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Reughness Element Géometry Required

~for Wind Tunnel Simulations of the
Atmospheric Wind

Using a data correlation for the wall stress assoctated with very rough boundaries
and a semi-empirical calculation method, the shape of boundary layers in, exact
equilibrium with the roughness beneath them is calculated. A wide range of roughness
geomelries (two- and three-dimensional elements) 1s included by the use of equwalent
surfaces of equal drag per uni! area. Results can be summarized in a smgle Jfigure.
which relates the shape factor of the boundary layer (ils exponent if it has a power law
velocily profile) to the height of the roughness elements and their spacing, New dala
for one turbulent boundnry layer developing over a long feich of umform roughness 1s
presented. Wall shear stress, measured directly from a drag plate is combined with
boundary layer inlegral properties to show that the shear stress correlation adopled 18
reasogably accurate and that the boundary layer is close to'equilibrium after passing
over a slreamwise roughness fetch equal to about 350 limes the roughner element
An example is given of the way in which roughness geometry may be chosen
from calculated equilibrium results, for one particular boundary layer thu:kness and

a ghape useful for simwulating strong almospheric winds in a wmd tumwl

)i
ﬂ height.

1 Introd uction

The neutral atmosphenc boundary layds can be simulated in a
wind tunnel By creating a thick turbulent boundary layer on
one gurface of the tunnel (usually the floor) so that measurements
can’be made in the turbulent region with medels of appropriate
seale. Upstream of the model, which may inchide scaled sections
of an urban area for example, the thick turbulent boundary layer
is developed by combinations of spires, wedges or trips together
with roughness elements distributed on the wall. Various tech-

niques have been used (see discussions by Davenport and.
Isyumov [1),! Standen [2], and Counilian [3}) but in each case the

wall roughness geometry used was apparently chosen by trial
. ..and error and not because.it produced s predicfable wall shear
.-stress or velocity distribution. This work prevides 2 relatica be-
tween roughness geometry and velocity profile shape which should
.allow & more rational choice of the roughness tc be made for any

.desired profile oréffective wall shear stress. ’
.. The equilibrium of boundary layers used for atmospheric simu-
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lations is often mentioned and is usually implied, although the
term equilibrium is seldom defined precisely. What is usually.
meant by equilibrium is that boundary layer characteristics such
as velocity profile shape, nondimensional spectra, etc., are not
changing significantly in the streamwise direction. A more
exact form of equilibrium is defined by the term * ‘sélf-preserva-
tion”’ used by Townsend [4]. Self pr%ervati“on describes & tur-
bulent shear flow whose turbulence is in exact' dynamic equilib-
rium so that the mean distributions of the turbulence, nondi-
menswnahzed by & single velocity and length'scale, do not change
at all in the streamwise direction. Such exac} equilibrium is
strictly possible for rough wall boundary layers in zero pressure -
gradient only when certain rather artificial conditions are sat-
isfied: either the roughness elements are high oomparéd to their
spacing (which must be regular)’p'roducmg.t;he “d-type'’ rough-
ness described by Perry, et al. (5] or else the roughness height
and spacmg must vary directly with streamwise distance so that
each remains a constant fraction of the boundary layer height,
as descrived by Rotta [6]. 5 [ =

Some anaxytlcal results implied by exact self-prwervatmn are
presented in Section 4,0f this paper. /

A restricted region of a boundary layer with zero prwsure
gradient and constant roughness height and spacing is in. approxx-
maié equ'hbrmm provided the start of the roughness or any
change in roug nness is far from the regon considered. Mellor
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and Gibson (7] have concluded that turbulent zero-pressure-
gradient boundary lavers on smooth walls closely conform to the
requirements for exact equilibrium over limited streamwise
lengths, and it secins reasonable to ussume that the same is tiue
for rough-wall boundary layers. A discussion of this point is in-
cluded in Section 6 of this paper.

