MERN 4. 0
                                                      4.8
                                                             11
40 77 1.5 PS D C F O F 440 292 1.5 28 1150 MEAN 2.6
                                                      3.9
                                                             17
41 78 1 PS R W S I F 165 150 1.1
                                      548 469 3.3 2.8 3.6 3.1 15 -6 18 2 SW
42 78 1 PS R W S I F 193 167 1.2
                                      598 510 3. 0 2. 6 3. 5 3. 0 05 -6 18 2 SW
43 78 1.5 P5 D W F I F 306 225 1.4
                                     1551 1125 5.1 3.7 6.9 5.0 11 -2 20 4 NE
44 78 1.5 P5 D W F I F 306 225 1.4
                                     2239 2713 7 3 8 9 10 12 27 -2 17 4 NE
                                      956 821 3.5 3.0 4.2 3.6 06 +10 19 6 NE
45 78 2 PS R W F I F 270 226 1.2
46 76 2 SRW FOB 202 222 0.9
                                      593 475 2.9 2 4 2.7 2.1 16 +2 20 0
LUTH LULE I INSTITUTE OF TECHNOLOGY
1 2 3 4 5 6 7 8 9 10 11 12 13 14
                                           15 16 17 18 19 20 21 22 23 24
     1 PS D W S C 280
                                     2595
                                              9.0
                                              5.6
2 67 1 PS D W S
                   C 290
                                     1560
                                                                  +3
3 67 1 PS L W S C 260
                                     4030
                                             15 5
                                                                  +5
 4 67 1 PS L W 5
                                     3430
                   C 260
                                             13. 2
                                                                  +3
575 1 5 D W S B 260
                                     2010
                                              7. 7
                                                                  -2
675 2 SDW S
                    B 335
                                     2349
                                              7. 0
                                                                  +1
                                              6. 4
775 2 5 D W 5
                    8 335
                                     2135
                                                                  +1
 875 2 SOW S
                    8 335
                                     2210
                                              6.6
                                                                  +8
970 1 SDW S
                   C 300
                                      825
                                              2.8
                                                                  +2
10 70 1 5 D W 5 C 300
                                      775
                                              2. 6
   THE SWEDISH NATIONAL AUTHORITY FOR TESTING, INSPECTION AND METROLOGY
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 72 1 PS R W S I F 300 271 1.1 28 1205 1425 4.0 4.8
                                                                  -4 19 0
 2 76 2 PS D L S I C 371 397 0.9 27
                                          550 1.5
                                                                  -1 20
3 76 1.5 P5 D L 5 I F 277 187 1.5 26 880 830 3.2 3.0
                                                                  -2 20
3 76 1.5 PS D L S I F 277 187 1.5 26 1010 985 3.7 3.6
                                                                  -2 20
3 76 1 5 PS D L S I F 277 187 1 5 26 800
                                                                  -2 20
                                            2.9
3 76 1.5 PS D L S I F 277 187 1.5 26 714
                                              2.6
                                                                  -2 20
                                                                       3
 4 77 1.5 P5 L W F 8 F 305 201 1 5 20 1060 817 3.5 2.7
                                                                  -3 21
5 77 1.5 P5 L W F B F 305 201 1.5 20 1130 1040 3.7 3.4
                                                                  +1 20
 6 77 1 5 P5 L W F 8 F 305 201 1 5 20 920 705 3 0 2 3
                                                                  +1 18
 5 77 1.5 PS L W F 8 F 305 201 1.5 20 662 633 2.2 2.1
                                                                  +1 18
 7 77 1.5 PS L W F 8 F 305 201 1.5 20 1235 1070 4.0 3.5
                                                                  +1 19
                                                                        2
 8 77 1.5 PS D V F 8 F 330 232 1.4 28 1530 1450 4.6 4.4
                                                                  -1 18
                                                                        1
9 77 1.5 P5 D V F B F 327 231 1.4 26 1360 1405 4.2 4.3
                                                                  +2 17
                                                                        1
10 77 1 5 PS D V F B F 727 271 1 4 26
11 77 1.5 PS D V F B F 333 232 1.4 28 1410 1290 4.2 3.9
                                                                 +2 17 1
12 77 1.5 PS D V F B F 336 233 1.4 30 1280 1250 3.8 3.7
                                                                  +2 18
                                                                        1
13 77 1.5 PS D V F B F 327 231 1.4 26 1290 1240 3.9 3.8
                                                                  +2 16
13 77 1.5 PS D V F B F 327 231 1.4 26 1010 990 3.1 3.0
                                                                  +2 16
14 77 1.5 PS L W F B F 308
                                    1170 1085 3.8 3.3
                                                                 +14 21
15 77 1.5 PS L W F B F 308
                                      950 720 3.1.2 3
                                                                 +14 21 2
16 77 1.5 P5 L V F B F 390 258 1.5 29 1460 1370 3.7 3.5
                                                                 +15 22
17 77 1.5 PS L V F 8 F 393 260 1.5 30 1410 1360 3.6 3.5
                                                                 +15 18 2
17 77 1.5 PS L V F B F 393 260 1.5 30 1410 1360 3.6 3.5
                                                                 +15 18
                                                                        2
18 76 1.5 PS L V 8 F 312
                                 22 1390 1360 4.5 4.4
                                                                 +16 23 2
                  O B 580
                                         1960
                                                                 +20 19 1
```

```
24 73 1.5 SDW SIF 300
                                  1240 1180 4.1 3 9
                                                            +13 20 1
25 1.5 PS D
                                  1280 1020 4.8 3.8
                                                            +23 23 1
