# Wind loads on low-rise buildings - effects of roof geometry 

KJ Eaton, J R Mayne and NJ Cook
Building Research Station

cibxay



8UIIT:

## Current papers

Current: Paperstarescirculated ta selected audienco grohps appropriate to each subject: Full details of all recent current Papers and other: BRE Publications =are published quarterly in BRE NEWS. Requasts for BRE NEWS or for placingion the Current Paper mailing list should be adiressed to:
(2)

Distribution Unit
Application Services Division. Building Research Establishment: Garston, Watford, W02 7JR.

Extra copies of this paper are available: charge mà be made for supplies in quantíty C Crown copyright 1976 Umited extracts from the text may bit produced provided the source is acknow fedged: For mora Extensive reoroductiot pléase write to the Publications Officer at thi Building Research Station.

K J Eaton, BSc(Eng), PhD, CEng, FRMetS, MStructE, J R Mayne, BSc and N J Cook, BSc(Eng), PhD

This paper was presented at 4th International Conference on Wind Effects on Buildings and Structures, London, 8-12 September 1975, and will subsequently appear in the Proceedings

This paper describes the measurement of wind pressures on low-rise buildings at Aylesbury. The pressures were recorded simultaneously at over one hundred positions divided between seven houses in an estate and a specially constructed experimental building situated on open ground adjoining the estate. A unique feature of the experimental building was that the roof pitch could be quickly varied to any angle between $5^{\circ}$ and $45^{\circ}$. It was therefore possible to investigate the variation of pressure distributions over the surfaces of the building, and data are presented for two skew wind directions. Initial comparisons have been made with results obtained using models in the Building Research Establishment's boundary layer wind tunnel; time has not permitted a complete series of tests, but preliminary findings from both the full-scale and wind tunnel data are discussed. In particular, the presentation of peak-factor data is extensively covered. Finally, the implications of the results for design purposes are considered and one of the conclusions is that local suction values around the perimeter of low-pitched roofs need increasing in the United Kingdom wind-loading code.

## NOTATION

$\mathrm{C}_{\mathrm{p}}=$ pressure coefficient, $\mathrm{C}_{\overline{\mathbf{p}}}$ or $\mathrm{C}_{\hat{\mathbf{p}}}$ as appropriate
$\mathrm{C}_{\overline{\mathbf{p}}}=$ mean pressure coefficient $=\overline{\mathrm{p}} / \overline{\mathrm{q}}_{10}$
$\mathrm{C}_{\hat{\mathbf{p}}}=$ peak pressure coefficient $=\hat{\mathrm{p}}_{(1 / 32)} / \hat{\mathrm{q}}_{10}$
$\mathrm{C}_{\sigma_{\mathrm{p}}}={ }_{\sigma_{\mathrm{p}}} / \overline{\mathrm{q}}_{10}$
$\mathrm{g} \quad=$ peak-factor $=\left(\hat{\mathrm{p}}_{\mathrm{t}}-\overline{\mathrm{p}}\right) / \sigma_{\mathrm{p}}$
$\mathrm{h} \quad=$ height of building to the ridge
$\overline{\mathbf{p}} \quad=$ mean pressure over record length
$\hat{p}_{t} \quad=$ maximum or minimum peak pressure as appropriate, the suffix, if added, denoting the dependence of the peak value upon averaging time
$\overline{\mathrm{q}}_{10}=$ dynamic pressure based on $\overline{\mathrm{u}}_{10}$
$\hat{\mathrm{q}}_{10}=$ dynamic pressure based on $\hat{\mathrm{u}}_{10}$
t = gust averaging time
$\bar{u}_{10}=$ mean velocity at 10 m over record length
$\hat{\mathrm{u}}_{10}=$ peak 2 -second velocity at 10 m during record
$\hat{u}_{h}=$ peak 2 -second velocity at the ridge height
$z_{o}=$ roughness length
$\bar{\beta} \quad=$ mean wind direction relative to true north
$\overline{\boldsymbol{\theta}} \quad=$ mean wind direction relative to the axis of the experimental building
$\sigma_{\mathrm{p}} \quad=\mathrm{rms}$ pressure over record length

## 1 INTRODUCTION

A previous paper ${ }^{1}$ presents preliminary results from the measurement of wind pressures which have been made by the Building Research Establishment on low-rise buildings at Aylesbury. The motivation and objectives of the experiment were explained in the introduction to that paper, and the site, installation, recording equipment and analysis procedures were also described in some detail.

This present paper therefore begins, in Section 2, with a short summary of the installation, given for the sake of clarity, but the earlier paper should be consulted for more detail. Section 3 presents full-scale measurements taken from new records which were obtained in the later stages of the project. These results follow on from the earlier ones, and give pressures recorded on the walls and on the roof of the experimental building for an extended range of roof pitches and for some different wind directions.

The data also include pressures measured on the upper surface of an overhang which was added to the western eaves of the building towards the end of the project.

Subsequent sections present a comparison of some of the full-scale results with measurements made in the BRE boundary layer wind tunnel and with the present UK wind-loading code ${ }^{2}$.

The high values of peak-factor which were recorded in the earlier paper are also subjected to further analysis.

## 2 SITE AND INSTALLATION

A detailed description of the site, the experimental building, the pressure transducers, the data acquisition system and the analysis has already been given ${ }^{1}$. A brief description only will be given here. The site, which was situated on the south-west outskirts of Aylesbury, comprised a local authority estate of two-storey houses in several parallel terraces (Figure 1). A long fetch of open country extended to the south-west, whilst the terrain in the opposite direction was largely urban.


Figure 1 Plan of Aylesbury site

To the west of the estate on adjoining open ground, an experimental building was erected, also shown in Figure 1. The pitch of the roof was variable between $5^{\circ}$ and $45^{\circ}$. In the latter stages of the project, an overhang of 0.7 m was added to the western eaves of the building extending along the middle third of the face, the length of this overhang being 4.5 m . One pressure transducer was fitted to the middle of the upper face of this overhang and another was fitted underneath. The inclination of the overhang followed the roof pitch.

Figure 2 shows the positions of the transducers on the experimental building and on the seven instrumented houses in the estate, and Figure 3 shows the experimental building with the overhang installed and the roof at $45^{\circ}$.


Figure 2 Position of pressure transducers on houses in the estate and on the experimental building


Figure 3 Experimental building with $45^{\circ}$ roof pitch, showing eaves overhang

The transducers, both in the houses on the estate and in the experimental building, were vented to a common reference pressure close to static pressure, obtained from a manhole in the field between the experimental building and the estate, the position of which is marked in Figure 1. Unjointed lengths of cable connected each transducer to a recording room inside the experimental building. Records were obtained in analogue form on magnetic tape and were subsequently digitised at 32 Hz real-time.

Wind speeds were recorded by three cup-anemometers mounted on a mast near to the experimental building at heights of 3,5 and 10 m , and direction was recorded at 10 m only. The mast was placed about 30 m from the experimental building in a position where it was unobstructed by the building for the wind directions most frequently occurring. The signals from these instruments were also recorded on magnetic tape concurrently with measurements of pressure. The frequency response of the anemometers was however limited to 0.5 Hz owing to the inertia of the cups.

