

Window Retrofitting

Substantial amounts of recoverable energy are lost through windows. The authors conclude that simple, well-sealed panels can reduce heat loss through steel-sash windows by a 4-factor when infiltration is not present and by an 8- factor when it is.

N.E. HAGER, JR., W. H. PHILLIPS

TREATMENT of window area in industrial, commercial, and institutional buildings represents a vast opportunity to reduce heating costs and energy consumption. As detailed in Table 1, annual heat loss through windows accounts for about 5% of the U.S. energy consumption or about one and one-half times the energy derived from oil transported by the Alaskan pipeline. Americans pay over \$30 billion annually to compensate for this loss.

A relatively simple window treatment to eliminate a substantial portion of this loss involves tightly sealed, interior-applied insulating panels. The purpose of this paper is to show how the performance of several such systems was predicted and verified by using standard test methods.

WINDOW AND PANELS

The prime window studied here was a 3.8×6.8 -ft (1.2×2.1 m) steel-sash architectural projected window commonly used in schools, industry, and monumental buildings. The total crack length around the two operable ventilators was 22.7 ft (6.9 m). The window was glazed with single-strength glass and putty. No weatherstripping or weep holes were present. Cam-type locks were used to secure the ventilators.

The authors are with the Research and Development Center of the Armstrong Cork Company, Lancaster, PA. Insulating panels were mounted in the same opening as the window, as shown in Fig. 1; the panels were spaced 2.75 in. (70 mm) from the indoor surface of the window. Panels were mounted by a combination of aluminum-framing members and plasticretaining strips which effected an apparently tight seal between adjoining panels and between the panels and opening.

The three types of panels investigated had physical and geometric properties as described in Table 2.

HEAT TRANSFER

In accordance with standard texts, the rate of transfer of heat through a window system in the absence of air infiltration is calculated from the equation

$$Q = UA\Delta T$$
 (1)

where

 $A = area(ft^2)$

Q = rate of heat transfer Btuh

U = overall "air-to-air" coefficient of heat transfer (Btu/h · ft² · F)

.

and

ΔT = indoor-outdoor temperature difference (F).

For the composite system of layers comprising the window system sketched in Fig. 1, the overall heattransfer coefficient is obtained 1 om the equation

Table 1	
Magnitude of Energy Loss Throug	h
Windows (July 1979 data)	

Item			Quan	References	
U.S. National Energy Consumption (N.E.C.)		80	× 10 ¹⁵	Btu/yr	4,5
Energy used for space heating in U.S. (20% of N.E.C.)		16	× 10 ¹⁵	Btu/yr	6,7
Energy lost through windows (25% of space heating loss = 5% of N.E.C.)	1	4 .0	× 10 ¹⁵	Btu/yr	6
Energy content of barrel of crude oil		5.8	× 10 ⁶	Btu/bbl	8
Crude oil equivalent of energy lost through windows in U.S.		690	× 10 ⁶	bbl/yr	calculated from above
Current crude oil delivery rate by Alaskan pipeline (approx.)		420	× 10 ⁶	bbl/yr	9
Annual cost of energy lost through windows in U.S. (@ \$7.65/10 ⁶ Btu)*		30.7	× 10 ⁹	US \$/yr	calculated from above

*Based on use of heating oil costing 75c/gal., containing 140,000 Btu/gal., and burned at 70% efficiency. In most of the U.S. energy costs less with gas and more with electricity.

Fig. 1. Schematic view of window with panel installed (not drawn to scale).

 $U = 1/R_{O} + R_{G} + R_{S} + R_{P} + R_{I}) \quad (2)$

where the R values are unit-area thermal resistances of the respective layers in $h \cdot ft^2 \cdot F/Btu$; as indicated in Fig. 1, the subscripts O, G, S, P, and I designate, respectively, the outdoor air film, the glass, the air space between the glass and the panel, the panel, and the indoor air film.

