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Using a data' correlation for the wall stress associated with very rough boundaries 
and a semi-empirical calculation method, the shape of boundary layers in exact 
equilibrium with the roughness beneath them is calculated. A wide range of rouphness 
geometries (two- and three-dimensional elements) is included by the use of eq1jivalent 
sur/aces of equal drag per unit area. Results can be summarized ~n a sing/4 figure 
which relates the shape factor of the boundary layer (its exponent if it has a p~er law 
velocity profile) .to the height of the roughness elements and their spacing. Mew data 
for one turbulent boundn,ry layer developing over a long fetch of uniform roughness is 
presented, Wall shear stress, measured directly from a drag plate is combi,ned with 
boundary layer integral properties to show ihat the sMar stress correlation a}lopted is 
reasOttably accurate and lha,t the boundary layer is close to'equilibrium aft$- passing 
over a sireamwise roughness fetch equal to about 350 times the roughiuds element 
height. An example is given of the way in which roughness geometryma~ be chosen 
from calculated equilibrium results, for one particular boundary layer thif:kne.ss and 
a shape useful for sir.tUlating strong atmospheriC winds in a wind tunnel. 

1 IntroductiO:l , 
The neutral atmospheric boundary la~' can be simulated in a 

wind tunnel 9Y creating a thick turbulent boundary layer on 
one ~prface of the tunnel (usually the floor) so that measurements 
can "be made in the turbulent region witli IllDdels of appropriate 
scale. Upstream of the model, which may inchlde scaled sections 
of an urban area for example, the thick turbulent boundary la)ler 
is developed by combinations of spires, wedges or trips together 
with roughness elements di~tributed on the wall. Various tech-'" 
niques have been used (see discussions by Davenport and. 
Isyumov [1],1 Standen [2J, and Counihan [3]) but in each case the .. 
wall roughness geometry used waS apparently chosen by trial 

.and error and ~ot because.it produced It predicfable wall shear 
, ,stress or velocity distribution. This work pr0vides Il. relatic;1 be

tween roughness geometry and velocity profile shape whi~h should 
.allow a more rational choice of the. roughness tu be made {or any 
,\iesired profile or 'effective wall shear stress. . 

. ~ .' '. The equilibrium of bOundary layers used for atmospheric .simu-
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lations is often mentioned and is usually implied, although the 
term equilibrium is seldom defined precisely. What is usually. 
meant by equilibrium is that, boundary layer characteristics such 
as velocity profile shape, nondJmensional spectra, etc" are not 
changing significantly in the streamwise direction. A more 
exact form of equilibrium is defined by the term "se1f-preserva
tion" used by Townsend. [4J. Self preservattorl describes a tur
bulent shear flow whose turbulence is in exact; dynamic equilib
ritlm so that the mean distributions of the turbulence, nondi
mensionalizea by a single velocity and lengthscale,.do not change 
at all in the streamwise direction. Such exacj:. equilibrium is 
strictly possible for rough wall boundary layers in zero pressure 
gradient only when certain rather artificial! conditions are sat
isfied: either the roughness elements are.high compared to their 
spacing (which must be regular),p'roducing,J.he • "d-type" rough
ness d~cribed by Perry, et al. [51 or else !the ~ouli\hness height 
and spacing must vary directly with strel"llwise p,istance so that 
each remains a constant fra.ction or the bOundary layer height, 
as described by Rotta [6). i -

Some anaiytical results implied by exabt self-preservation are 
prese~ted in Section \0£ this paper. !. " 

A restricted region of' a boundary layer with zero pressure 
gre.dirnt and constant roughnesS height and spacing is in.approxi • 
mate. equilibrium provided the start of thl'l rQughness or. any 
change in roug:~ne3S is far from the region considered. Mellor 
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nnd (;ihson [71 hn\"c concluded thnt t\lrb\llent, zero-pressure
gr,, (licnt hotlltd"r~"I\I:'('rs on smooth walls closely ('onforln to the 
f'('quiremcnts for eX:lct rq\lilihritllll o\'er limited strenmwise 
length,", and it seems reru;onahle to tlssume that the same is t1\le 
for ro\lgh-wall boundary layers', :\ disc\lssion of this point is in
duded in Section (i of this paper, 