## 3 FULL-SCALE RESULTS

The results presented in Figures 4 to 8 are from two records obtained in the early part of 1974. Details of these records are given in Table 1. Tables 2-12 give the full data for these records in numerical form. Record A35 covers four roof pitches from $22 \frac{10}{2}$ downwards with the wind blowing in a direction not represented in previous records. A38 covers seven roof pitches over the full range of operation of the roof, but with the same wind direction as records A11 and A12 reported previously ${ }^{1}$. A38F ( $45{ }^{\circ}$ ) and A38G ( $22 \frac{1}{2}$ ) are however in slightly different wind conditions, as the wind unfortunately veered and decreased during these last two sections of the recording.

Table 1 Details of records taken at Aylesbury

| Record no | Date | Time <br> GMT | $\bar{\beta}$ | $\bar{\theta}$ | $\bar{u}_{10}$ <br> $(\mathrm{~m} / \mathrm{s})$ | $\hat{\mathrm{u}}_{10}$ <br> $(\mathrm{~m} / \mathrm{s})$ | Roof pitch of experimental <br> building |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A35F | 27.1 .74 | 23.16 | $180^{\circ}$ | $208^{\circ}$ | 12.4 | 18.9 | $22.5^{\mathrm{o}}$ |
| A35G | 27.1 .74 | 23.41 | $180^{\circ}$ | $208^{\circ}$ | 11.2 | 18.8 | $15.0^{\circ}$ |
| A35H | 28.1 .74 | 00.04 | $180^{\circ}$ | $208^{\circ}$ | 11.1 | 17.0 | $10.0^{\circ}$ |
| A35J | 28.1 .74 | 00.26 | $180^{\circ}$ | $208^{\circ}$ | 10.5 | 14.0 | $5.0^{\circ}$ |
| A38A | 10.2 .74 | 11.49 | $205^{\circ}$ | $233^{\circ}$ | 12.4 | 21.1 | $15.0^{\circ}$ |
| A38B | 10.2 .74 | 12.16 | $205^{\circ}$ | $233^{\circ}$ | 11.3 | 20.4 | $10.0^{\circ}$ |
| A38C | 10.2 .74 | 12.40 | $205^{\circ}$ | $233^{\circ}$ | 11.1 | 18.4 | $5.0^{\circ}$ |
| A38D | 10.2 .74 | 13.12 | $205^{\circ}$ | $233^{\circ}$ | 11.5 | 19.9 | $27.5^{\circ}$ |
| A38E | 10.2 .74 | 13.38 | $205^{\circ}$ | $233^{\circ}$ | 11.4 | 18.3 | $35.0^{\circ}$ |
| A38F | 10.2 .74 | 14.08 | $210^{\circ}$ | $238^{\circ}$ | 10.2 | 18.8 | $45.0^{\circ}$ |
| A38G | 10.2 .74 | 14.48 | $220^{\circ}$ | $248^{\circ}$ | 8.3 | 14.9 | $22.5^{\circ}$ |

In every case mean coefficients are based upon the mean velocity measured on the nearby mast at a height of 10 m over the total length of the record ( 1024 seconds). Peak coefficients are based upon the 10 m 2 -second velocity, but the corresponding pressures relate to extremes of $1 / 32-$ second duration. Only in Section 6 is this procedure altered, where, for Code comparisons, velocities are used for heights appropriate to those used in design, ie the ridge height of the building.

Figure $4(\mathrm{a}-\mathrm{g})$ shows mean pressure coefficients for the roof of the experimental building over the full range of roof pitches from $5^{\circ}$ to $45^{\circ}$ with a skew wind blowing mainly at $37^{\circ}$ to the normal to the major face of the building. Figure 5 (a-h) shows the corresponding peak pressure coefficients, positive and negative limits being given for the $35^{\circ}$ roof pitch where the mean is near zero over most of the windward roof (Figure 5 f and g). At $45^{\circ}$ (Figure 5 h ) only positive limits are given, whilst at angles below $35^{\circ}$ (Figure $5 \mathrm{a}-\mathrm{e}$ ) only negative limits are given.

The figures show some similarities to those presented for A11 and A12 ${ }^{1}$, notably the position of the high suction region on the windward edge of the roof a short distance from the corner (transducers WR1B and WR1C). For the present record however, the mean coefficients are rather lower whilst the peak coefficients are considerably higher. The mean velocity in the present records (A38) is however higher than previously (A11 and A12), but as the direction and the turbulence intensity are similar, this difference between the two sets of data is unexplained.
(a) Record A38C

(b) Record A38B Roof pitch $10^{\circ}$
(c) Record A38A

Roof pitch $15^{\circ}$
(d) Record A38G

Roof pitch $221 / 2^{\circ}$


Mean $C_{p}$ based on 10 m mean velocity

Figure 4 Mean pressure coefficients on roof of experimental building
(e) Record A38D

(1) Record A38E


(g) Record A38F
$-0.25$


Mean $\mathrm{C}_{p}$ based on 10 m mean velocity

Figure 4 (Continued) Mean pressure coefficients on roof of experimental building


Figure 5 Peak pressure coefficients on roof of experimental building
(e) Record A38D
Roof pitch 271/20
(f) Record A38E Roof pitch $35^{\circ}$
$-0.50$


Extreme $1 / 32$ second $C_{p}$ based on 10 m extreme 2 second velocity Negative limits

Extreme $1 / 32$ second $C_{p}$ based on $10 m$ extreme 2 second velocity



Extreme $1 / 32$ second $C_{p}$ based on $10 m$ extreme 2 second velocity Positive limits


Extreme ${ }^{1 / 32}$ second $C_{p}$ based on 10 m extreme 2 second velocity

Figure 5 (Continued) Peak pressure coefficients on roof of experimental building

A marked trend is evident towards more negative roof pressures and towards high local suctions on the windward roof as the roof pitch becomes lower. The severest loadings occurred at the lowest pitch (59). This trend is shown in Figure 6, where coefficients from transducer WR1B in the local high suction area have been plotted directly against roof pitch. The mean, the positive and negative extremes and the positive and negative 0.05 per cent quantiles are shown. Other transducers on the windward roof show the same trend to a lesser degree. Pressures on the leeward roof are more erratic, and these are shown by a shaded band which tends in the opposite direction, the most negative pressures occurring at the highest roof pitch, ie when that part of the roof is fully immersed in the wake.


Figure 6 Variation of roof pressures with roof pitch

Figures 7 (a-d) and 8 (a-d) show similar data to Figures 4 and 5 for another skew wind direction more nearly end-on to the building ( $62^{\circ}$ to the major face). The range of roof pitches is 50 to $22 \frac{1}{2}^{\circ}$. A local high pressure region, corresponding to that found for record A38, occurs along the windward edge of the roof, in this case the south edge, again with the maximum value away from the corner and centred around transducer WR3A. For this wind direction, the roof overhang also receives a high uplift, particularly severe at $5^{\circ}$ pitch. Again the loads become more negative and more severe with decrease of roof pitch.


Mean $C_{p}$ based on 10 m mean velocity

Figure 7 Mean pressure coefficients on roof of experimental building


Figure 8 Peak pressure coefficients on roof of experimental building

## 4 WIND TUNNEL COMPARISON

It was intended to reproduce the full-scale experiments A35 and A38 at model scale in the new BRE boundary layer wind tunnel and to investigate some intermediate wind directions and roof pitches. Delays in acquisition of data processing hardware left insufficient time to attempt the complete model tests before the time of writing.