In order to estimate the roughness wh)Lh is required to preduce
certain -boundary layer characteristics, even for approximate
equilibrium, it is necessary to formulate s'§me relationship for the
wall shear stress in terms of other boundary layer properties. The
streamwise development of the flow can then be predicted by
any one of a variety of well known semi-empirical methods.
These two steps are outlined in the next two sections, followed
by a presentation of the exact equilibrium 1esults implied by the
simple method adopted. Some new experimental evidence on
rough wall boundary layers is then presented and the approach
to equilibrium is disctissed. Finally a procedure is suggested for
estimating the roughness required to produce a desired boundary
layer shape needed for atmospheric simulation, and an example
is given of this procedure.

2 . A Wall Stress Relationship for Rough Walls

The flow around individual roughness elements at high Reyn-
olds numbers is not yet predictable in detail from the equations
of motion. Previous empmcal work has related the wall shear
stress to some jntegral boundary layer thickness, usml]y.'jtha,
displacement thickness (8*), and this empirical approach’ js.
followed here. FPow

A rather extensive review of the results obtained using squsré,
two-dimensional bar roughness elements has been made by
Dvorak (8] who related the bar height (k) and the bar spacing
(Ae) to the effective wall shear stress () and displacement thick-
ness 6*, using the form proposed by Clauser [9], as follows:

Ui 1 (Us®
— = — ] A-C. 1
u ~ K" {U,k} 4 -
whe D o [1#
‘here: ~ — = {— :
. U] pU\7 %
J v
wmiu = free stream velocity
A = constant = 4.8
K = constant = 0.41

and C is a constant depending on A. and k as follows:
¢

— 5.95 [0.48 lnk)\" = 1} (2)

This correlation is valid for (A./k) > 5 and for (U.k/v) > 70,
both satisfied in most atmospheric simulations of high winds. |
Few natural rough boundaries can be approximated by = pat-

{ =

tern of square bars normal to the flow and it is necessary to gen- ,

eralize these results to three-dimensional roughhess elements of
various shapes. This is done here by defining an effective spacing
between two-dimensional bars which produces surface drag per
unit area (or average shear stress) equal to that of the more gen-
eral roughness pattern. 9

The drag of a unit width of a single two-dxmensnonal square
bar (subscript b) is:

;
= Cpys EpU’k

where k is the height of the bar and U the average velocity ap-

proaching it. The drag per unit area is then D', = D,/\, where
Ac is the spacing between the bars in the flow direction.

Similarly, the average drag of a unit area of general three-di-
mensional elements each of similar shape and each having a drag
coefficient Cpp based on its frontal ares, is

1 =
Cop 3 pUlAr

Dle = “5mnoRR

3

. where (AR); and (XR)«} ar¢ spacings between element centers in

the lateral and the longitudinal directions respectively and Ar is
cne element’s frontal area. Equating D'z to D' for equal U:

Cpk _ Cpp Ar
A (AR} (AR)

This can be rewritten as:

N _ (Co)y Ay
£~ (Cols Ar

= (AR) (AR): is ihe effective plan area associated

(3)

where A,

. with each element The ratio (A./k) is ndw the equivalent s acmg

«~okBwo-dimensional bars of height & whxa’l\p:od
equal to the general roughness whose height is also k.
The drag co-efficients (Cp), and (Cp)p vary with varying up-
stream bourdary layers, but we assume that the ratio of one to
the other will remain constant for identical upstream condition

stress

* and identical heights of bar and roughness element. We further

assume that the mean characteristics of the turbulent boundary
layer, *and its turbulent properties as well, are dependent only
on the¥alue of the effective wall shiear stress, so that two rough-
ness patterns which produce identical local wall stress will produce
identical boundary layers. These assumptions remain to be
tested in detail but they produce plausible and tentatively useful
relationshifss.