                                  1500 1290 3.9 3.3
                                                            +23 23
     1. 5 PS D
                     387
27 77 1 PS D W F O C 295
                                  1260 1050 4.3 3.6
                                                            +24 23 1
28 74 1 PS D W F B B 420
                                  1340 1170 3.2 2.8
                                                            +20 20
29 77 1 5 D V 5 8 460
                                  1500 1420 3 3 3 1
                                                            +18 26
29 77 1 S D V S 8 450
                                  1060 1100 2 3 2 4
                                                            +18 26
30 68 1 P5 D W 5 8 8 590 319 1.8 24 2020 1850 3.4 3.1
                                                            +15 21 0
31 69 1 5 D L 5 B B 530 256 2 1 21 2300 1880 4 3 3 5
                                                            +17 20
       2 PS R V 0 8 320
                                   820 760 2.6 2.4
                                                            +20 21
32
33 77 1.5 P D W F B F 375
                                  1800 1440 4.8 3.8
                                                            +14 20
34 72 1 P D W S 8 8 488
                                  2358 2000 4.8 4.1
                                                            +16 21 0
35 74 1 PS D W S B B 505
                                  1970 1770 3.9 3.5
                                                            +14 20
36 77 1 PS L V
                  8 525
                                  990 900 1.9 1.7
                                                            +16 19
                                                                  2
37 64 1.5 P L W 5 B B 385 210 1.8 26 2380 2450 6.2 6.4
                                                            +8 21 1
38 49 2 P D W 5 O B 440
                            31 2340 2050 5.3 4.7
                                                            +10 20 0
39 69 1 PS D W S O 0 485 245 2.0 23 2900 2300 6.0 4.7
                                                            +14 20
            L I 320
                                 1050 1100 3.3 3.4
42 77 1. 5 PS D W
                  0 400 374 1.1 29 1070 1020 2.7 2.6
                                                             +1 22
                                                                  1
                   8 426 222 1.9 25 1580 1360 3.7 3.2
43 77 1 PS D
                                                             +1 22
                                                                  1
44 77 1 PS D
                  B 426 222 1. 9 25 1780 1360 4. 2 3. 2
                                                             +1 22 1
     1 PS D
45 77
                   B 426 222 1.9 25 1480 1300 3.5 3.1
                                                             +1 22 1
46 77 1. 5 PS D
                  C 290 340 0.9 20 1760 1600 6.1 5.5
                                                             0 21 4
47 77 1 PS D
                   F 280 234 1. 1 21 1170 980 4. 2 3. 5
                                                             0 20
-4 19
                                                                  1
49 77 1.5 PS D W F B F 378 305 1.2 34 2410 2660 6.4 7.0
                                                             -4 20
50 77 1.5 PS D W F B F 378 305 1.2 34
                                                             -4 21 1
      1 PS D W F B B 394 375 1 1 24 1270 1550 3 1 3 8
                                                             -4 20
                                                                  1
52 77 2 P R W F B F 338 246 1.4 21 740 670 2.2 2.0
                                                             -2 17
      2 P L W F B F 338 246 1 4 21 640 680 1 9 1 8
                                                             -2 18 1
53 77
      2 P L W F B F 290 243 1. 2 35 805 740 2.8 2.6
34 77
                                                             -2 18
33 77
      2 P L W F B F 290 243 1.2 35 660 740 2.3 2.6
                                                             -2 19 1
56 77
      2 P L W F B F 340 281 1. 2 31 1080 1300 3. 2 3. 8
                                                             -2 18
37 77
      2 PS R W F F 295 213 1 4 28 860 1020 2 9 3 5
58 77
      2 PS R W F
                 F 295 213 1.4 28 1430 1450 4.8 4.9
                                                             0 19
59 77 1 P5 R W F F 294 267 1.1 28 870 980 3.0 3.3
                                                             0 20
60 78 2 PLW FIF 340 281 1.2 31 900 930 2.6 2.9
                                                             +1 18
      2 PLW FIF 340 281 1.2 31 906 950 2.7 2.8
                                                             +1 20
                                                                   3
62 78 1.5 PLW FIF 346 244 1.4 32 530 560 1.5 1.6
                                                             +1 15
63 78 1.5 PLW FIF 346 244 1.4 32 510 590 1.5 1 7
                                                             +1 18
BPA BYOGPRODUKTION AB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 76 1 5 5 D W F F 449
                                 1630
 2 76 1.5 5 D W F
                  F 440
                                  1410
                                           3. 2
 3 76 1.5 5 D W F F 440
                                  1450
                                           3.3
 4 76 1.5 S D W F
                 F 440
                                  1500
                                           3.4
 576 1 SDW F
                  F 259
                                  1919
                                           3.9
 676 1 SDW F F 259
                                  1399
                                           5.4
                  F 259
 776 1 SDW F
                                  1166
                                           4.5
 876 1 SDW F F 259
                                  1554
                                           6. 0
 9 76 1.5 5 D W F
                                     1672 4.4
                  F 380
10 76 1 5 D W F
                  F 278
                                   584
                                           2. 1
11 76 1 SDW F
                                   778
                  F 278
                                           2.8
12 76 1 5 D W F
                  F 353
                                  1694
                                           48
13 76 1 5 D W F
                  F 757
                                  1730
                                           49
14 76 1 5 D W F
                  F 353
                                  1624
                                           4. 6
15 76 1 SDW F F 366
                                  1647
16 76 1
         SDW F
                   F 366
                                  1720
                                           4. ?