Some results from preliminary tests on a $1 / 50$-scale model of the experimental building at $22 \frac{1}{2} 0$ roof pitch have been included for comparison with full-scale results. An adequate simulation of the turbulent atmospheric boundary layer appropriate to the Aylesbury site is not possible at $1 / 50-$ scale in the boundary layer wind tunnel at this time. Only the mean velocity profile was correctly simulated by matching the roughness parameter, $z_{0}$; the turbulence characteristics were deficient in integral scale and intensity. Therefore the measured peak pressures have not been presented since they are not considered representative of the full-scale situation. A new model at $1 / 100$-scale with roof pitches of $5^{\circ}, 10^{\circ}, 15^{\circ}$ and $22 \frac{1}{2}^{\circ}$ is presently under construction, and will be tested in adequately simulated turbulence and shear. The results of these tests will be presented in a future paper.

In this paper comparison between the model and full scale is confined to mean pressure coefficients. Over periods of time equivalent to 1000 seconds at full scale, mean pressures showed reasonable agreement for the walls, but not such good agreement for the roof. It was however possible to reproduce the high-pressure zone recorded at full scale in record A35 near transducer WR3A and to find the wind direction for which these pressures were a maximum. This was at $74^{\circ}$ to the normal to the major face. The corresponding area of high local suction for record A38 could not be studied because the $1 / 50$-scale model had no roofs at the lower pitches.

Figure 9 ( a and b ) shows a comparison between mean wall pressures on the experimental building from record A35 and for the same wind direction in the wind tunnel. Both sets of coefficients are based on the mean velocity at 10 m . The results show very good agreement except for the 4.3 m level on the west face for which the full-scale result shows almost twice the pressure shown in the wind tunnel. Several sets of wall pressure comparisons for the wind blowing at other directions more nearly normal to the major face showed the same discrepancy.


Figure 9 Mean wall pressure coefficients on experimental building: comparison of full-scale and wind-tunnel results

## 5 PEAK-FACTORS

A parameter which, it has been suggested ${ }^{3}$, may offer a useful approach to the design of cladding is the peak-factor, g , defined by:

$$
\begin{equation*}
\mathrm{g}=\left(\hat{p}_{\mathrm{t}}-\overline{\mathrm{p}}\right) / \sigma_{\mathrm{p}} \tag{1}
\end{equation*}
$$

The value of this factor will depend upon the particular point on a building at which the pressure is measured. However the peak-factor is also affected by analysis and measurement techniques, since the value clearly depends, for example, upon the effective period over which the maximum pressure is measured. It is this latter type of effect which is discussed in the following paragraphs, since unfortunately analysis and measurement techniques differ so greatly between different projects, and these effects often mask aerodynamic differences.

The measurements made at Aylesbury make it possible to show how important these effects can be. Owing to the inherently statistical nature of the extreme pressures which are recorded, the data recorded at Aylesbury were analysed by computing pressure values corresponding to various quantiles in the tail of the probability distribution function. These points were the $50,10,1,0.1$, 0.05 and 0.01 per cent levels. Furthermore the calculations were repeated for averaging periods ranging from $1 / 32$ second up to 32 seconds, in each case covering the whole length of the record, which was 1024 seconds. This was done in the following way.

The distribution of the full set of 32768 data points (every $1 / 32$ second for the whole length of the record) was analysed, and the required quantile levels were determined. The data were then averaged in consecutive non-overlapping pairs to obtain the $1 / 16$-second data, thereby halving the number of samples, and the quantile levels were again determined. The process was repeated until the data corresponded to 32 -second averaging periods. For the longest averaging periods the more extreme quantiles could not be calculated, because the data sample became too small.

Figure 10 is a typical contour plot produced from these calculations, showing how the peak-factor varies as a function of both quantile level and averaging period on the west wall. The plot shows

Record A38A 3WW1


Figure 10 Contours of peak-factor as a function of quantile level and averaging period
clearly that the highest peak-factors recorded are confined to a very small area of the averaging period - quantile domain.

In any experiment, the peak-factors measured are thus critically dependent upon the measurement and analysis procedures adopted. For example $g$ depends upon:
(i) the sample size (ie the number of data points collected) which will determine the quantile level which can be included
(ii) the response of the transducer, and
(iii) the digitising rate, both of which will determine the minimum duration which is recorded.

Many values of peak-factor recorded at Aylesbury ${ }^{1}$ are very high when compared with values reported elsewhere ${ }^{3,4}$ and these differences are almost certainly due largely to measurement and analysis techniques. All the values given for the Aylesbury experiment have referred to $1 / 32$-second extreme values, equivalent to the highest value of 13.7 shown in Figure 10. This figure also shows that, for this particular record, the value of peak-factor for a 1 -second extreme was between 6 and 7 , and that for a $1 / 32$-second 1 per cent quantile, was 4.

It can also be seen how far the pressure distribution departs from Gaussian, especially in the tail of the distribution where the extreme values occur, a fact which is well known but frequently overlooked. In the inset of Figure 10, a section along the vertical $1 / 32$-second axis of the contour plot is compared with the peak-factors which would be obtained if the distribution were Gaussian. For the 0.01 per cent quantile, the departure from the mean in a Gaussian distribution is about $4 \sigma$, ie $g=4$. The measurements made at Aylesbury, however, invariably give values of g in excess of 4 and in many cases in excess of 10 . The distribution appears much more nearly Gaussian if comparisons are made of longer averaging periods or less far into the tail of the distribution, and the results of many full-scale and wind tunnel experiments are confined to the near Gaussian region either by limitations of the response of the measurement equipment, or by choice in order to produce statistically stationary data.

## 6 RELATION TO DESIGN

Results from a full-scale project of this type are useful for comparisons with wind-loading codes of practice. This is particularly so in the case of the data obtained from the variable pitch roof of the experimental building because most codes present variations of pressure coefficients with roof pitch changes.

As indicated in Section 3, pressure coefficients in codes of pratice are usually based on the wind speed at the height of the top of the building. In the present case, this was the ridge of the experimental building, and it varied from 5.7 m at $5^{\circ}$ pitch to 8.8 m at $45^{\circ}$ pitch. In this section the appropriate velocity has been determined by interpolation between the data from the $3 \mathrm{~m}, 5 \mathrm{~m}$ and 10 m anemometers.

The United Kingdom Code of Practice ${ }^{2}$, CP3:Chapter V:Part 2:1972, presents average pressure coefficients (intended for use with a 3-second dynamic pressure) for different areas of roofs, for roofs of various pitch, and for buildings of different height ratios. The experimental building at Aylesbury was a 'medium' height building as defined by the Code. With the wind blowing perpendicular to the ridge, as the roof pitch varies from $5^{\circ}$ to $45^{\circ}$, the average value of pressure coefficient over the windward slope varies in the Code from -1.1 to +0.2. A direct comparison with the measured data is not attempted here because, as already stated, there appears to be a discrepancy between A11, A12 and A38. However, allowing for the lower velocities at the ridge height as compared with a height of 10 m , the measured pressure coefficients do appear to be in reasonable accord with the Code. Here it must be remembered that the experimental building is an isolated structure in a field, and that conditions in an urban area will be very different, as is shown by comparing the pressures recorded on the estate with those on the experimental building ${ }^{1}$.

The Code data also include local pressure coefficients (that are used for cladding design) all round the edges of the roof (eaves, verges and ridge). These are very much higher than the average values, particularly at the lower roof pitches, and this variation in the Code can be seen in Figure 11. Also plotted in this figure is an 'envelope' or range of local $C_{p}$ values at various positions around the edge of the roof for the different roof pitches. These measured values are in fact $1 / 32$-second extreme values (based on $\hat{u}_{h}$ ) and are directly comparable with the Code. From this it can be seen that parts of the perimeter of the roof are underdesigned and this clearly results in much of the wind damage that occurs to roofing 5,6 .