We must now detegmine the ratio of (Cp), to (Cp)g measured
with identical element heights and identical upstream boundary
layers. If the upstream boundary layer'is considerably smaller
than the height k, the drag co-efficient of a surface-mcunted

- square plate normal to the flow is about 1.15, and that of a two-

dimensional surface-mounted plate infinitely wide normal to the

“

Nomenclature -
Ap ‘= froptal area of one roughness ele- ©° K = von Karman's constant, taken to Z distance normal to wall
ment ' be equal to 0.41 - L 8 = rominal boundery layer thickness;
Ap = plan aiza associated with one k = roughness element height- related to 6* and n by équation
roughness element n = shape factor related to H by equa- (11) &
A =.4.8, constant associated with tion (13); equal to the o;:;:onent o* displacement ghickness
equation (1) of a.power law \veloc&y- profilé 0 momenium thickness
= function of roughness geometry, if equation (7) is va.h Ao effective streamwise spacing of two
equatior (2) - U = mean velocity at height 2 dimensional bars; see also equa~
H = §*/6, shape factor for boundary =~ U, = free stream velocity (constg.nt) tions (3) and (£)
layer U, = [10/p)'" shear velocity p = density of fluid (constant)
H, = shape factor related tc H by equa- z = streamwise distdnce, measured To average shear stresg on roughened

>

tion (6)
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flow is about 1.20. A cube in the same circumstances has a drag
co-eflicient of about 1.17 and a long square bar normal to the
flow, four times as wide as it is high, has a value of 1.2. These
results, all taken from the compilation of reference [10], suggest
that the ratio (Cp),/(Cp)r is close to unity for some shapes of
roughness element. In. particular, this approximation appears
valid for parallelepiped-shaped elements having one face normal
to the flow, depth less than or equal to height and width greater
than about 0.4 times the height [see reference [10]]. For other
shapes of roughness element, adrag coefficients must be estimated
or measured for use in equation (3).

Since the rectangular elements described in the previous para-
graph imply a drag co-efficient ratio of approximately one, equa-
tion (3) for these elements becomes:

Mo dr )
k Ap

Equations (3) or (4) allow the shear stress correlation of Dvorak
to be used for a wide variety of two- and three-dimensional
roughness shapes.

3 A Calculation Method

Having used integral properties in the shear stress correlation
of the previous section, it is now sensible to adopt an integral
calculation method to predict the streamwise development of
the boundary layer. )

As pointed out by Dvorak [8), an integral auxilliary equation
which is based on the entrainment of fluid through the outer
edge of the turbulent region is preferable to those based on in-
tegral properties of shear stress or kinetic energy through the
layer. The latter methods may be particularly sensitive to the
roughness geometry through the uncertain conditions very close
to the individual roughness elements. For this reason, we follow
Dvorak in using Head’s empirical correlations. Head's method
is described by Dvorak and in reference [11]. Applied to zero-
pressure-gradient boundary layers, it becomes:

d o*
Iz (6Hy) = Fy [—0—] (5)

where F; is a known empirical function of the ratio (6*/6), 6 is
the usual momentum thickness and H, is a shape factor related
empirically to (6*/60) [see equation (6)]. For the range of (§*/6)
expected in atmospheric simulations, F1(6*/8) can be represented,
following Dvorak, as:

* .
Fy (%) = exp [—3.512 — 0.617 ln (H; — 3)]

where: H; = 3.3 4 exp [0.4667 — 2.722 In (H — 0.6798)] (6)
N 8#
d = —
an H ]

It is not necessary to assume a form for the velocity profile
to use this method, but if the simple power law is used for other
purposes, it can be related to H in the usual way: if

u [z}
o~ [a ] @
the exponent n is equal to (H — 1)/2.
As in all integral methods, the momentum integral equation:
dg U,
i [ f/T] ®)
ap
is also used. Thus, equation (1) describing the shear stress, and

equations (5) and (8) describing the development, can be used
to predict the streamwise variation of the three boundary layer
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properties U,, 8 and 8*. Equations (1) and (2), relating ({/-/U1)
to 6* for given k and A, are shown graphically in Fig. 1. The dif-
ferential equations (5) and (8) must be solved numerically for
particular cases of interest, unless the boundary layer is in exact
equilibrium. In this case, t’l%iﬂ‘erential ‘equations become
arithmetic as shown in the nex®%ection.