In ordcr (0 !'stimate the rO\lghncs" which is required to pr~uce 
('crtain ' houndary layer charnelcristics, evcn for approximate 
equilibrium, it is'nece"ssary (0 formulate'sgmc relationship for the 
\\::111 shear stres~ in terms of other hn\lIH.lnry layer propert.ies, The 
strellll1wise development of the flow <:1I1t then he predicted by 
:\nv one cif a varict \' of well known semi-empirical methods, 
TI;ese two steps fire 'outlined in the next two sections, follow!'d 
h~' a presentation of the ex,,!'t eq\lilibrium \es\llts implied In- the 
simple met.hod adopted. Some new experimental e\"idencc '1Il 

rO\lgh wall bO\lndary la.\·er;'; is th en presented and the approach 
to eCJ\lilibrium is discllssed, Finally a procedure is suggested for 
estimating the roughness required to produce a desired boundary 
lay~r shape needed for atmospheric simulation, and an example 
is given of this procedure. 

2 , A Wall.StressRelationship for Rough Walls 

tern of square hars normal to the flow and it is necessary to geu- , 
cralizc these results to three-dimensional roughhess elements of 
nrious shapes. This is done here by defining an effective spacing 
between t~o-dimensional bars which produces surface drag per 
unit area (or average shear stress) equal to that of the more gen-
eral roughness pattern. rJ 

The drag of a unit width of a single two-dimensional square 
bar (subscript b) is: 

1 -
Db = CD. 2 piflk 

where It is t he height of the bar and (j the average velocity ap
proaching it.. The drag per \\nit area is t.hen D'b = Db/ A. where 
A, i ~ the spacing between the bars in the flow direction. 

Similarly, the lwemge drag of a unit area of general three-di
mellsionnl elements each of similar shape and each 'having a drag 
coefficient C IJR hn.c;ed on its frontal area, is 

The flow around individual roughness elements [It high Iteyn
old& numbers i3 not Y"et predictable in detail from the equations 
of motion. Previous empirical work has related the wall shear 
stress to some }ntegral boundary layer thickness, usually,:i~t 
displacement thickness (0'), and this empirical approach .. ,is. 

where ( AR), and (AR), an~ spacings between element centers in 
the laternl and t.he longitudinal directions respectively and Ap is 
one element's fronfal area. Equating D'Rto D\ for equal (j: 

followed here. :' .... This can be rewritten as: 
A rather extensive review of t.he results obtained using squ!J.re, 

two-dimensional bar roughness elements has been made by 
Dvorak [8] wh'o ,related the bar height (k) and the bar spacing 
(A,) to the effective wal[ shear st.ress (To) and displacement thick
ness 0', using the form proposed by CltIllser [91, a.~ follows: 

(3) 

where A. = (AN), (AR)! is ~he effective plan area associat,ed 
, ,with each element. The ratio (A./ k) is nilw the equivalent s~ng 
,,"o-dimensional bars of height k whi~~-we.11 stress 
equal to the general roughness whose height is also k. 

where: 

W~'\ 
A 

K 

~ = k In {~':k'} + A-C. 
Ur = {~r U, pU,2 

" J 
free ,!'tream velocity 

constant = 4.8 

constant = 0.41 

(1) 

The drai c~fficients (CD). and (CD)R vary with varying 'up
stream boundary layers, but we assume that the ratio of one to 
the other will remain constant for identical upstream conditionJ 

and C is a constant depending on A, and k as follows: 

. " and identical heights of bar and roughness element. We further 
assu1lle that ~e mean characteristics of the turbulent boundary 
layer, and its turbulent properties as well, are dependent only 
on the"valueof the effective wall shear stress, so that two rough
ne.ss patterns which produce identica.l.loca.l. wail stress will produce 
identical boundary layers. These assumptions remain to be 
tested in detail hut they produce plausible and tentatively useful 
relationshi~s. 

C = - 5.95 [ O.4S In ~ - 1 ] (2) 

This con elation is valid for (A,/ k) > .':i and for (U,It / v) > 70, 
both satisfied in most atmospheric simulations of high winds .. 

We must now det~mine the ratio of (CD). to (CD)R measured 
with identical element heights and identical upstream boundary 
IlIyers. If the upstream boundary la:yeds considerably smaller 
than. the height k, the drag co-efficient,of a surfaoo:-mounted 

, square plate normal to the flow is about 1.15, and that of s. two
dimensional surface-mounted plate infinitely wide nonnal to the Few natural rough boundaries can be al?proximated by p. pat-

-------Nomenclature&---------------------------------------------------~~
distance normal to wall • \ 
r.ominal bounde,ry layer thlckn.~ 

related to o· and n by equation 
(11) 

A p frontal 'lrea of one roughness ele-
ment ' 

Ap plan a; <!a assOcillted. with one 
roughness element 

A ,;.. 4.8, constant associated with 
equation (1) 

C runction of roughness geometry, 
equa tior: (2) . 