When the further wind tunnel tests mentioned in Section 4 have been carried out, a considerable amount of interpolation and extrapolation to other roof pitches will be possible. It should also be
possible in the near future to determine the effects of permeability on the internal pressure of the experimental building, and also to determine the effects of variations in the layout and density of the estate of houses on the external pressure coefficients. These parts of the project will all have a considerable bearing on the design of low-rise structures.

## 7 CONCLUDING REMARKS

A pattern is beginning to emerge from the studies of variations of $C_{p}$ with roof pitch and wind direction. Suction loads on roofs become more severe with decreasing roof pitch. This increase of loading continues down to $5^{\circ}$, although the UK Code ${ }^{2}$ allows for a maximum load at $10^{\circ}$ pitch. Unfortunately, no data are available for $0^{\circ}$, but it is proposed to obtain this in further wind tunnel tests.

Mean pressures are useful for comparisons with measurements made in the wind tunnel. However they have no counterpart in the Code which requires maxima only. Even the overall loads are assessed by maxima, although the averaging period used may be quite long, eg 5 or 15 seconds.

In general it is the peak values, $\mathrm{C}_{\hat{\mathrm{p}}}$, that are most interesting and useful for design comparisons, and in the present context of small low-rise buildings it is the very short duration loadings which are important.

The full-scale and wind tunnel results clearly show the areas of high suction on the roof with a skew wind, these being in a localised zone a short distance from the windward corner. The magnitudes of these local coefficients are of the order of -3.0 (when based on $\hat{u}_{10}$ ) at $5^{\circ}$ pitch; this is equivalent to about -3.8 when based on $\hat{u}_{h}$, where $h$ is the ridge height.

Extremes of $1 / 32$-second duration, when plotted as in Figure 11, cover a band which encloses the values used in the Code. Since the local coefficients given in the Code are compromises intentionally set below the absolute maxima (in order to compensate for the spatial distribution of loadings and to allow for load sharing between various parts of the structure), this is to be expected. For example local coefficients are applied over a band around the edge of a roof of dimension equal to 0.15 times the width of the building (about 1 m in the case of the Aylesbury building). The coefficient of -2.0 which the Code applies should be compared with the transient localised pressure zone of -3.8 referred to above. Comparisons such as this suggest that the actual maxima are often too much in excess of the Code requirements in certain cases (eg the edges of roofs) and this view is confirmed by studies of damage 5,6 . Consideration should therefore be given to increasing the Code values.


Figure 11 Comparison of measured roof pressures with Code requirements

The values of peak-factors recorded at Aylesbury emphasise the non-Gaussian distribution of the pressure fluctuations and the high population of the tails of the distributions. Caution is necessary in the interpretation of results and in comparisons between experiments because instrument response and methods of data collection and analysis have a great effect on recorded extremes.

A new theoretical model which is a better fit to the extreme value distribution is required to replace the Gaussian model. Other distributions have been used for this purpose before; the authors are considering using an approach based on the Weibull distribution.

## 8 CONFERENCE PRESENTATION

This section gives additional material presented at the Conference.
The high peak-factors such as those shown in Figure 10, are not due to faulty data (eg 'drop-outs' on the magnetic tape). The effect of a 'drop-out' is shown in Figure 12, and it results in a 'pyramid' on the contour plot which is easily detected.

The high peak-factors recorded at Aylesbury result entirely from the intermittent nature of the flow and turbulence causing the local pressure fluctuations. Such intermittency has been reported by other workers ${ }^{7}$, and is illustrated in Figure 13.
Record A38D 5WW1


Figure 12 Contours of peak-factor as a function of quantile level and averaging period showing example of drop-out


Figure 13 Typical variation of pressure with time showing intermittent bursts of turbulence

Equation (1) may be re-written as

$$
\begin{equation*}
\hat{\mathbf{p}}=\overline{\mathbf{p}}+\mathbf{g} \sigma_{\mathrm{p}} \tag{2}
\end{equation*}
$$

In this form the peak loading is clearly seen to be divided into two parts, namely $\overline{\mathrm{p}}$, which is effectively a static loading, and $g \sigma_{\mathrm{p}}$, which is the short-term dynamic component of loading. The severity of the dynamic load is determined, not by g alone, but by the product $\mathrm{g} \sigma_{\mathrm{p}}$. In many cases high values of $g$ are associated with low values of $\sigma_{p}$, so that the peak loading is not as great as might be inferred from consideration of the peak-factor values only. However, this is not always the case; the relative values of $g$ and $\sigma_{\mathrm{p}}$ vary over different parts of the structure and Figure 14 shows this effect. The grids of hyperbolae represent constant values of $g \sigma_{\mathrm{p}}$ in coefficient form ( $\mathrm{g} \mathrm{C}_{\sigma_{\mathrm{p}}}$ ). Figure 14a shows data from record A38C ( $5^{\circ}$ roof pitch) plotted for the west wall only. The points fall in a fairly well defined area on the graph. Similarly, Figures 14 b-e show data from the same record for other parts of the building, namely east wall,

## Aylesbury record A38C

## Roof pitch $5^{\circ}$


(a) West wall

(c) South wall (windward edge)

(e) West roof

(b) East wall

(d) East roof

(f) Comparison

Figure 14 Showing dynamic pressures in coefficient form for various parts of the experimental building
south wall (windward edge), east roof and west roof. The points are most widely scattered in the case of the west roof, because of the different types of flow (eg separated and attached) occurring over the windward half of the roof. The points in Figure 14e marked 1, 2 and 3 are from transducer positions WR1A, WR1B and WR1C respectively, and these positions near the windward corner of the roof show the highest peak loading on the whole building, but with very different proportions of $g$ and $\sigma_{p}$.

The interpretation of these results is continuing and will be the subject of a further paper.

## 9 ACKNOWLEDGEMENTS

The authors wish to thank Aylesbury Vale District Council and their tenants for their co-operation at all stages of this experiment. They also gratefully acknowledge the assistance provided by the Environmental Sciences Research Unit at Cranfield and all the staff of the Wind Loading Section at the Building Research Station.

## 10 REFERENCES

1 Eaton, K J and Mayne, J R. The measurement of wind pressures on two-storey houses at Aylesbury. Symposium on Full-Scale Measurements of Wind Effects on Tall Buildings and Other Structures, University of Western Ontario, London, Ontario, June 1974. (Also BRE Current Paper CP 70/74.)

2 British Standards Institution. Code of Practice CP 3:Chapter V:Part 2:1972: Wind loads. BSI, London.

3 Dalgliesh, W A. Statistical treatment of peak gusts on cladding. Journal of the Structural Division, ASCE, Vol 97, No ST9, September 1971, pp 2173-2187.

4 Newberry, C W, Eaton, K J and Mayne, J R. Wind loading on tall buildings - further results from Royex House. Industrial Aerodynamics Abstracts, Vol 4, No 4, July-August 1973. (Also BRE Current Paper CP 29/73.)

5 Menzies, J B. Wind damage to buildings in the United Kingdom, 1962-1969. Building, Vol 221, No 6693, 27 August 1971, pp 67-76. (Also BRS Current Paper CP 35/71.)