4 Results for Exact Equilibrium
ES

If the velociEy" profile shape is not changing at all, i.e. 6*/6
and H, are constant, the equations of the previous section adopt
even simpler forms. Itjs useful to demonstrate this, since zero-
pressure—gradient.boulq&ary layers developing over.a constant
roughness geometry may conform approximately to this equilib-
rium condition.

If (6*/8) = constant, then H, = constant from equation (6).
Equation (5) then shows that df/dz is a constant, so that the
boundary layer grows linéarly. Equation (8) shows that U,/U,
= constant in any one such equilibrium case, which is strictly
possible from equations (1) and (2) only when \,/k and 6*/k
remain constant, as already mentioned. By combining equations
(8) and (5) to elimjnate 8, we may relate H to U,/U, as follows:

l:g_r]’ = Fy(H)/H, = function of (H) )

where Fi and H, are related to B4n equation (6). The shape
factor H can be related to n which can in turn be interpreted as
the exponent of the power iaw profile if equation (7) is adopted.
Notice that n can be regarded as a shape factor even if equation
(7) is not an accurate description of the velocity profile however.

The shear stress ratio (U,/U1) occuring in (9) can be replaced
by suitable functions of §*/& and A./k as shown in Fig. 1 or equa-
tions (1) and (2) so that (9) can be written as:

H-1 U, ’
]

5% N\,
= fn [‘k“: —k‘] (10)
Since,
o* 8 n
e k_l:n 1 ] 5
~
N

§*
k

Fig.1 Wall shear stress expected for various roughness geomstries.
Dvorak’s correlation (8) _ ; present data O; O'Laughlin
from Wooding, et al. [14], A./k = 64,@: Antonia snd Luxtom, {12],
Ak =4, @. : .
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can be used to define a nominal boundary layer thickness §, equal
to the actual boundary layer thickness if a power profile exists,
equation (10) can be written as:

n = fn [iy, )\f] (12)

.

as plotted in Fig. 2. Notice that this relationship is valid only for
equilibrium situations, since the arithmetic relationship of equa-
tion (9) is applicable only for exact equilibrium.

The ratio [Ud*/(U,6)] is related to the defect law, as pointed
out by Clauser [9] (see also reference [11]). He found that both
rough and smooth wall boundary layers have the same value of
[U18*/(U.0)] in zero-pressure-gradient, implying a truly universal
defect law. The present equilibrium calculations do not give a
precisely constant value of this parameter over the entire range
of A./k and n considered. Calculated values lie between 3.80
and 3.99, compared to Clauser’s value of 3.60 for boundary
layers developing over constant roughness. These values will be
discussed in Section 6.

5 Present Measurements

To compare with the calculated results of Figs. 1 and 2, par-
ticularly for three-dimensional roughness elements, measurements
were made in a boundary layer developing over a long fetch' of
uniformly roughened wall.

The U.B.C. wind tunnel used for these experiments is an open-
circuit, blower type and has a test section 24.4 m in length, 2.44
m wide, and initially 1.5 m in height. The test section roof is
adjusted to maintain ambient room pressure throughout the test
section length, Mean velocity measurements were made using
a linearized hot wire anemometer.

The floor roughness was created by fastening thin vertical
strips of aluminum to the wall at regular intervals, Each strip
presented a frontal area of 38.1 mm high and 19 mm wide to the
flow. The strips were placed in lines across the tunnel, the strips
being 152.4mm apart in each line and the lines being 152.4 mm
apart using a staggered patiern.

The resultant value of Ap/Ar for equation (3) is 32 and, using
the assumption_that the drag coefficients in this equation are
equal, the value of A./k obtained from equation (4) is also 32.

A small trip was used at the beginning of the roughness fetch
to reduce the importance of any length of smooth surface up-
stream of the roughened wall and to reduce the importance of
the initial roughness elements. (See a discussion of this point by
Antonia and Luxton, referjance {12}). The trip used was a wedge

bd

ol ] e

T T T

Fig. 2 Effect of roughness geometry on profile shape. Exact equili-
brium conditions, : ; present data, ©

i
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38.1 mm thick and with 203 mm chord placed across the entire
tunnel so that it created a gradual two-dimensional ramp and
then a backward facing step 38.1 mni high.