17 76 1 5 D W F
                  F 366
                                  1720
                                           4. 7
18 76 1 5 D W F
                  F 286
                                   944
                                           3.3
19 76 1 5 D W F
                  F 286
                                   887
                                           3.1
20 76 1.5 S D W F
                  F 450
                                  1215
                                           2.7
21 76 1.5 5 D W F
                  F 355
                                  994
                                           2. 8
22 76 1.5 5 D W F
                  F 470
                                  1692
                                           3.6
23 76 1 SDW F
                  F 148
                                   533
                                           3.6
24 76 1.5 5 D W F F 213
                                  1683
                                           7.9
25 76 1.5 5 D W F F 213
                                  1598
                                           7. 5
```

```
26 76 2 5 D W F F 244
                                   1220
                                            5. 0
27 76 2 5 D W F
                                            5. 2
                  F 244
                                   1269
                   F 396
28 76 1.5 5 D W F
                                   1346
                                            3.4
29 76 1.5 5 D W F
                   F 396
                                   1183
                                            3.0
30 76 1 5 D W F
                                    496
                   F 146
                                            3. 4
31 76 2 5 D W F
                  F 230
                                   1244
                                            5.4
32 76 2 S D W F
                                   1405
                                            6. 1.
                   F 230
33 76 1.5 5 D W F
                   F 342
                                   1163
                                            3.4
34 76 1.5 S D W F
                                   1167
                                            7 4
                  F 342
35 76 1.5 5 D W F
                   F 348
                                   1044
                                            3.0
36 76 1.5 5 D W F
                  F 348
                                   1148
                                            3. 3
37 76 1.5 5 D W F
                   F 348
                                    340
                                            2. 7
38 76 1.3 5 D W F
                   F 456
                                   1140
                                            2.5
39 76 1.5 5 D W F
                   F 456
                                   1322
                                            2.9
40 76 1 PS D W F
                   F 281
                                    731
                                            2.6
41 76 1.5 PS D W F
                                    563
                   F 331
                                             1. 7
42 76 1.5 PS D W F
                   F 331
                                    596
                                            1.8
43 76 1.5 PS D W F
                                    570
                   F 331
                                           1.6
44 76 1 PS D W F
                   F 200
                                    788
                                            19
45 76 1.5 PS D W F
                   F 386
                                   1119
                                            2.9
46 76 1 5 PS D W F
                   F 386
                                   1235
                                            3. 2
47 76 1. 5 PS D W F
                   F 386
                                    926
                                            2.4
                                        846 3.0
959 3.4
48 76 1.5 P5 D W F
                   F 282
49 76 1.5 PS D W F
                   F 282
                                        959
                                               3.4
50 76 1.5 P5 D W F
                  F 373
                                       1194
                                               3. 2
31 76 1.5 PS D W F
                   F 373
                                        1231
                                               3. 3
52 76 1. 3 PS D W F
                   F 331
                                        927
                                               2.8
53 76 1.5 PS D W F
                   F 331
                                        927
                                               2.8
                   F 386
34 76 1. 3 PS D W F
                                        988
                                                2. 3
55 76 1 PS D W F
                   F 230
                                    391
                                         1.7
36 76 1 PS D W F
                   F 230
                                    414
                                           1.8
57 76 1 PS D W F
                   F 230
                                    391
                                            1. 7
38 76 1 PS D W F
                   F 230
                                    487
                                            21
39 76 1 3 PS D W F
                  F 374
                                    748
                                            2.0
60 76 1.3 PS D W F
                   F 374
                                    785
                                            2. 1
61 76 1.3 PS D W F
                   F 288
                                    576
                                            2.0
62 76 1.5 PS D W F
                   F 288
                                    605
                                            2.1
63 76 2 PS D W F
                   8 319
                                    479
                                            1.5
64 76 2 PS D W F
                                    446
                   8 319
                                            1.4
63 76 2 PS D W F
                                    603
                   B 402
                                            1.5
66 76 2 PS D W F 8 402
                                    563
                                            1.4
67 76 1.3 5 R W F
                   F 223
                                   1160
                                            5. 2
68 76 1 5 R W F F 190
                                    589
                                            3. 1
69 76 1 SRW F
                   F 190
                                    760
                                            4. 0
70 76 1.5 SRW F
                   F 254
                                    711
71 76 1.5 SRW F
                                    731
                   F 203
                                            3.6
72 76 1.5 SRW F
                   F 203
                                    932
                                            4. 1.
73 76 1 SRW F
                                    451
                  F 110
                                            4.1
                   F 281
74 76 1 5 PS R W F
                                    618
                                            2.2