6 Eaton, K J and Menzies, J B. Roofs, roofing and the wind. Proceedings International Symposium on Roofs and Roofing, Brighton, September 1974, Vol 1, Paper 6. (Also BRE Current Paper CP 75/74.)

7 Melbourne, W H. Cross-wind response of structures to wind action. Proceedings 4th International Conference on Wind Effects on Buildings and Structures, London, September 1975. Cambridge University Press. (In Press.)

Table 2 Record A35F

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C} \hat{\mathbf{p}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 8 | 11 | 72 | -63 | 6.5 | 0.08 | 0.17 | 0.33 |
| 3WW2 | 13 | 12 | 85 | -36 | 6.0 | 0.14 | 0.24 | 0.39 |
| 3WW3 | 22 | 14 | 91 | -28 | 4.9 | 0.23 | 0.33 | 0.42 |
| 3WW4 | 23 | 18 | 112 | -43 | 4.9 | 0.25 | 0.42 | 0.52 |
| 3WW5 | 22 | 17 | 101 | -70 | 5.4 | 0.23 | 0.39 | 0.46 |
| 3WW6 | 37 | 44 | 210 | -212 | 5.7 | 0.39 | 0.76 | -0.97 |
| 3WW7 | 11 | 41 | 159 | -192 | 5.0 | 0.12 | 0.57 | -0.88 |
| 5WW1 | 26 | 13 | 110 | -7 | 6.5 | 0.27 | 0.31 | 0.50 |
| 5WW2 | 25 | 16 | 112 | -10 | 5.4 | 0.26 | 0.37 | 0.51 |
| 5WW3 | 43 | 20 | 142 | -9 | 4.9 | 0.45 | 0.57 | 0.65 |
| 5WW4 | 50 | 21 | 157 | -8 | 5.1 | 0.52 | 0.64 | 0.72 |
| 5WW5 | 56 | 24 | 157 | -36 | 4.2 | 0.59 | 0.67 | 0.72 |
| 5WW6 | 52 | 35 | 181 | -89 | 4.0 | 0.55 | 0.74 | 0.83 |
| 5WW7 | 31 | 51 | 177 | -191 | 4.4 | 0.32 | 0.78 | -0.88 |
| 3EW1 | -44 | 14 | -8 | -105 | 4.4 | -0.46 | -0.42 | -0.48 |
| 3EW2 | -47 | 14 | -13 | -116 | 4.9 | -0.50 | -0.45 | -0.53 |
| 3EW3 | -49 | 15 | 1 | -127 | 5.2 | -0.52 | -0.46 | -0.58 |
| 3EW4 | -43 | 15 | 1 | -122 | 5.3 | -0.46 | -0.43 | -0.56 |
| 3EW5 | -41 | 16 | 5 | -131 | 5.6 | -0.44 | -0.43 | -0.60 |
| 5EW1 | -32 | 11 | -1 | -93 | 5.5 | -0.34 | -0.33 | -0.42 |
| 5EW2 | -38 | 12 | -9 | -96 | 4.8 | -0.40 | -0.38 | -0.44 |
| 5EW3 | -44 | 15 | -5 | -156 | 7.5 | -0.46 | -0.40 | -0.71 |
| 5EW4 | -35 | 15 | 1 | -121 | 5.7 | -0.37 | -0.34 | -0.55 |
| 5EW5 | -36 | 17 | 9 | -199 | 9.6 | -0.38 | -0.50 | -0.91 |
| 3SW1 | 51 | 24 | 207 | -127 | 7.4 | 0.54 | 0.56 | 0.95 |
| 3SW2 | 54 | 24 | 359 | -117 | 12.7 | 0.57 | 0.63 | 1.65 |
| 3SW3 | 35 | 20 | 140 | -43 | 5.2 | 0.37 | 0.44 | 0.64 |
| 3SW4 | 17 | 13 | 159 | -37 | 10.9 | 0.18 | 0.26 | 0.73 |
| 5SW1 | 65 | 32 | 227 | -143 | 6.5 | 0.69 | 0.80 | 1.04 |
| 5SW2 | 20 | 16 | 140 | -8 | 7.5 | 0.21 | 0.40 | 0.64 |
| 3NW1 | -26 | 9.4 | -1 | -75 | 5.2 | -0.27 | -0.27 | -0.34 |
| 3NW2 | -28 | 11 | -2 | -91 | 5.7 | -0.30 | -0.28 | -0.42 |
| INT | 9 | 8.1 | 39 | -27 | 4.4 | 0.10 | 0.11 | 0.18 |
| $\mathrm{OH}-\mathrm{U}$ | 4 | 24 | 76 | -141 | 6.0 | 0.04 | -0.35 | -0.65 |
| OH-L | 46 | 20 | 151 | -6 | 5.2 | 0.49 | 0.58 | 0.69 |
| WR1A | 9 | 19 | 112 | -119 | 6.7 | 0.10 | 0.29 | -0.55 |
| WR1B | 16 | 17 | 104 | -114 | 7.6 | 0.17 | -0.31 | -0.52 |
| WR1C | 19 | 18 | 85 | -141 | 8.9 | 0.20 | -0.30 | -0.65 |
| WR1E | -2 | 16 | 106 | -100 | 6.7 | -0.02 | 0.23 | 0.49 |
| WR1F | -5 | 12 | 40 | -90 | 7.1 | -0.05 | -0.17 | -0.41 |
| WR2C | 26 | 12 | 80 | -74 | 8.3 | 0.27 | 0.27 | 0.37 |
| WR2E | 15 | 10 | 67 | -37 | 5.2 | 0.16 | 0.21 | 0.31 |
| WR3A | -25 | 31 | 93 | -247 | 7.2 | -0.26 | -0.44 | -1.13 |
| WR3B | 30 | 26 | 138 | -143 | 6.7 | 0.32 | 0.39 | -0.66 |
| WR3C | 30 | 13 | 87 | -13 | 4.4 | 0.32 | 0.30 | 0.40 |
| WR3D | 20 | 15 | 72 | -40 | 4.0 | 0.21 | 0.26 | 0.33 |
| WR3E | 25 | 13 | 77 | -25 | 4.0 | 0.26 | 0.26 | 0.35 |
| WR4C | 24 | 17 | 92 | -53 | 4.5 | 0.25 | 0.26 | 0.42 |
| ER1A | - | - | - | - | - | - | - | - |
| ER1B | - | - | - | - | - | - | - | - |
| ER1C | -29 | 14 | 7 | -107 | 5.6 | -0.30 | -0.35 | -0.49 |
| ER2A | -31 | 26 | 35 | -236 | 7.9 | -0.33 | -0.63 | -1.08 |
| ER2B | -23 | 23 | 59 | -205 | 7.9 | -0.24 | -0.49 | -0.94 |
| ER3A | 15 | 35 | 60 | -302 | 9.1 | 0.16 | -0.74 | -1.38 |
| ER3B | -41 | 26 | 42 | -188 | 5.7 | -0.43 | -0.65 | -0.86 |

Duration 1024 seconds. $\quad \bar{u}_{10}=12.4 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=10.8 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=9.5 \mathrm{~ms}^{-1}$
$\bar{\beta}=180^{\circ}$.
$\sigma_{u_{10}}=2.1 \mathrm{~ms}^{-1} ; \sigma_{u_{5}}=2.0 \mathrm{~ms}^{-1} ; \sigma_{u_{3}}=2.0 \mathrm{~ms}^{-1}$
$\bar{\theta}=208^{\circ} . \quad \hat{u}_{10}=18.9 \mathrm{~ms}^{-1} ; \quad \hat{u}_{5}=17.5 \mathrm{~ms}^{-1} ; \quad \hat{u}_{3}=16.2 \mathrm{~ms}^{-1}$