Wall shear stress was measured directly from a drag plate, a
large isolated section of roughened floor fastened to an accurate
wind tunnel balance. The drag force on this section could then be
measured directly and the average force per unit area deduced.
This drag plate was 0.91 m wide and approximately 2 m long,
so that reasonably large drag values were obtained. Drag read-
ings were found to be insensitive to the size of the small gap
around the drag plate but were sensitive to tunnel pressure
gradient. The latter was set as carefully as possible to zerofor
each test. Drag readings were found to be proportional to the
square of the free stream velocity, as expected, indicating that
no Reynolds number effects were present. The drag plate meas-
urements and the boundary layer parameters §, &% 0 and n
deduced from the measured velocity profiles are discussed here,
since they are directly comparable to the correlations of previous
sections. Measured values of §* and € and values of n and é
deduced from them are given in Table 1.

Tablel Measured boundaAry layer properties

=8, b U Ud
E E E E U: v Ud
140.8 2.17 1.28 0.348 8.38 16.48  4.27
268.8 2.83 1.75 0.309 11.93 17.97 4.9
3328 3.25 2.06 0.289 14.44 1841 3.14
3968 3.51 2.27 0.273 16.49 18.74 3.99
492'8  4.08 2.67 0.264 19.73 18.98  3.92
NOTES .
1) k=11/2in. (38.1 mm)y b

2) The boundary layer thitknesses §* and @ were obtained by
integration from mesasured velocity profiles; § and n were
then deduced from 6* and 6. .

3) U, was found from force measprements on the drag plate.

4) Roughness Reynolds numl:i.:ltl Uik/v, was approximately
3 X 104

The values of 8* and @ were obtained by integration directly
from the measured velocity profiles. Values of H are equal to
the ratio (6*/8) [see equation (6)] and n may be calculated from:

H—-1

6= =g (13)
The quantity n is used here simply as a shape factor, related to
H through equation (13). In fact, the velocity distributions were
not particularly well described by a relationship of the form of
equation (7), so that the more Iaborious but precise approach
described above was necessary. The nominal boundary layer
thickness 8 was then found from equation (11). Values of § as
caleulated were close to the values of § which might have been
chosen from the velocity profiles themselves. As is well known,
the definition of § directly from the measure velocity profiles is
somewhat arbitrary, and has been avoided through the present
procedure. ’

For experimental convenience, measurgments with differeat
lengths of roughness fetch were made, not by moving the drag
plate from one place to another, but by adding or subtracting
roughness sections upstream of the fixed point of measurement.
Thus, the measurements do not relate precisely to a single bound-
ary layer, since upstream of each fetch of roughness (z), thereisa
variable length of smooth floor equal to the tunnel length minus
z. Perhaps for this reason, the measured valuec of 8 were slightly
but consistently layger than those obtained by use of the two-
dimensional momefitum equation [equation (8)] together with .
measured values of shear stress. A difference of 11 percent was
found between the two values of ¢ at the marimur fetch of -
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roughness %hen measured values of § at- the shortest roughness
fetch were used as the starting condition for the integration of
equation (8).

The experimental uncertainty of the data is estimated as fol-
lows: U,/U,, #+ 3 percent; 6*/k, -+ 2 percent; §/k + 2 percent;
n (based on uncertainties in 6* and 4), + 4 percent; 6/k (based
on uncertainties in 8* and n), + 6 percent. Uncertainties in z
and k are negligible.

.

6 Discussion of Experimental Results

The measured values of §*/%, 8/, U1/U, and n are plotted in
Figs. 1 and 2.-

The calculated curves of Fig. 1 do not assume an equilibrium
condition, but merely represent the shear stress correlation of
Dvorak [8]. The measured values in this figure agree with the
trends of the data and indicate that the effective value of \./k for
the present data is about 30, which is close to the value expected
from the geometrical arrangement as calculated from equation
(4) (\/k = 32). Thus, we have some confidence in the shear
stress correlation of Dvorak and in the present extension of it
to three-dimensional roughness elements.