H EO o· /e, shape fietor for boundary , 
layer 

H, shape factor related te H by equa-
tion (6) 
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K 

fl = 

von Karman'si' constant; taken to 
be equal to 0.41 ('" 

roughness element height · 
shape fa.ctor related: to H by equa

tion (13); equal to the~El,Xionent 
of a ,power law veloqliy. trofiHl 
if equation (7) is val~tt ~ 

mean velocity at height Z~ 
free stream velocity (constant) 

.. [To/pPI'l shear velocity 
x = streamwise distance, measured 

from start of roughneSs 

Z 
Ii 

0· 
e 

A. 

p -
To ~ 

displacement ~hickness 
momentum thlckness 
effective streamwise spacing or two 

dimensional bars; see also ~ua
tions (3) and (4) 

density of fluid (constant) 
average shear strElS& on roughened 

wall 
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flow is about 1.20. A cube in the same circumstances has a drag 
co-efficient of about 1.17 and a long square bar normal to the 
flow, four times as wide as it is high, has a value of 1.2.. These 
results, all taken from the compilation of referen ce [lOJ, suggest. 
that the ratio (Cnh/(Cn)n is close to unity for some shapes of 
roughness element. In. particular, this approximatioll appears 
valid for parallelepiped-shaped elements having one face normal 
to the flow, depth less than or eqllal to height and width greater 
than about 0.4 times the heigh t [sce reference 110\\ . For other 
shapes of roughness element,,.rlrag r,oefficients must be estimated 
or rneasured for use in equation (3). 

Since the rectangular elements described in the previous para
graph imply a drag co-efficient ratio of approximately one, equa
tion (3) for these elements becomes: 

X. ~ Ap 
k Ap 

(4) 

Equations (3) or (4) allow the shear stress correlation of Dvorak 
to be used for a wide variety of two- and three-dimensional 
roughness shapes. 

3 A Calculation Method 

Having used integral properties in the shear stress correlation 
of the previous section, it is now sensible to adopt an integral 
calculation method to predict the stream wise development of 
the boundary layer. . 

As pointed out by Dvorak [8], an integral atLx;lliary equation 
which is based on the entrainment of fluid through the outer 
edge of the turbulent region is preferable to those based on, in
tegral properties of shear stress or kinetic energy through the 
layer. The latter methods ·may be particularly sensitive to the 
roughness geometry through the uncertain conditions very close 
to the individual roughness elements. For this reason, we follow 
Dvorak in using Head's empirical correlations. Head's method 
is described by Dvorak and in reference [11]. Applied to zero
pressure-gradient boundary layers, it becomes: 

(5) 

where FI is a known empirical function of the ratio (8* If}), fJ is 
the usual momentum thickness and HI is a shape factor related 
empirically to (8* I fJ) [see equation (6)]. For the range of (8* IfJ) 
expected in atmospheric simulations, F I (/)* / 0) can be represented, 
following Dvorak, as: 

Fl ( 8;) = exp t -3.512 - 0.617 In (HI - 3)] 

where: HI = 3.3 + exp [0.4667 - 2.722 In (H - 0.6798)] (6) 

. 8-
H=-and 

8 

It is not necessary to assume a form for the velocity profile 
to use this method, but if the simple power law is used for other 
purposes, it can be related to H in the usual way: if 

~ "" [rJ (7) 

the exponent n is equal to (H - 1)/2. 
All in all integral methods, the momentum integral equation: 

(8) 

is also used. Thus, equation (1) describing the shear stress, and 
equations (5) and (8) describing the development, can be used 
to predict the streamwise variation of the three boundary layer 
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I 
properties UT) fJ and 8*. Equations (1) and (2), relating ([!r/Ut) 
to 0' for given k and h,.are shown graphically in Fig. 1. The dif
ferential equations (5) and (8) must be solved numerically for 
particular cases of interest, unless the boundary layer is in exact 
equilibrium. In this case, the...,Q.ifferential equations become 
arithmetic as shown in the ne~ection. 