Table 3 Record A35G

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} g \\ (1 / 32 \mathrm{sec}) \\ \hline \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\underset{\left(1 / 32 \mathbf{p}_{\mathrm{sec}}\right)}{\mathrm{C}_{\hat{2}}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 12 | 10 | 92 | -35 | 8.0 | 0.16 | 0.28 | 0.43 |
| 3WW2 | 13 | 10 | 84 | -70 | 8.3 | 0.17 | 0.29 | 0.39 |
| 3WW3 | 22 | 11 | 103 | -49 | 7.4 | 0.29 | 0.32 | 0.47 |
| 3WW4 | 23 | 14 | 109 | -42 | 6.1 | 0.30 | 0.37 | 0.50 |
| 3WW5 | 22 | 14 | 88 | -62 | 6.0 | 0.28 | 0.33 | 0.41 |
| 3WW6 | 36 | 31 | 159 | -206 | 7.8 | 0.47 | 0.56 | -0.95 |
| 3WW7 | 18 | 32 | 139 | -216 | 7.3 | 0.24 | 0.45 | -1.00 |
| 5WW1 | 35 | 14 | 120 | -9 | 6.1 | 0.45 | 0.41 | 0.55 |
| 5WW2 | 30 | 14 | 123 | -9 | 6.6 | 0.39 | 0.44 | 0.57 |
| 5WW3 | 42 | 17 | 147 | -11 | 6.2 | 0.54 | 0.51 | 0.68 |
| 5WW4 | 50 | 20 | 160 | -14 | 5.5 | 0.64 | 0.57 | 0.74 |
| 5WW5 | 57 | 23 | 170 | -50 | 4.9 | 0.74 | 0.61 | 0.79 |
| 5WW6 | 56 | 29 | 188 | -167 | 7.7 | 0.72 | 0.65 | 0.87 |
| 5WW7 | 43 | 40 | 189 | -156 | 5.0 | 0.55 | 0.70 | 0.87 |
| 3EW1 | -37 | 13 | -9 | -103 | 5.1 | -0.47 | -0.36 | -0.47 |
| 3EW2 | -39 | 14 | -10 | -105 | 4.7 | -0.50 | -0.42 | -0.48 |
| 3EW3 | -37 | 14 | -10 | -111 | 5.3 | -0.48 | -0.41 | -0.51 |
| 3EW4 | -31 | 12 | -3 | -87 | 4.7 | -0.40 | -0.34 | -0.40 |
| 3EW5 | -29 | 12 | 1 | -94 | 5.4 | -0.38 | -0.35 | -0.43 |
| 5EW1 | -22 | 9.8 | 4 | -75 | 5.4 | -0.28 | -0.28 | -0.35 |
| 5EW2 | -29 | 11 | -8 | -86 | 5.2 | -0.37 | -0.35 | -0.40 |
| 5EW3 | -30 | 13 | -2 | -106 | 5.8 | -0.39 | -0.36 | -0.49 |
| 5EW4 | -24 | 12 | 5 | -107 | 6.9 | -0.31 | -0.29 | -0.49 |
| 5EW5 | -19 | 13 | 9 | -99 | 6.2 | -0.25 | -0.27 | -0.46 |
| 3SW1 | 47 | 24 | 171 | -100 | 6.1 | 0.61 | 0.59 | 0.79 |
| 3SW2 | 48 | 22 | 161 | -83 | 6.0 | 0.62 | 0.64 | 0.74 |
| 3SW3 | 16 | 13 | 79 | -40 | 4.8 | 0.21 | 0.30 | 0.36 |
| 3SW4 | 18 | 12 | 106 | -26 | 7.3 | 0.23 | 0.33 | 0.49 |
| 5SW1 | -35 | 32 | 107 | -163 | 4.4 | -0.45 | -0.46 | -0.75 |
| 5SW2 | 11 | 10 | 90 | -11 | 7.9 | 0.14 | 0.30 | 0.42 |
| 3NW1 | -19 | 7.4 | -1 | -51 | 4.3 | -0.25 | -0.20 | -0.24 |
| 3NW2 | -22 | 8.8 | 3 | -69 | 5.3 | -0.28 | -0.24 | -0.32 |
| INT | 12 | 7.2 | 42 | -13 | 4.2 | 0.15 | 0.14 | 0.19 |
| $\mathrm{OH}-\mathrm{U}$ | -16 | 28 | 55 | -162 | 5.2 | -0.21 | -0.51 | -0.75 |
| OH-L | 40 | 19 | 141 | -5 | 5.3 | 0.52 | 0.54 | 0.65 |
| WR1A | 9 | 15 | 76 | -204 | 14.2 | 0.12 | -0.35 | -0.94 |
| WR1B | 1 | 18 | 63 | -164 | 9.2 | 0.01 | -0.36 | -0.76 |
| WR1C | -5 | 18 | 54 | -147 | 8.4 | -0.06 | -0.47 | -0.68 |
| WR1E | -39 | 7.7 | 86 | -124 | 16.2 | -0.50 | -0.32 | -0.57 |
| WR1F | -0 | 12 | 49 | -165 | 13.7 | -0.00 | -0.18 | -0.76 |
| WR2C | 17 | 13 | 55 | -82 | 7.6 | 0.22 | 0.20 | -0.38 |
| WR2E | 5 | 9.2 | 52 | -82 | 9.5 | 0.06 | 0.13 | -0.38 |
| WR3A | -41 | 31 | 62 | -266 | 7.3 | -0.53 | -0.72 | -1.22 |
| WR3B | 17 | 9.7 | 61 | -58 | 7.7 | 0.22 | 0.18 | 0.28 |
| WR3C | 25 | 13 | 71 | -39 | 4.9 | 0.32 | 0.25 | 0.33 |
| WR3D | 11 | 16 | 71 | -87 | 6.1 | 0.14 | 0.22 | -0.40 |
| WR3E | 28 | 14 | 86 | -26 | 4.1 | 0.36 | 0.27 | 0.40 |
| WR4C | 35 | 16 | 136 | -53 | 6.3 | 0.45 | 0.31 | 0.63 |
| ER1A | - | - | - | - | - | - | - | - |
| ER1B | - | - | - | - | - | - | - | - |
| ER1C | -23 | 8.8 | 3 | -105 | 9.3 | -0.30 | -0.25 | -0.48 |
| ER2A | -26 | 24 | 13 | -189 | 6.8 | -0.34 | -0.67 | -0.87 |
| ER2B | -0 | 19 | 88 | -81 | 4.6 | -0.00 | 0.21 | 0.41 |
| ER3A | 65 | 41 | 127 | -251 | 7.7 | 0.84 | -0.44 | -1.16 |
| ER3B | -22 | 23 | 54 | -201 | 7.8 | -0.28 | -0.60 | -0.93 |

Duration 1024 seconds. $\quad \bar{u}_{10}=11.2 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=9.6 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=8.4 \mathrm{~ms}^{-1}$
$\bar{\beta}=180^{\circ} . \quad \sigma_{\mathrm{u}_{10}}=2.5 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{5}}=2.4 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{3}}=2.3 \mathrm{~ms}^{-1}$
$\bar{\theta}=208^{\circ} . \quad \hat{u}_{10}=18.8 \mathrm{~ms}^{-1} ; \quad \hat{u}_{5}=16.6 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{3}=15.5 \mathrm{~ms}^{-1}$