A comparison with the data of two other experiments is made
in Fig. 1: that of O’Laughlin, reported by Wooding, et al. [14],
and that of Antonia and Luxton [12]. The data of O’Laughlin
was obtained in an air duct 0.11 m by 0.46 m in cross-section and
7.31 m long. Cubes 4.8 mm on a side covered one of the 0.46 m
walls of the duct and shaar stress was measured directly using a
force plate. The closest cube spacing used by O’'Laughlin pro-
vided a ratio of A./k, in present notation, of 64 and one result,
inferred from reference 14, is plotted in Fig. 1. Agreement is
not good in this case, perhaps because of the rather small duct
size used by O’ Laughlin.

Antonia and Luxton studied & boundary layer developing over
square bars placed normal to the flow such that X./k = 4. For
large z/k, (z/k > 250) H became constant and then decreased
with increasing z, from which the authors assumed that an
equilibrium condition had been reached. The data quoted here

.is for z/k = 372. For A./k = 4, it is likely that the bars are so
close together that mutual sheltering takes place. This is
anticipated by Dvorak’s results [8] and by the limitation A./&
> 5 placed on equation (2). We expect, therefore that the noz-
dimensional shear stress (U,/U;) would be lower than, but close
to, that calculated for A\,/k = 5. The data from Antonia and
Luxton’s report [12], ploited in Fig. 1, confirms this expectation.

The data from the present experiments plotted in Fig. 2 do
not all show good agreement with the plotted curves which were
calculated using the assumption of equilibrium. As is clearly
seen from the figure, the measured values do approach the ex-

pected equilibrium, and are quite well given by the appropriate .

equilibrium curve (A./k = 30) for the two smallest values of n
(i.e., the two largest values of z/k). We therefore conclude that
a roughness fetch of approximately 350 % is required to reach
equilibrium, at least for the upstream ccndmons present in this
experiment.

Another indication of the present boundary layer’s approach
to the calculated equilibrium condition is apparent in the values
of the defect law integral parameter, U\d*/(U,38), discussed in
Section 4. Values of this ratio, deduced from measured shear
and n, are given in Table 1 for the present case, and range from
4.27 at the first data point (z/k ~ 141) to 3.92 at the last data
point (z =~ 493). The equilibrium value of the ratio, as found
from Head’s method and the assumption of equilibrium is 3.99
for A./k = 30 and n == 0.26, showing that the present boundary
layer becomes very close to the equilibrium condition predicted
for it.

From this limited comparison of anticipated and measured
results, we conclude that Dvorak’s correlation of shear stress with

integral boundary lsS'er properties and roughness geometry is
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useful in predicting rough-wall boundary layer characteristics
and that a boundary layer developing over constant wall rough-
ness can approach equilibrium after a rather long (z/4 < 350 in
this case) fetch of roughness. The fetch required will certainly .
vary with the roughness used and the initial conditions imposed,
but is not always as large as suggested by Counihan [13] (z/k
~ 1,000) on other grounds.

7 Estimating Roughness for Use in Atmosphernc
Simulations

The roughness required to generate a velocity profile of a
given shape with a boundary layer of a given depth can be
estimated from the equilibrium results described in Section 4.
Great accuracy will not be obtained, for the degree of equilibrium
reached in any situation depends on the upstream history of the
layer and in particular the fetch used and the trip used (if any).
First estimates are possible however, as shown in the following
paragraphs.

For example, if a boundary layer is required for simulations of
a suburban wind at o scale of 1:400, then a boundary layer of
about 0.9 m thick is required with a shape given by n = 0.28. If
the defect law integral parameter U,0*/(U.8) is about 4 for a
boundary layer developing over uniform roughness, as found in
the tests described in Section 5, then, from equstion (11), 6*/5
is about 0.22 and U, /U, is therefore about 18. Also, the nominal
value of 6* is about 0.2 m.