4 Results for Exact Equilibrium 

If the velocd}' profile shape is not chllnging at all, i.e. 8' / fJ 
and Ht are constant, the equations of the previolis section adopt 
even simpler forms. Iqs useful to demonstrate this, since zero
pressure-gradient. bou,n,dllry layers developing over.a constant 
roughness geometry may conform approximately. to this equilib
rium condition. 

If (8*10) = constant, then HI = constant from equation (6). 
Equation (5) then shows .that dfJ/dx is a constant, so that the 
boundary layer grows linla"rly. Equation (8) shows that UTIU l 

= .constant in anyone such equilibriutn case, which is strictly 
possible from equations (1) and (2) only when X.l t and 8* Ik 
remain· constant, as already mentioned. By combining equations 
(8) and (5) to elimjnate fJ, we may relate H to UTIU I as follows: 

[~J = FI(H)IHI = function of (H) (9) 

where FI and H t are related to)!'ln equation (6). The shape 
factor H can be relllted to n WhiCh can in turn be interpreted as 
the exponent of the power law profile if equation (7) is adopted. 
Notice that n can be regarded as a shape factor even if equation 
(7) is not an accurate description of the velocity profile however. 

The shear stress ratio (UTIU I ) occuring in (9) can be replaced 
by suitable functions of 15' /k and A, /k as shown in Fig. 1 or equa
tions (1) and (2) so that (9) can be written as: 

Since, 

H - 1 [UT] n = -2~ =.fn U
I 

2 

15* 
k ~[n: 1 ] 

5 10 20 

(10) 

(11) 

50 

Flg.l Wall shear stress expected for various roughness \leometrles. 
Dvorak's correlation (8) __ ----' present dau 0: O'uughlln 
from Woodlnll, et al. [14], >',/k - 64-<:;): Antonla rnd Luxton, [12]. 
>',/k - 4, 8. 
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can be used to define a nominal boundary layer thickness 0, equal 
to the' netual bOllndllry Inyer thickness if a power profile exists, 
equation (10) can be written 1lS: 

lOA, ] 
11 = fll L k' k (12) 

IlS plotted in Fig.:2'. Notice thnt. this rclat.ionship is valid only for 
equilibrium situations, sincc t.hc arithmetic relationship of equa
tion (9) is applicable only for exact equilibrium. 

The ratio [V,o' /(VTo)] is related to the defect i1lw, IlS pointed 
out by Clauser [9] (see also reference [11 D. He found t.hat bot.h 
rough and smooth wall boundary layers have the same value of 
[Vlo' /(VTo)] in zero-pressure-gradient, implying a truly universal 
defect law. The present equilibrium calculations do not give a 
precisely constant value of this parameter over the entire range 
of A,/k and 11 con;;idercd. Calcuillted values lie between 3.S0 
and 3.99, compared to Clauser's value of 3.60 for boundary 
layers developing over constant roughness. These values will be 
dip cussed in Section 6. 

5 Present Measurements 

To compare with the calculated results of Figs. 1 and 2, par
ticularly for three-dimensional roughness elements, measurements 
were made in a boundary layer developing over a long fetch: of 
uniformly roughened wall. 

The U.B.C. wind tunnel used for these experiments is an open
circuit, blower type and has a test section 24.4 m in length, 2.44 
m wide, and initially 1.5 m in height. The test section roof is 
adjusted to maintain ambient room pressure throughout the test 
section I~ngth, Mean velocity mellSurements were made using 
a linearized hot wire anemometer. 

The floor roughness WIlS created by fllStening thin vertical 
strips of aluminum to the wall at regular intervals. Each strip 
presented a frontal area of 3S.1 mm high and 19 mm wide to the 
flow. The strips were placed in lines across the tunnel, the strips 
being 152.4mm apart in each line and the lines being 152.4 mm 
apart using a staggered pattern. 

The resultant value of Ap/ Ap for equation (3) is 32 and, using 
the assumption, that the drag coefficients in this equation are 
equal, the value of A./k obtained from equation (4) is also 32. 

A small trip was used at the beginning of the roughness fetch 
to reduce the importance of any length of smooth surface up
stream of the roughened wall and to reduce the importance of 
the initial roughness elements. (See a discussion of this point by 
Antonia and Luxton, reference (12]). The trip used was a wedge 

n 

2 

4 

6 
k 

FIII.2 Effect of roughness geometry on profile shape. Exact _quill-
br~um conditions, ; present data, 0. 
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38.1 mm thick and with 203 mm chord placed across the entire 
t \lnncl so thnt it created a gradual two-dimensional ramp and 
then a backward facing step 3S.1 mm high. 