Table 4 Record A35H

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\mathrm{min}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 8 | 8.9 | 65 | -63 | 8.0 | 0.11 | 0.21 | 0.37 |
| 3WW2 | 8 | 8.3 | 61 | -24 | 6.4 | 0.11 | 0.22 | 0.34 |
| 3WW3 | 15 | 9.1 | 59 | -19 | 4.8 | 0.20 | 0.26 | 0.33 |
| 3WW4 | 17 | 11 | 71 | -39 | 4.9 | 0.22 | 0.28 | 0.40 |
| 3WW5 | 16 | 11 | 80 | -56 | 6.5 | 0.21 | 0.29 | 0.45 |
| 3WW6 | 26 | 30 | 164 | -132 | 5.3 | 0.34 | 0.58 | 0.92 |
| 3WW7 | 3 | 29 | 128 | -152 | 5.3 | 0.04 | 0.42 | 0.72 |
| 5WW1 | 27 | 12 | 95 | -11 | 5.7 | 0.35 | 0.34 | 0.54 |
| 5WW2 | 32 | 12 | 102 | -0 | 5.8 | 0.42 | 0.42 | 0.57 |
| 5WW3 | 38 | 14 | 120 | 3 | 5.9 | 0.50 | 0.44 | 0.68 |
| 5WW4 | 46 | 16 | 122 | 1 | 4.7 | 0.61 | 0.50 | 0.69 |
| 5WW5 | 51 | 19 | 127 | -49 | 5.3 | 0.67 | 0.59 | 0.72 |
| 5WW6 | 48 | 26 | 139 | -92 | 5.4 | 0.63 | 0.64 | 0.78 |
| 5WW7 | 32 | 37 | 152 | -124 | 4.2 | 0.42 | 0.73 | 0.86 |
| 3EW1 | -40 | 11 | -9 | -85 | 4.1 | -0.53 | -0.41 | -0.48 |
| 3EW2 | -44 | 12 | -15 | -87 | 3.6 | -0.58 | -0.43 | -0.49 |
| 3EW3 | -41 | 12 | -10 | -92 | 4.2 | -0.54 | -0.43 | -0.52 |
| 3EW4 | -35 | 11 | -2 | -80 | 4.1 | -0.46 | -0.36 | -0.45 |
| 3EW5 | -30 | 10 | 3 | -79 | 4.9 | -0.39 | -0.34 | -0.44 |
| 5EW1 | -25 | 7.9 | 1 | -68 | 5.4 | -0.33 | -0.28 | -0.38 |
| 5EW2 | -32 | 8.7 | -9 | -68 | 4.1 | -0.32 | -0.33 | -0.38 |
| 5EW3 | -34 | 11 | -6 | -142 | 9.8 | -0.45 | -0.37 | -0.80 |
| 5EW4 | -25 | 10 | 3 | -119 | 9.4 | -0.33 | -0.33 | -0.67 |
| 5EW5 | -22 | 9.8 | 4 | -97 | 7.7 | -0.29 | -0.25 | -0.55 |
| 3SW1 | 40 | 22 | 138 | -117 | 7.1 | 0.53 | 0.60 | 0.78 |
| 3SW2 | 45 | 22 | 145 | -104 | 6.8 | 0.59 | 0.67 | 0.82 |
| 3SW3 | 14 | 13 | 72 | -51 | 5.0 | 0.18 | 0.32 | 0.41 |
| 3SW4 | 17 | 12 | 73 | -24 | 4.7 | 0.22 | 0.31 | 0.41 |
| 5SW1 | 13 | 30 | 126 | -174 | 6.2 | 0.17 | -0.79 | -0.98 |
| 5SW2 | 7 | 8.7 | 63 | -14 | 6.4 | 0.09 | 0.23 | 0.36 |
| 3NW1 | -19 | 5.6 | -2 | -39 | 3.6 | -0.25 | -0.20 | -0.22 |
| 3NW2 | -21 | 6.7 | 0 | -52 | 4.6 | -0.28 | -0.21 | -0.29 |
| INT | 14 | 6.3 | 42 | -17 | 4.9 | 0.18 | 0.17 | 0.24 |
| $\mathrm{OH}-\mathrm{U}$ | -16 | 24 | 68 | -206 | 7.9 | -0.21 | -0.65 | -1.16 |
| OH-L | 42 | 15 | 126 | 8 | 5.6 | 0.55 | 0.52 | 0.71 |
| WR1A | -10 | 14 | 45 | -111 | 7.2 | -0.13 | -0.25 | -0.63 |
| WR1B | -6 | 16 | 45 | -134 | 8.0 | -0.08 | -0.45 | -0.76 |
| WR1C | -2 | 17 | 48 | -126 | 7.3 | -0.03 | -0.44 | -0.71 |
| WR1E | -4 | 18 | 65 | -172 | 9.3 | -0.05 | -0.53 | -0.97 |
| WR1F | 1 | 9.6 | 40 | -120 | 12.6 | 0.01 | -0.21 | -0.68 |
| WR2C | 18 | 14 | 56 | -96 | 8.1 | 0.24 | -0.29 | -0.54 |
| WR2E | 5 | 11 | 49 | -133 | 12.5 | 0.07 | -0.36 | -0.75 |
| WR3A | -45 | 33 | 52 | -258 | 6.5 | -0.59 | -0.83 | -1.45 |
| WR3B | 47 | 24 | 144 | -105 | 6.3 | 0.62 | 0.54 | 0.81 |
| WR3C | 33 | 13 | 75 | -51 | 6.5 | 0.43 | 0.36 | 0.42 |
| WR3D | 21 | 15 | 78 | -74 | 6.3 | 0.28 | 0.31 | 0.44 |
| WR3E | 35 | 14 | 85 | -37 | 5.1 | 0.46 | 0.37 | 0.48 |
| WR4C | 43 | 15 | 114 | -27 | 4.7 | 0.57 | 0.41 | 0.64 |
| ER1A | - | - | - | - | - | - | - | - |
| ER1B | - | - | - | - | - | - | - | - |
| ER1C | 19 | 6.1 | 1 | -58 | 12.6 | 0.25 | -0.21 | -0.33 |
| ER2A | 15 | 16 | 30 | -168 | 11.4 | 0.19 | -0.56 | -0.95 |
| ER2B | 15 | 20 | 92 | -66 | 4.0 | 0.19 | 0.34 | 0.52 |
| ER3A | 4 | 22 | 42 | -173 | 8.0 | 0.05 | -0.43 | -0.98 |
| ER3B | 20 | 13 | 63 | -84 | 8.0 | 0.26 | -0.34 | -0.47 |

Duration 1024 seconds. $\quad \bar{u}_{10}=11.1 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=9.6 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=8.3 \mathrm{~ms}^{-1}$
$\bar{\beta}=180^{\circ}$.
$\sigma_{\mathrm{u}_{10}}=2.2 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{5}}=2.2 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{3}}=2.1 \mathrm{~ms}^{-1}$
$\bar{\theta}=208^{\circ} . \quad \hat{\mathrm{u}}_{10}=17.0 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{5}=15.7 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{3}=14.3 \mathrm{~ms}^{-1}$