75 76 1 5 P5 R W F
                  F 281
                                    646
                                            23
76 76 1.5 P5 R W F
                   F 281
                                    618
                                            2. 2
77 76 2 PS R W F
                   F 404
                                    606
                                            1. 5
78 76 2 PSRW F
                   F 404
                                    60€
                                            1.5
79 77 1.5 P5 D W F F 331
                                    430 MEAN 1.3
80 77 2 PS S W F
81 77 2 PS S W F
                   F 359
                                   1005 MEAN 2 8
                  F 359
                                   1113 MEAN 3.1
82 77 1.5 SRW F F 274
                                   1480 MERN 5.4
83 77 1.5 SRW F
                   F 239
                                   1243 MEAN 5.2
84 77 1.5 5 R W F F 274
                                   1370 MEAN 5.0
83 ?7 2 S D W F
                   F 255
                                    893 MERN 3.5
86 77 2 S D W F F 203
                                    670 MEAN 3.3
AB SKINSKA CEMENTGJUTERIET
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 1 77 1.5 S L W
                   F 764
                                       MEAN 2.7
                   F 364
27715 SLW
                                        MERN 5.0
3 77 1.5 SLW
                   F 297
                                        MEAN 3.8
 4 77 1.5 5 D W
                   F 283
                                        MEAN 3 1
```

```
577 2 5 R W
                                         MEAN 2.5
                    C 315
 6 77
       2 5 R W
                    C 315
                                         MERN 2.2
 7 77
       2 5 R W
                    F 315
                                         MEAN 4.3
       2 S R W
                    F 315
                                         MEAN 4.6
 9 77 1.5 5 D W
                    F 327
                                         MEAN 6.7
10 77 1.5 5 D W
                    F 327
                                         MEAN 5. 2
11 77 2 5 D V
12 77 2 5 D V
                    F 372
                                         MEAN 2.9
                    F 372
                                         MEAN 2. B
13 77 1.3 S D W
                    F 379
                                         MEAN 6.1
14 77 1.5 5 D W
                    F 379
                                         MEAN 6.3
15 77 1.5 5 D W
                    F 300
                                         MEAN 6.1
16 77 1 5 0 W
                    F 376
                                         MEAN 2.4
17 77 1. 5 S D W
                    F 412
                                         MERN 4. 5
18 77 1.5 S D W
                    F 258
                                         MEAN 3.4
19 77 1.5 5 D W
                    F 412
                                         MERN 4.9
20 77 1.5 SSV
                                         MEAN 4.4
                    B 361
21 77 1 5 5 5 V
                    B 361
                                         MEAN 5. 2
22 77 1.5 5 5 V
                    8 361
                                         MEAN 4.3
23 77 1.5 5 5 V
                    B 361
                                         MEAN 4.4
24 77 2 5 D W
                    F 281
                                         MEAN 3.3
25 77
       2 5 D W
                    F 281
                                         MEAN 3.1
26 77 2 5 D W
                    F 281
                                         MEAN 3.6
27 ?7
       2 5 D W
                                         MEAN 4.1
                    F 281
28 76 2 5 L W
                    F 329
                                         MERN 4 0
29 77 1.5 S L W
                    F 317
                                         MEAN 2.7
30 77 1. 5 S L W
                    F 317
                                         MEAN 2.9
31 77 1.3 SLW
                    F 317
                                         MEAN 2.8
32 77 1.5 5 L W
                    F 222
                                         MEAN 3.8
33 77 1.5 5 L W
                    F 222
                                         MEAN 3.6
34 77 1.5 5 L W
                    F 222
                                         MEAN 4.2
35 77 1 PS D W
                    F 311
                                         MEAN 2.1
36 75 1.5 S S V
                    8 361
                                         MEAN 5.1
37 78 1 5 R W
                                         MERN 2.3
                    F 141
                    F 215
38 78 2 5 R W
                                         MEAN 1.8
39 78
       2 5 R W
                    F 215
                                         MEAN 1.8
40 78 2 5 R W
                    F 239
                                         MEAN 1.5
41 78
       2 S R W
                    F 239
                                         MEAN 1.6
42 78 2 5 R W
                    F 239
                                         MEAN 1 9
43 78 1 PS D C
                    F 331
                                         MEAN 2.5
                    F 317
44 78 1.5 5 L W
                                         MEAN 2.5
45 78 1.5 5 L W
                    F 317
                                         MEAN 3 0
46 78 2 5 R W
                    F 322
                                         MEAN 3.9
47 78
      2 5 R W
                    F 322
                                         MEAN 3.3
48 78
       2 5 R W
                    F 239
                                         MERN 1.9
49 78 2 5 R W
                    F 215
                                         MEAN 1.6
50 78 1.5 5 R W
                    F 319
                                         MEAN 2.3
51 78 1.5 5 R W
                    F 319
                                         MEAN 3.3
                                         MEAN 2.9
32 78 1.5 5 R W
                    F 319
                    F 324
53 78 1.5 5 D W
                                         MEAN 3.3
34 78 1.5 S D W
                    F 324
                                         MEAN 2.4
55 78 1.5 5 D W
                    F 318
                                         MEAN 3.9
56 78 1. 5 S D W
                    F 376
                                         MEAN 4.1
      2 5 R W
                    F 397
                                         MEAN 4.4
58 78 2 5 R W
                    F 397
                                         MEAN 3.2
59 78 2 S R W
                    F 797
                                         MEAN ? A
60 78 1.5 5 D W
                    F 294
                                         MEAN 4.8
61 78 1.5 S D W
                    F 294
                                         MEAN 5.0
62 78 1.5 S D W
                    F 338
                                         MEAN 4.7
63 78 1.3 5 D W
                    F 341
                                         MERN 2.0
64 78 1.5 S D W
                    F 341
                                         MERN 2.1
                    F 322
65 78 2 5 L W
                                         MEAN 2.6
65 78
      2 5 D W
                    F 468
                                         MEAN 4. 6
67 78 1 5 L W
                    F 301
                                         MERN 4.5