Wall shear stress was measured directly from a drag plate, a 
large isolated section of roughened floor fllStened to an accurate 
wind tunnel balance. The drag force on this section could then be 
measured directly and the average force per unit area deduced. 
This drn.!I: plate WIlS 0.91 m wide and approximately 2 m long, 
so that reasonably l/lorge drag values were obtained. Drag read
ings wcre found to be insensitive to the size of the small gap 
around the drag plate but were sensitive to tunnel pressure 
gradient. The latter was set as carefully as possible to zero'for 
each test. Drag readings were found to be proportional to the 
square of the free stream velocity, as expected, indicating that 
no Reynolds number effects were present. The drag plate meas
urements and the boundary layer parameters 0, 0·, 0 and n 
deduced from the measured velocify profiles are discussed here, 
since they are directly comparable to the correlations of previous 
sections. Measured values of o· and 0 and values of nand 0 
deduced from them are given in Table 1. 

Table 1 Measured boundary layer properties 

x o· 0 n 0 Ut Uto· 
k T r k U; ~ U.o 

140.8 2.17 1.28 0.348 8.38 16.48 4.27 
26S.S 2.S3 1. 75 0.309 11.93 17.97 4.2'(; 
332.S 3.25 2.06 0.289 14.44 18.41 3.14 
396.S 3.51 2.27 0.273 16.49 18.74 3.99 
492.S 4.0S 2.67 0.264 19.73 18.98 3.92 

NOTES 

1) k = 1 1/2 in. (38.1 mm,Y , 
2) The boundary layer thi'cknesses 0* and 0 were obtained by 

integration from measured velocity profiles; 0 and 71 were 
then deduced from 0* and e. , 

3) VT WIlS found from' forCe measprements on the drag plate. 
4) Roughness Reynolds numbet VIe/V, was approximately 

3 X 104. 

The values of o· and e were obtained by integration directly, 
from the measured velocity profiles. Values of H ar& equal to 
the ratio (0*/8) {see equation (6)] and 71 may be calculated from: 

H - 1 
n= -2- (13) 

The quantity n is used here simply as R shape factor; related to 
H through equation (13). In fact, the velocity distributions were 
not particularly well desctibed by a relatio::lShip of the form of 
equation (7), so that the more taborious but' precise approach 
described above was necessary. The nominal boundary layer 
thickness 0 was then found from equation (11). Values of 11 as 
calculated were close to the values of 11 which might have been 
chosen from the velocity profiles themselves. Aa is well known, 
the definition of 0 directly from the measure velocity profiles is 
somewhat arbitrary, and has been avoided through the present 
procedure. . 

For experimental convenience, measul'(}ffients with different 
lengths of roughness fetch were made, not by moving the <Ira« 
plate from one place to another, but by adding or subtracting 
roughness sections upstream of the fixed point of measurement. 
'I\us, the measurements do not relate precisely to a single bound
ary laY'er, since upstream 0: each fet-::h of roughness (x), there is a 
variable length of smooth floor equal to t,be tunnel length minus 
x. Perhaps for this reason, the measured values of 0 were slighUy 
but consistently larger than those obtained by use of the two-
dimensional mometitum equation [equation (8)] together with 
mellsured values of shear stress. A difference of 11 percent was 
found between the two values of 0 at the m8J'lln\lI'l fetch of .. 
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roughness \fhen measured values of e at· the short est. ronghncss 
fetch were l\sed ns the starting condition for the int egr:ttion nf 
equation (8). 

The experimental l\llcertainty of the data is estimated IL'i fol
lows: U, / U I , ± 3 percent; o'/k, ± 2 percent; el k ± 2 percent; 
n (bnsed on uncertainties in o' and e), ± 4 pcrecn\.; o/k (b:L'cd 
on uncertainties in o· and n), ± 6 percent. Uncertainties in x 
and J; are negligible. 

6 Discussion of Experimental Results 

The measured values of o·/k, elk, Ut/UT and n are plotted in 
Figs. 1 and 2. 