Appropriate combinations of roughness, height and densxty
may now be chosen from Fig. 1, since 8* and U,/U, are known.
If 25 mm roughness elements are used, then §*/k = 8.0 and for
U,/U; = 1/18 = 0.055, the effective value of \./k is about 14
from Fig. 1. This means that roughness elements with square
frontal projections 25 mm square would [from equation (4)] have -
to be placed on approximately 95 mm centers to provide the
correct roughness on the floor. Alternatively, if square elements
40 mm high and 40 mm wide are used, a similar procedure sug-
gests that they should be placed on approximately 175 mam
centers.

If the local effective wall shear stress determines the mean
characteristics of an equilibrium boundary layer and its impor-
tant turbulent properties as well (as already assumed in Section
2), then both of the roughness element geometries deacribed will
produce identical boundary layers once equilibrium is reached.
The important questiou of which flow would reach equilibrium
more quickly requir:s further investigation and would depend on
the initial conditions used in each case.

When exact equilibrium is assumed, as in the present example,
predictions can be made directly from Fig. 2. For the required
§ and 7, combinations of spacing (density) and height can be
selected from the figure and give the same results as those cal-
culated in the previous paragraph.

The possibility of using graded roughness, closer spacing or
greater height at the start, is an obvious possibility. As an ex-
tension of this idea, very large initial roughness elements in the
from of spires or wedges have been used to develop the boundary
layer (reference [2] or [3]) with much smaller but uniform rough-
ness being used downstream. The likelihood of the bouadary
layer being close to equilibrium seems somewhat remote in these
cases however, unless a very long fetch of roughness is used down-
stream of the spires. In Counihan’s simulation ol the urban
boundary layer using wedges (reference [3]), the integral param-
eter U16*/(U,8) at the point where equilibrium is assumed has a
value of over 4.50 whereas present calculations suggest that a

‘value closer to 4.00 would reprasent equilibrium. More work

needs to be done in this ares, both to assess the degree of equilib-
rium present downstream of various spires or graded roughness

“elements and to assess the importance of equilibrium for t.he

testing being done.
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CALL FOR PAPERS

SYMPOSIUM ON FLUID TRANSIENTS
AND ACOUSTICS IN THE POWER INDUSTRY

American Society of Mechanical Engineers (ASME)
1978 Winter Annual Meeting

ASME'’s Fluids Engineering Division is sponsoring a symposium on Fluid ‘Transierits and
Acoustics in the Power Industry at the 1978 Winter Annual Meeting in San Francisce, California,

December 10-15, 1978. Papers are requested in (bv$ not limited to) the following areas:

com-

pressible and incompressible unsteady flows; thermofluia transients; multi-phase flow transients;
transients in hydraulic machinery; modeling of devices for surge suppression; transients in rup-
turing lines; column separation; passive acoustic diagnosis; acoustics of cavitation; ultrasonic
detection and monitoring; plant noise control; component sound transmission; pump noise;
noise generation mechanisms; background noise; pipe noise; and valve noise.

Program Format

One to two days of paper presentations are planned. The symposium will commence with a
session of papers broadly covering fluid transients and acoustics as related to the power industry.
The remaining sessions will be devoted to symposium papers on more specialized topics.

Deadlines

Those wishing to participate should prepare 1,000 word abstracts for submission by ﬁebruary 1,
1978. Abstracts ir: the area of fluid transients should be sent to Constantine Papadakis, Bechtel
Inc., P. O. Box 1000, Ann Arbor, Michigan 48106, tel. (313)994-7179; and those in acoustics to
Henry Scarton, Mechanical Engineering Department, Rensselaer Polytechnic Institute, Troy,

New York 12181, tel. (518)270-6334.

Selection of papers will be made by February 28, 1978.

Completed papers should be submitted by May 31, 1978 on m!thor-prepared mats which will be

sent to each author at the time of acceptance.

Publication

Preprinting of the symposium papers on the ASME author-prepared mats will not impair
later consideration for publication in Transactions of ASME,

Journal of Fluids Engineering
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