If one also includes infiltration effects, the total rate of heat flow Q_T is calculated from the equation

where $Q_T = UA\Delta T + \pi c Q_A \Delta T$ (3)

 π = density of air (lb/ft³)

c = specific heat of air (Btu/lb · F)

 $Q_A = rate of air infiltration (ft³/h)$

and other symbols are defined as before.

If Eq 3 is rewritten in the form

 $Q_{T} = (U + \pi c Q_{A}/A) A \Delta T \qquad (4)$

it is noted that the equation has the same form as Eq 1, except that the overall heat-transfer coefficient U is now replaced by the quantity $U + \pi c Q_A / A$. The latter quantity serves as an effective overall coefficient U_E , which includes both the usual coefficient U an additional infiltration component U₁. This relationship is expressed by the equation

$$U_{\rm E} = U + U_{\rm I}, \tag{5}$$

where the infiltration component is given by the equation

$$U_{I} = \pi c Q_{A} / A$$
 (6)
OVERALL COEFFICIENT

According to handbook data, when indoor and outdoor temperatures are, respectively, 70 F (21°C) and 0 F (-18°C), and when outdoor wind velocity is 15 mph, the unit-area thermal resistance $R_{\rm I}$ for the air film inside the window is 0.68 h \cdot ft² \cdot F/Btu, and values for $R_{\rm S}$, $R_{\rm G}$, and $R_{\rm O}$ are, respectively, about 1.00, 0.02, and 0.17 h \cdot ft² \cdot F/Btu.¹ Substitution into Eq 2 gives the following result.

$$U = 1/(1.87 + R_{\rm P})$$
(7)

Values for R_P taken from Table 2 are substituted into Eq 7 to obtain theoretical U-values for each of the three panel types. The theoretical results are compared in Table 3 with experimental results obtained for the same panel types as described elsewhere.²

INFILTRATION COMPONENT

Air-flow rates through the window were measured with a static-pressure difference of 0.112 in. H_2O between opposite sides of the window.³ The measurements were then repeated for each of the three panel types in place as in Fig. 1. Results are shown in Table 4. By inserting the tabulated values of Q_A into Eq 6, the infiltration component U_1 is calculated; results are shown in the last column of the table.