The calculated curves of Fi~. 1 do not lISSume an equilibrium 
condition, but merely represent the shear stress correlation of 
Dvorak [8]. The measured yalues in this figl!re agree with the 
trends of the data and indicate that the effective value of A./k for 
the present data is about 30, which is cloRe to the value expected 
from the geometrical arrangement ns calculated from equation 
(4) (A./k = 32). Thus, we have some confidence in the shear 
stress correlation of Dvorak and in the present extension of it 
to three-dimensional roughness elements. 

A comparison with the data of two other experiments is made 
in Fig. 1: that of O'Laughlin, reported by Wooding, et a!. [14], 
and that of Antonia and Luxton [12]. The data of O'Laughlin 
was obtained in an aii' duct 0.11 m by 0.46 m in cross-section and 
7.31 m long. Cubes 4.8 mm on a side covered one of the 0.46 m 
walls of the duct and sh~ar streSJl was mensured directly using a 
force plate. The closest cube spacing used by O'Laughlin pro
vided a ratio of A./k, in present notation, of 64 and one result, 
inferred from reference 14, is plotted in Fig. 1. Agreement is 
not good in this case, perhaps because of the rather small duct 
size used by 0' Laughlin. 

Al1tonill. and Luxton studied a boundary layer developing over 
square bars placed normal to the flow such that ';<.. / 1; = 4. For 
large x/k, (x/k ;;> 250) H became constant and then decreased 
with increasing x, from which the authors assumed that an 
equilibrium condition had been reached. The data quoted here 

. is for x/k = 372. For A./k = 4, it is likely that the bars are so 
close together that mutual sheltering takes place. This is 
anticipated by Dvo.rak's results [8] and by the limitation A./k 
> 5 placed on equation (2). We expect, therefore that the noCl
dimensional shear stress (U ,/UI ) would be lower than, but close 
to, that cakulated for A. /k = 5. The data from Antonia and 
Luxton's report [12], ploited in Fig. 1, confirms .this expeCtation. 

The data from the present experiments plotted in Fig. 2 do 
not all show good agreement with the plotted curves which were 
calculated using the lISSumption of equilibrium. As is clearly 
seen from the figure, the measured values do approach the ex
pected equilibrium, and are quite well given by the appropriate. 
equilibrium curve (X./k = 30) for the two smallest values of n 
(i.e., the two largest valu~ of x / I.). We therefore conclude thn.t 
a roughness fetch of approximately 350 I. is required to reach 
equilibrium, at lee.st for the upstream ccnditions present in this 
experiment. 

Another indication of the present boundary layer's approach 
to the calculated equilibrium condition is apparent in the values 
of the defect" law integral parameter, Ulo· / (U,O), discussed in 
Section 4. Values of this ratio, deduced from mensured shel\r 
and n, are given in Table J. for the present case, and range from 
4.27 at the first data point (x/k ~ 141) to 3.92 at the last data 
point (x ~ 493). The equilibrium value of the ratio, as found 
from Head's method and the lISSumption of equilibrium is 3.99 
for f.. /k = 30 and n ~ 0.26, showing that the pr~nt boundary 
layer becomes very clo~.to the equilib~ium condition predicted 
for it. 

From this limited comparisol1 of anticipated and measured 
results, we conclude that Dvorak's correlation of shear stress with 
integral boundary ls~e~ properties and roughness geometry is 
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URcfuJ" in predicting rough-wall boundary layer characteristics 
and that It hOlllHhry b yer developing over constant wall rough
ness can approach eq uilibrilltll after n rather long (x/k >' 350 in 
this c:L,e) retch of roughness. The fetch required will certainly 
\'n.ry with t.he roughness used and the initial conditions imposed, 
bllt is not always us large u..q suggested by Counihan [13] (x/t; 
= 1,000) on other grounds. 

,. 
7 Estimating Roughness for Use in Atmospheric 
Simulations . 

The roughness required to generate a velocity prolue of a 
given shape with a boundary layer of a given depth can be 
estimated from the equilibrium results described in Section 4. 
Great accuracy will not be obtained, for the degree of equilibrium 
reached in any situation depends on the upstream history of the 
layer and in particular the fetch used and the trip used (iI any). 
First estimates are possible however, as shown.in the following 
pamgraphs. . 

For example, if a boundary layer is required for simule.tions of 
a suburban wind at a scale of 1 :400, then a boundary layer of 
about 0.9 m thick is required with a shape given by n = 0.28. If 
the defect law integral parameter Ulo·/(U) is about 4 for a 
boundary layer developing over uniform roughness, as found in 
the tests described in S€ction 5, then, from equ",tion (11), 0·/0 
is about 0.22 and Ut/U, is therefore about 18. Also, the nominal 
value of o· is about 0.2 m. 