68 78 1 5 L W
                    F 301
                                         MERN 4.4
69 78 1. 3 P5 D W
                    F 393
                                         MEAN 3.1
70 78 1.5 PS D W
                    F 393
                                         MEAN 3 2
71 77 1.3 5 L W
                    F 317
                                         MEAN 2.5
```

```
72 77 1.5 SLW
                                        MERN 2.8
                   F 317
73 77 1.5 5 L W
                   F 317
                                        MEAN 2 1
                                        MEAN 2.7
74 77 1.3 5 L W
                   F 317
75 77 1.5 5 L W
                   F 317
                                        MEAN 2.5
76 77 1.5 5 L W
                   F 317
                                        MEAN 2.5
                                        MEAN 2.7
77 77 1.5 SLV
                   F 403
78 78 1.5 5 D W
                    F 357
                                        MEAN 1 3
79 78 2 S R W
80 78 2 S R W
                   F 191
                                        MEAN 3 6
                   F 247
                                        MEAN 3 4
81 78 1.5 PS D W
                    F 371
                                        MERN 3.0
82 78 1.5 PS D W
                   F 371
                                        MERN 3.2
83 78 1 5 5 W
                    F 340
                                        MEAN 1.3
                   F 319
                                        MEAN 1.1
84 78 2 5 5 V
YTONG AB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
                                    490 1.2 1.4 6 +9 17 (2
2 76 2 5 D L F I C 393 346 1.1
3 76 1 5 PS D V F I F 293
                                    880 830 3.0 2.8
                                                             -2 20 3
4 74 2 PS D L 5 O B 348 244 2.2
                                    850 1. 6 3. 5
                                                              +14 23 (2
5 76 2 5 PV D W F O B 614
                                   1850 1850 3.0 3.0
6 77 1 PS R L F F 307 262 1.2
                                    520 555 1.7 1.8 2.0 2.1
6 77 1 PS R L F F 307 262 1.2
                                    500 475 1.6 1.6 1.9 1.8
7 77 1.5 PS R V S I F 296
                                    870 870 2.9 2.9
8 75 2 5 D V 5 B 522
                                   1678 1698 3 2 3 2
                                   1740 1880 2 6 2 8
9 75 2.5 S D V S 8 670
10 75 2 PS D L S I S 459
                                    595 595 1. 3 1. 3
11 77 1 5 P5 R V 5 I F 296
                                    755 750 2.6 2.5
12 77 2 PS D V S O B 449
                                    800 750 1.8 1.7
13 75 1.5 5 D W S O F 362
                                   1100 1140 3.0 3.2
14 75 1.5 5 D W 5 O F 376
                                   1220 1140 3 2 3 0
15 76 1 S D W S O F 248
                                   1140 1080 3.8 3.6
                                    600 700 1.4 1.7
16 77 2 PS D L F I B 418
17 77 2 PS D W
                  8 375
                                    940 860 2.4 2.3
18 75 1 S D V F I F 221
                                    510 455 2.3 2.0
19 77
      2 SRV SOC 336
                                   1000 1040 3.0 3.1
20 77 2 SRV SOC 336
                                    910 970 2.7 2.9
21 76 1.5 SRW S F 282
                                    770 820 2.7 2.9
22 76 1.5 5 R W S F 285
                                    880 970 3.1 3.4
                                   1100 1170 28 29
24 75 1.5 5 D W 5 O F 400
25 77 2 SDV SOF 314
                                    780 820 2 5 2 6
25 77 2 S D V S O F 314
                                    520 540 1.7 1.7
26 77 2 PS D L F I F 533
                                    400 435 0.8 0.9
27 77 1.5 PS R V S I F 296
                                    740 690 2.5 2.3
28 77 2.3 PS R V F O F 461
                                    930 870 2.0 1.9
29 77  2 P5 D V F I 5 509 334 1.5 35 1360 1420 2.6 2.8 4.1 4.3
                                                               -6 21 10 NE
30 78 1.5 5 R V F I F 302 204 1.5 16 730 750 2.4 2.5 3.6 3.7
                                                              -10 15 2 SW
31 78 1 P5 D L F I F 281 226 1 2 23 470 450 1 7 1 6 2 1 2 0
32 78 2 5 5 L F I 8 569 308 1.9 35 775 850 1.4 1.5 2.5 2.8
                                                               +3 20 2 NW
33 77 2 PS D V F O F 466 287 1.6 33 1020 1025 2.2 2.2 3.6 3.6
                                                               +5 20 3 NW
30 COMPLETED
                                    590 530 2.0 1.8 2.9 2.6
                                                              +20 20
34 78 1.5 PS D V F O F 275 211 1.3
                                    940 870 3.4 3.2 4.5 4.1
                                                              +10 15
35 78 1.5 5 0 W F O F 356 254 1.4 25 1450 1450 4.1 4.1 5.7 5.7
                                                              +2 13
36 78 1.5 5 D W F O F 356 254 1 4 25 1560 1560 4 4 4 4 6 1 6 1
                                                               +2 10
37 78  2 PS S W F 8 8 354 171 2.1 23 545 540 1.5 1.5 3 2 3.2
                                                               +5 10 3 E
38 78 2 5 5 L F I 8 502 282 1 8 33 850 820 1 7 1 6 3 0 2 9
39 78 2 PS 5 V F 8 8 419 260 1.6 21 660 680 1.6 1.6 2.5 2.6
40 78 2 PS D L F I F 330 248 1 3 24 420 410 1 3 1 2 1 7 1 7
                                                              +18 18 1
41 78 1 5 5 D W F O F 348 229 1 5 1000 1000 2 9 2 9 4 4 4 4
                                                              +18 20 2
42 78 1.5 5 D W F O F 420 314 1.3 25 1300 1300 3.1 3.1 4.1 4.1
                                                              +18 20 2
43 78 2 P5 5 L F I B 535 313 1.7 32 390 430 0.7 0.8 1.3 1.4
                                                              +20 20 2
44 77 2 PS 0 V F I B 595 298 2.8 27 1600 1650 2.7 2.8 5.4 5.5
                                                              +20 20
                                                                    2
45 78 1.5 5 0 W X 0 F 267 275 1.0 18 640 560 2.4 2.1 2.3 2 0
                                                              +20 20
                                                                    3
46 78 1.5 S D W X O F 358 307 1.2 23 639 595 1.8 1.7 2.1 1.9
                                                              +20 20
BLOCK OF FLATS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 63
                                                    17
         5
                                                                     2
         5 8 5
2 49
                                            1.6
                                                                     1
```

```
5 8 5
3 40
                                               2.8
          1
 4 40
                                               1. 5
 5 40
                                               3.4
                                                                         1
                                               1.2
6 40
          5
7 40
             ₿
                 5
                                               1.4
8 40
          5 8 5
9 40
          5
                                               1. 2
             8 5
                                                                         1
2
2
3
         PS.