		Descrip	Table 2 otion of Sam	ple Panels		
Designation	Substrate	Interior Face†	Apparent Density (Ib/ft ³)	Composite Thickness (in.)	Thermal Conductance* (Btu/h · ft ² · F)	R _P Unit-Area Thermal Resistance [#] (h · ft² · F/Btu)
Туре I	High-density mineral-wool	8-mm vinyl	23.0	0.585	0.763	1.31
Туре II	High-density mineral-wool board	8-mm vinyl; 4.7% of area consisted of holes punched for acoustical- absorption purpose	21.7 s	0.586	0.725	1.38
Туре III	Medium-density mineral-wool board; 6% of area consisted of holes punched for acoustical- absorption purpos	0.105-in. needle- punched acrylic fabric; approximate density 9.5 lb/ft ³ ses	16.0	0.721	0.508	1.97
†Opposite sur *Measured by	face on all panel types : ASTM C 518, thermal-tr	spray-coated with flat-wi ansmission measureme	nite paint. nt method, at 70	F (21 °C). #Com	monly called "R-value	,,,
	Overall Heat-Trans Window Insulat (infiltr	Table 3 sfer Coefficients fo ed with Various Pa ation not included)	r Steel-Sash nel Types		OVERALL C A theoretical	OEFFICIENT
••••••••••••••••••••••••••••••••••••••			U(Btu/h f	t ² · F)	coefficient U the theoretica	I _E is obtained by add al U-value from Table 3
Panel Type	R _P (h ⋅ ft² ⋅ F	/Btu) The	orv	Experiment*	the calculate	d value for U ₁ from Ta
1	1.31	03	15	0.34	5 to obtain	the theoretical value
i i	1.38	0.3	08	0.33	shown in the	next-to-last column.
H ₂ O (no air in	filtration), and 15-mp Calculation of Infi Pressure Tes	Table 4 Table 4 Itration Componen sts for Steel-Sash V vith Various Panel	t from Static Vindow	-	outdoor wine outdoor p correspondin obtaining the	d velocity and inde pressure differen g to those assumed calculated results. ²
	insulated v	Q _A [†]	i ypes	U, *	REFERENCI	ES
Panel Type	an a	(ft ³ /h)	B	u/h · ft² · F)	1 America	n Society of Heat
None		2730#	· · · · ·	1.90	Refrigerating	and Air-Condition
1		213		0.148	Engineers, Inc	., ASHRAE Handbook of
iii -		130		0.091	2. "Therma	I Transmittance Test Re
[†] Performed in a window = 0.112 [•] U ₁ calculated U ₁ = 0.000697 C #Test value of with present cra	accordance with ASTM 2 in. H ₂ O correspondin from Eq 6, using $\pi = 1$ λ_{A} . 110 ft ³ /hr · ft given in ack length = 22.7 ft, Q _A	4 E 283, with static-pres g to a wind velocity of 15 0.075 lb/ft ³ , c = 0.240 E 1960 ASHRAE Guide, p = 22.7 × 110 = 2500 ft ³	sure difference mph. ³ Itu/Ib · F, and <i>I</i> 151, for same t	across the test A = 25.8 ft ² , so ype of window;	for Armstrong tural Testing, I 16, 1979). 3. "Air Infil strong Cork ((December 27	Cork Company," Archi nc., Report ATI-465, (Jani tration Test Report for A Company," Report ATI- 1978)
E Sas	ffective Overall H h Window With an Compa	Table 5 eat-Transfer Coeffi Id Without Panel In Ired with Experime	cient of Stee sulation; The nt	il- eory	4. Federal I Executive Sun look,'' U.S. C (1976), p. 4. 5. Lincoln,	Energy Administration, "1 nmary, National Energy Government Printing Of G.A. Science, Vol. 80, (/
	U	U	(Btu/h	U _E · ft ² · F)	13, 1973) p. 15 6. Berman	6. , S.M., and S. D. Silvers
Panel Type	(Btu/h ft ² F)	(Btu/h · ft ² · F)	Theory	Experiment*	"Energy Cons	servation and Window
None	1.90	1.15†	3.05	(—)#	National Tech	nical Information Service
1	0.148	0.315	0.463	0.49	243-117, (Janu	uary 1975).
· · · · · · · · · · · · · · · · · · ·	0.204	0.260	0.351	0.34	7. Stanford	Research Institute, '
[†] Calculated fro U in absence of * Performed in	om Eq 2, taking R _S and f infiltration. ¹	$R_{\rm P} = 0$; this value agre	es with the han	dbook value for	States," Menk 8. "Energy	o Park CA (November 197 Management in the Fer

with ASTM 5 with warm-side tem Performed in erature

reformed in accordance with ASTMC 236 with warm-side temperature = 70 F, cold-side temperature = 0 F, and static-pressure difference across test window = 0.112 in. H₂O, corresponding to 15-mph dynamic wind conditions.² #Value could not be obtained for 0.112-in.-H₂O pressure difference because test-chamber equipment could not handle excessive infiltration; value obtained for 0.03-in.-H₂O pressure difference was 2.41 Btu/h \cdot ft² \cdot F.

ve ng to ble ble es

ws ent ith orсе in

ng, ing un-

port eciary

rm-63,

976 Dutice,

pril

ein, Sysrce, PB-

Patited).

eral Government, Annual Report to the Presi-dent of the United States, Fiscal Year 1977," U.S. Department of Energy, (August 1978), p. vii.

9. Journal of Commerce, (April 17, 1978) p. 32.