Appropriate combinations of roughness, height and density 
may now be chosen from Fig. 1, since 0* and Ut/UT are known. 
If 2.5 ~m roughness elements are used, then 0* /t = 8.0 and for 
U, / UI = 1/ 18 = 0.055, the effective value of X./k is about 14 
from Fig. 1. This means that roughness elements with square 
frontal projections 2.5 mm square would [from equation (4)] have 
to be placed on approximately 95 mm centers to provide the 
correct roughness on the floor. Alternatively, if square elements 
40 mm high and 40 mm wide are used, a similar procedure sug
gests that they should be placed on approxillll\tely 175 mm 
eenters. 

If the local effective wall shear stress determines the mean 
characteristics of an equilibrium boundary layer and its impor
tant turbulent properties as well (as already assumed in Section 
2), then both of the roughness element geometries d&8cdbed will 
produce identical boundary layers once equilibdum is reached. 
The important question of which flow would reach equilibdum 
more quickly requir.~ further investigation and would de.;>elld on 
the initial conditions used in each case. 

When exact equilibrium is assumed, as in the present example, 
predictions can be made directly from Fig. 2. For the required 
o and n, combinations of spacing (density) and height can be 
selected from the figure and give the same results as those cal
culated in the previous paragraph. 

The possibility of using graded roughness, closer spacing or 
greater height at the start, is an obvious possibility. AB an ex
tension of this idea, very large initial roughness elements in the 
from .'lf spires or wedges have been used to develop the boundary 
layer (reference [2] or [3]) with much smaller but uniform rough
ness being used downstream. The likelihood of the boundary 
layer being close to equilibrium seems somewhat remote in these 
cases however, unless u. very long fetch of roughness is used down.
stream of the spires. In Counihan's simulation oi the urban 
boundary layer using wedges (reference [3]), the inttigral param
eter Uto· /(U) at the point where equilibrium is assumed has a 
value of over 4.50 wherenspresent calculations suggest that a 
'value doser to 4.00 would repl'!l8ent equilibrium. More work 
needs to be done in this area, both to assess the degree of equilib
rium present downstream of vadous spires or graded roughness 
elements and to assess the importance of equilibdum for the 
testing being done. 
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CALL FOR PAPERS 

SYMPOSIUM ON FLUID TRANSIENTS 
AND ACOUSTICS IN THE POWER INDUSTRY 

American Society of Mechanical Engineers (ASME) 
1978 Winter Annual Meeting 

ASME's Fluids Engineering Division is sponsoring a symposium on Fluid 'Trllonsierits and 
Acoustics in the Power Industry at the 1978 Winte, Annual Meeting in San Francisco, California, 
December 10-15, 1978. Papers are requested in (bpt not limited to) the following areas: com
pressible and incompressible unsteady flows; thermofluid transients; multi-phase flow transients; 
transients in hydraulic machinery; modeling of devices for surge suppression; transients in rup
turing lines; column separation; passive acollstic diagnosis; acoustics of cavitation; uIt.rasonic 
detection and monitoring; plant noise control; component sound transmission; pump noise; 
noise generation mechanisms; background noise; pipe noise; and valve noise. 

Program Format 

One to two days of paper presentations are planned. The symposium will commence with a 
session of papers hroadly covering fluid tra;l.~ients fwd acoustics as related to the power industry. 
The remaining sessions will be devoted to symposium papers on more specialized topics. 

D.adllnes 

Those wishing to participate should prepare 1,000 word abstracts for submission by February 1, 
1978. Abstracts in the area of fluid transients Hhould be sent to Const.antine Papadakis, Bechtel 
Inc., P. O. Box 1000, Ann Arbor, l\fichigan 48106, tel. (313)994-7179; and those in acoustics to 
Henry Scarton, Mechanical Engineering Department, Hensselaer Polytechnic Institute, Troy, 
New York 12181, tel. (518)270-6334. Selection or papen; will be made by February 28, 1978. 
Completed papers should be submitted by May 31, 1978 on author-prepared mats which will be 
sent to each author at the time of accept,lnce. 

publication 

Preprinting of the symposium papers on the AS:\I:E author-prepared mats will not impair 
later consideration for publication in Transactions of ASME. 
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