10
              C
                                               11
         P5
11
             C
                                               1.1
         PS
S
12
              С
                                               9.8
13
              M
                                               0.8
                                                                         3
14
          5
              M
                                               0.7
                                                                         3
15
          5
              М
                                               9. 7
16
          5
             M
                                               0.5
          5 M
                                               0.8
   THE SWEDISH NATIONAL AUTHORITY FOR TESTING, INSPECTION AND METROLOGY
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 69 6 P5 C F I F 190 485 470 2 6 2 5 +15 18 0
1 69 6 PS C F I F 190
2 69 6 PS C F I F 190
                                      510 370 2.7 1 9
                                                                 +15 18 0
3 69 6 PS C F I F 190
                                      450 430 2.4 2.3
                                                                 +15 18 0
 4 69
      4 PS C F I F 205
                                      220 610 1.1 3.0
                                                                 +15 20 0
                       153
                                     1300 1230 8 5 8 0
                                                                 +15 20 0
BPA BYĞQPRODUKTIÒN AB
22
         PS C
                       257
                                               1. 5
23
         PS C
                       257
                                               1.1
         PS
24
             C
                       257
                                               08
25
      2
                       238
                                               0.3
26
      2
                       238
                                               0.4
HSB:S RIKSF\RBUND
1
         P5
             M
                       208
                                            70
                                                   0.3
2
         P5
             M
                       208
                                            62
                                                 9. 3
3
         PS
             M
                       197
                                           275
                                                  14
 4
         PS
             M
                       197
                                           195
                                                  1. 0
5
         P5
             M
                       197
                                           240
                                                   1. 2
         PS
             M
 6
                       197
                                           270
 7
         P5
                       197
                                                   1. 2
 8
         PS
                       175
                                           165
                                                   0.9
9
         PS
                       197
                                           150
                                                   0.8
10
          5
             M
                       197
                                           250
                                                   1.3
11
          5
                       197
             М
                                           245
                                                   1. 2
12
          5 M
                       197
                                           230
                                                   1. 2
TYRENS
1
                       386 250 1 5
                                     1100
                                               2. 9
265 2 5 D W
                     8 577 591 1.0
                                      2600
                                               4. 5
                                                       4.4
3 7 1.5 S D W S C 892 676 1.3
                                     5000
                                               5. 6
                                                      7. 4
4 53 3 PS D W S B 400 288 1.4
5 65 2 S D W S B 400 400 1 0
                                     1325
                                               3. 3
                                                       4. 6
                                     1360
                                               3.9
                                                       3. 9
INDUSTRIAL HALLS
YTONG AB
1 73 1 P5 L F O F 734
                                     2600 2600 3.6 3.6
EOF: 518
0:5
```

# Appendix 2

Standard form for recording data

| PROTOCOL<br>AIRTIGHTNESS, WHOLE BUILDING                                              | Sketch of plot and building. Show North.                       |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Testing company, group etc. (or equivalent).                                          |                                                                |  |  |
| Performed by:                                                                         | Date: Item no.                                                 |  |  |
|                                                                                       | (1–2)                                                          |  |  |
| Test ordered by:                                                                      | Building address                                               |  |  |
| Year of erection: (4–5) No. of storeys:                                               | (7–9)                                                          |  |  |
| Production method: (11–12) P = prefabricated, P                                       | V = volume elements, PS = surface elements, $S$ = built on $s$ |  |  |
| Building type: $\Box$ (14) D = detached, R = row house, L                             | = linked etc. S = split level                                  |  |  |
| Material: (16) W = wood, L = lightweight concrete, C V = lightweight concrete + wood. | = concrete, B = brick, M = concrete structure + curtain wa     |  |  |
| Ventilation system: $(18-19)$ S = natural ventilation X = FT + heat exchange          |                                                                |  |  |
| Window openings: (21) O = outwards, I = inwards, E                                    | 3 = both.                                                      |  |  |
| Foundations: $\square$ (23) B = basement, C = crawl space, F =                        | = floor slabon ground.                                         |  |  |
| Volume: (25–27) m³. Envelope area:                                                    | (29–31) m <sup>2</sup> .                                       |  |  |
| Volume/envelope area: (33–35). Area of w                                              | rindows & doors: (37–38) m <sup>2</sup> .                      |  |  |
| Air leakage: Internal overpressure, 50 Pa                                             | (40–43) m³/h                                                   |  |  |
| Internal underpressure, 50 Pa                                                         | (45-48) m <sup>3</sup> /h                                      |  |  |
| Leakage/volume: Internal overpressure, 50 Pa                                          | (50–52) m³/m³ · h                                              |  |  |
| Internal underpressure, 50 Pa                                                         | (54−56) m³/m³ · h                                              |  |  |
| Leakage/area: Internal overpressure, 50 Pa                                            | (58–60) m <sup>3</sup> /m <sup>2</sup> · h                     |  |  |
| Internal underpressure, 50 Pa                                                         | (62-64) m <sup>3</sup> /m <sup>2</sup> · h                     |  |  |
| Ventilation rate with sealed ventilation system x 100                                 | (66–67) air changes/h Notes: (1–81), Card 2                    |  |  |
| Weather: Outdoor temperature: (69-71) °C                                              |                                                                |  |  |
| Indoor temperature: (73–74) °C                                                        |                                                                |  |  |
| Wind velocity: (76–77) m/s                                                            |                                                                |  |  |
| Wind direction: (79–80) Co.                                                           | mpass direction                                                |  |  |

This form should be used when submitting airtightness measurements to the computer file. Copies can be ordered from: Byggnadsteknik I, LTH, Box 725, S-220 07 Lund, Sweden.

# Literature

Axén, B & Pettersson, B, 1977, Undersökning av byggnaders isoler- och täthetsutföranden genom termografering. (Investigation of the Insulation Quality and Tightness of Buildings by Means of Thermography.) (Swedish Council for Building Research.) Report R54:1977. Stockholm.

Axén, B & Pettersson, B, 1979, Termografering. Kontroll av byggnaders värmeisolering och täthet. (Thermography: an investigation of the Thermal Insulation and Tightness of Buildings.) (Swedish Council for Building Research.) T1:1979. Stockholm.

Bargetzi, S et al, 1977, Messung des natürlichen Luftwechsels in nichtklimatisierten Wohnräumen. (Measurement of Natural Air Change in Non-mechanically-ventilated Enclosures.) Schweizerische Bauzeitung, April 1977, Volume 14, pp. 202–206, Zürich.

Blom, G, 1966, Statistisk teori och metodik för FEMV. (Statistical Theory and Methods of FEMV.) (Studentlitteratur.) Lund.

Harrje, D et al, 1975, Automated Instrumentation for Air Infiltration Measurements in Buildings. (The Center for Environmental Studies, Engineering Quadrangle, Princeton University.) Report No. 13. Princeton, USA.

Hitchin, E R & Wilson, C B, 1967, A Review of Experimental Techniques for the Investigation of Natural Ventilation in Buildings. (Pergamon Press.) Building Science, Volume 2, 1967, pp. 59–82. Oxford, GB.

Honma, H, 1975, *Ventilation of Dwellings and its Disturbances.* (Department of Heating and Ventilating, Royal Institute of Technology, Stockholm.) Technical Bulletin No. 63, 1975:2, Volume 3. Stockholm.

Lindh et al, 1976, Byggnaders lufttäthet. (The Airtightness of Buildings.) (The Tyrén Group of Companies.) 1976-10-29. Stockholm.

Nevander, L E & Samuelson, I, 1976, *Elementär Byggnads-fysik*. (*Elementary Building Physics*.) Department of Building Technology, Lund Institute of Technology. Compendium of building technology. Lund.

Svensson, A, 1977, Metoder för mätning av luftflöden i ventilationskanaler. (Methods of Measuring Airflows in Ventilation Ducts.) (Swedish Council for Building Research.) Bulletin B4:1977. Stockholm.

# **Summary**

#### MEASUREMENTS AND MEASUREMENT METHODS

The two methods which are at present available for measuring the airtightness of entire buildings are the pressure method and the tracer gas method. The latter method enables the building ventilation to be measured under ambient weather conditions. The principle of the pressure method is the creation of a pressure difference, using a powerful fan, across the building envelope (walls, roof, floor structure etc.), accompanied by measurement of the resulting flow through the fan at a constant pressure difference.

#### TRACER GAS METHOD

The tracer gas method allows the ventilation of a bounded volume, such as an individual single-family house, an apartment or an office, to be measured. The ventilation rate is generally dependent upon the ambient weather conditions, so the results from tracer gas measurements can vary widely from occasion to occasion with weather and wind.

The main elements used in tracer gas measurement are a suitable tracer gas and an instrument (a gas analyser) which can measure the concentration of tracer gas in the volume under investigation. Time must also be measured. Depending upon the detailed arrangement, measurements can be made either as decreasing gas concentration, constant gas concentration or constant gas emission measurements.

# Decreasing gas concentration

This method of tracer gas measurement is that which is commonly used in Sweden.

Measurements are made by releasing a small quantity of gas inside the building concerned, so that the concentration can be measured with a gas analyser. When (hopefully) the concentration has become uniform throughout the test volume, (which can be accelerated by 'mixing' the air, e.g. by using

fibre-board sheets as paddles or by the use of small propeller fans), measurements are made of how the concentration of the tracer gas subsequently falls off with time. The ventilation rate of the test volume can then be calculated from the following expression.

$$n = \frac{1}{t} \cdot \ln \frac{c_0}{c_t}$$
 [1]

where:

n = the ventilation rate, air changes/h

t = the time from when the gas concentration =  $c_0$ , h

 $c_0$  = the gas concentration at the start of timing

 $c_t$  = the gas concentration at time t

### Constant gas concentration

This variant is suitable for continuous measurement of the ventilation rate of an enclosed volume. Gas emission is controlled so that a constant gas concentration is maintained at the measuring point. This can be done with some form of automatic control gear. In the ideal case, i.e. complete mixing, it is possible to calculate the ventilation rate directly from the known rate of discharge of the tracer gas.

## Constant gas emission

This variant is very similar to the previous variant. It is thus also suitable for continuous measurement. The discharge of tracer gas is constant during the measurement sequence, and the gas concentration which can be read off from the gas analyser is a measure of the ventilation rate. A reduced ventilation rate gives an increased gas concentration and vice-versa.

### Measuring equipment and methods of measuring

Certain equipment is common to all the variants mentioned: a suitable tracer gas, a gas analyser for the gas chosen and some means of measuring time.

The gas analysers which are commonly used — at least in Sweden — work with nitrous oxide,  $N_2$ 0 (laughing gas), in concentrations of up to 0.1%. For an individual single-family house with a volume of 300 m³ this means that

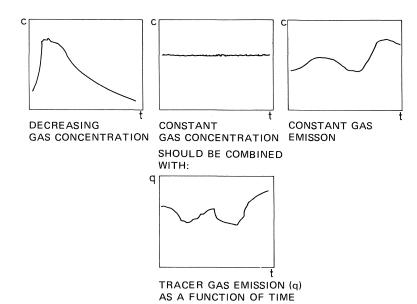



FIG. 1. Typical traces from pen recorders for different measurement methods.

 $0.3~\rm m^3$ , or about  $0.5~\rm kg$ , of  $N_2~\rm O$  will be consumed. Laughing gas is sold in cylinders of various sizes, and that which is probably most convenient, bearing in mind its capacity and ease of handling, is the 7.5 kg cylinder. In September 1978 the cost of such a cylinder was about Skr. 200. The density of the gas is  $1.7~\rm kg/m^3$  at NTP, i.e. near that of air.

All that is really essential for time measurement is an ordinary clock or watch, although some form of recorder is strongly recommended. This plots the gas concentration while the paper is fed out at a known speed. This applies particularly to the constant gas concentration and constant gas emission measurement variants, although even when using the decreasing gas concentration method the use of a recorder does save work. Typical traces are shown in Figure 1.

When making measurements by the decreasing gas concentration method, the gas concentration normally falls off with an exponential characteristic, which means that if the values of time and gas concentration are plotted on a linear/logarithmic graph, a straight line should be produced. The slope of this line is the same as the measured air change rate n.

Statistical analysis enables the number of measurements of ln c which are required for a given accuracy of n to be determined. A calculation of this kind is described in the paper.

#### THE PRESSURE METHOD

The pressure method for measuring the tightness of a whole building, as developed by the Division of Building Technology of Lund Institute of Technology and others, is nowadays quite well established and the Swedish National Authority for Testing, Inspection and Meteorology has in its Method Description SP 1977:1 published notes on its area of application, principle, test equipment, test conditions and methods of working, together with comments on the method. Figure 2 shows an example of the pressure testing equipment.

When testing, corresponding values of the interior/exterior pressure difference and air flow are plotted, both for internal overpressure and internal underpressure. Tightness is normally specified in terms of the average value of air flows at a standard pressure of 50 Pa, divided by the building volume (air changes/h). This quantity is normally indicated as n<sub>50</sub>.

The method is quick, and the results are easy to interpret. It produces a quantitative measure of the building tightness which can be used in several contexts, e.g. manufacturing quality control, comparison between buildings and standards requirements. However, it should be noted that the method gives only a measure of the tightness of all the envelope surfaces together, and the results cannot be used directly to calculate the building's air change rate under natural conditions. The natural pressure differences which occur in a building are of different magnitudes in different parts of the building. The method gives no indication of the size of the individual leaks or of where they are situated.

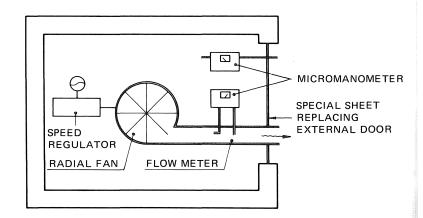



FIG. 2. Measuring equipment: schematic diagram.

However, by using an infra-red camera (thermograph camera) and/or anemometer during the internal underpressure part of the test, it is possible to localize the leaks and to evaluate their size.

### Accuracy of measurement

The final result from a pressure method leakage test is the air leakage rate per unit of volume with a given pressure difference across the building envelope. There are thus two components to be measured: air flow and pressure difference.

A complete error analysis, as worked in the paper, indicates that the final probable error in determining the air flow at 50 Pa, and when using liquid manometers, would be about 8% while, if electric manometers with recorders were used, the probable error would be about 4%.

### Measurement precision

The paper also describes the sensitivity of the method to the effects of external weather influences (wind and temperature). It can be noted that, when measuring with internal overpressure, a 10% effect upon the flow is caused by a wind velocity of 8 m/s while, when measuring with internal underpressure, an effect of the same magnitude requires a wind velocity of 10 m/s.

The effect of indoor and outdoor temperature differences is small and can often be ignored, except for high rise buildings.

#### Measurement results

The Division of Building Technology of Lund Institute of Technology at present administers a computer file of measured results obtained from pressure method and/or tracer gas method measurements on buildings. At the end of June 1978 the file contained data from 384 individual single-family houses, 43 apartments and 1 industrial building. Newly-constructed buildings dominate the material, and very few older buildings have been tested. Data is welcome from new sources, and suitable forms for recording measurement data can be obtained from Johnny Kronvall, Byggnadsteknik I, LTH, Box 725, S-220 07 LUND, SWEDEN.

Table 1 is a summary of the results obtained up to June 1978.

| Category                                                                                  | No. | n <sub>50</sub><br>Average<br>value | Air changes/h<br>Standard<br>deviation |
|-------------------------------------------------------------------------------------------|-----|-------------------------------------|----------------------------------------|
| Detached single-family                                                                    |     |                                     |                                        |
| houses and linked houses                                                                  |     |                                     |                                        |
| made of wood                                                                              | 205 | 3.66                                | 1.24                                   |
| single-storey                                                                             | 70  | 3.79                                | 1.32                                   |
| 1 1/2-storey                                                                              | 135 | 3.52                                | 1.18                                   |
| Detached single-family houses of lightweight concrete                                     | 12  | 1.98                                | 1.46                                   |
| Detached single-family houses<br>and linked houses of light-<br>weight concrete & wood,   |     |                                     |                                        |
| single-storey                                                                             | 9   | 2.23                                | 0.67                                   |
| 1 1/2-storey                                                                              | 17  | 3.74                                | 0.76                                   |
| Row houses of wood                                                                        | 49  | 3.14                                | 1.36                                   |
| single-storey                                                                             | 33  | 2.89                                | 1.02                                   |
| 1 1/2-storey                                                                              | 16  | 3.65                                | 1.56                                   |
| Row houses with party walls and floor structures of concrete. Curtain walls with studding |     |                                     |                                        |
| frame.                                                                                    | 5   | 1.72                                | 0.18                                   |
| Block of flats of concrete and                                                            | 00  | 0.00                                | 0.04                                   |
| with curtain walls                                                                        | 23  | 0.96                                | 0.34                                   |

Table 1. Summary of results of pressure testing. The data relates to houses built after 1976-01-01.

## Distribution:

ISBN 91-540-3201-6 Swedish Council for Building Research, Stockholm, Sweden Svensk Byggtjänst Box 7853 S-103 99 Stockholm, Sweden

Art.nr. 6702008

Price: 45 Skr + moms

Swedish Council for Building Research