Table 5 Record A35J

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 9 | 11 | 64 | -22 | 5.0 | 0.13 | 0.35 | 0.53 |
| 3WW2 | 11 | 11 | 73 | -18 | 5.6 | 0.16 | 0.39 | 0.61 |
| 3WW3 | 18 | 12 | 99 | -18 | 6.7 | 0.27 | 0.57 | 0.82 |
| 3WW4 | 21 | 15 | 106 | -25 | 5.7 | 0.31 | 0.70 | 0.88 |
| 3WW5 | 20 | 13 | 109 | -44 | 6.8 | 0.30 | 0.60 | 0.91 |
| 3WW6 | 39 | 26 | 207 | -120 | 6.5 | 0.58 | 1.02 | 1.72 |
| 3WW7 | 19 | 29 | 158 | -114 | 4.8 | 0.28 | 0.85 | 1.32 |
| 5WW1 | 35 | 14 | 110 | -51 | 6.1 | 0.52 | 0.68 | 0.92 |
| 5WW2 | 33 | 15 | 127 | -3 | 6.3 | 0.49 | 0.74 | 1.06 |
| 5WW3 | 43 | 18 | 140 | -0 | 5.4 | 0.64 | 0.88 | 1.16 |
| 5WW4 | 51 | 20 | 143 | -7 | 4.6 | 0.76 | 0.97 | 1.19 |
| 5WW5 | 58 | 23 | 153 | -33 | 4.1 | 0.86 | 1.12 | 1.28 |
| 5WW6 | 55 | 26 | 166 | -47 | 4.3 | 0.82 | 1.14 | 1.39 |
| 5WW7 | 47 | 37 | 171 | -116 | 4.4 | 0.70 | 1.21 | 1.43 |
| 3EW1 | -43 | 11 | -13 | -84 | 3.7 | -0.64 | -0.58 | -0.70 |
| 3EW2 | -46 | 12 | -16 | -88 | 3.5 | -0.69 | -0.65 | -0.73 |
| 3EW3 | -43 | 11 | -12 | -90 | 4.3 | -0.64 | -0.58 | -0.75 |
| 3EW4 | -35 | 9.8 | -5 | -80 | 4.6 | -0.52 | -0.52 | -0.67 |
| 3EW5 | -30 | 9.1 | 2 | -70 | 4.4 | -0.45 | -0.43 | -0.58 |
| 5EW1 | -26 | 7.7 | -6 | -63 | 4.8 | -0.39 | -0.38 | -0.53 |
| 5EW2 | -33 | 8.4 | -13 | -68 | 4.2 | -0.49 | -0.47 | -0.57 |
| 5EW3 | -35 | 10 | -8 | -89 | 5.4 | -0.52 | -0.52 | -0.74 |
| 5EW4 | -26 | 9.0 | -5 | -76 | 5.6 | -0.39 | -0.38 | -0.63 |
| 5EW5 | -20 | 8.2 | 5 | -67 | 5.7 | -0.30 | -0.33 | -0. 56 |
| 3SW1 | 36 | 21 | 142 | -111 | 7.0 | 0.53 | 0.87 | 1.18 |
| 3SW2 | 40 | 19 | 156 | -61 | 6.1 | 0.60 | 0.95 | 1.30 |
| 3SW3 | 3 | 11 | 53 | -48 | 4.6 | 0.04 | 0.30 | 0.44 |
| 3SW4 | 8 | 11 | 72 | -29 | 5.8 | 0.12 | 0.38 | 0.60 |
| 5SW1 | 4 | 28 | 109 | -112 | 4.1 | 0.06 | 0.68 | 0.91 |
| 5SW2 | 7 | 7 | 61 | -10 | 7.7 | 0.10 | 0.33 | 0.51 |
| 3NW1 | -19 | 5.8 | -3 | -43 | 4.1 | -0.28 | -0.28 | -0.36 |
| 3NW2 | -22 | 7.0 | 0 | -51 | 4.1 | -0.33 | -0.34 | -0.43 |
| INT | 11 | 6.3 | 33 | -17 | 4.4 | 0.16 | 0.21 | 0.28 |
| $\mathrm{OH}-\mathrm{U}$ | -55 | 26 | 20 | -194 | 5.3 | -0.82 | -1.30 | -1.62 |
| $\mathrm{OH}-\mathrm{L}$ | 46 | 19 | 148 | -13 | 5.4 | 0.69 | 0.92 | 1.23 |
| WR1A | 10 | 22 | 65 | -180 | 8.6 | 0.15 | -0.77 | -1. 50 |
| WR1B | -16 | 25 | 45 | -178 | 6.5 | -0.24 | -1.10 | -1.49 |
| WR1C | -22 | 21 | 46 | -174 | 7.2 | -0.33 | -0.93 | -1.45 |
| WR1E | -8 | 25 | 66 | -204 | 7.8 | -0.12 | -0.82 | -1.70 |
| WR1F | 1 | 11 | 50 | -109 | 10.0 | 0.01 | -0.32 | -0.91 |
| WR2C | 13 | 19 | 56 | -121 | 7.1 | 0.19 | -0.66 | -1.01 |
| WR2E | -2 | 14 | 44 | -104 | 7.3 | -0.03 | -0.49 | -0.87 |
| WR3A | -63 | 31 | 40 | -227 | 5.3 | -0.94 | -1.34 | -1.90 |
| WR3B | 42 | 19 | 112 | -102 | 7.6 | 0.63 | 0.72 | 0.93 |
| WR3C | 31 | 13 | 74 | -54 | 6.5 | 0.46 | 0.53 | 0.62 |
| WR3D | 14 | 16 | 66 | -90 | 6.5 | 0.21 | 0.41 | -0.75 |
| WR3E | 34 | 14 | 90 | -37 | 5.1 | 0.51 | 0.57 | 0.75 |
| WR4C | 45 | 14 | 90 | -50 | 6.8 | 0.67 | 0.65 | 0.75 |
| ER1A | - | - | - | - | - | - | - | - |
| ER1B | - | - | - | - | - | - | - | - |
| ER1C | -21 | 6.1 | -0 | -54 | 5.4 | -0.31 | -0.30 | -0.45 |
| ER2A | -12 | 18 | 31 | -188 | 9.8 | -0.18 | -0.93 | -1. 57 |
| ER2B | 24 | 21 | 95 | -66 | 4.3 | 0.36 | 0.58 | 0.79 |
| ER3A | 68 | 7.5 | 83 | 17 | 6.8 | 1.01 | 0.64 | 0.69 |
| ER3B | 34 | 13 | 83 | -25 | 4.5 | 0.50 | 0.56 | 0.69 |



Table 6 Record A38A

|  | $\begin{gathered} \overline{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathbf{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 6 | 27 | 370 | -73 | 13.5 | 0.06 | 0.76 | 1.35 |
| 3WW2 | 15 | 24 | 299 | -50 | 11.8 | 0.16 | 0.60 | 1.09 |
| 3WW3 | 23 | 25 | 269 | -36 | 9.8 | 0.24 | 0.57 | 0.99 |
| 3WW4 | 26 | 27 | 307 | -44 | 10.4 | 0.28 | 0.63 | 1.13 |
| 3WW5 | 23 | 27 | 294 | -66 | 10.0 | 0.24 | 0.54 | 1.08 |
| 3WW6 | 46 | 39 | 358 | -307 | 8.0 | 0.49 | 0.65 | 1.31 |
| 3WW7 | 32 | 31 | 250 | -236 | 8.6 | 0.34 | 0.59 | 0.92 |
| 5WW1 | 47 | 32 | 389 | -28 | 10.7 | 0.50 | 0.96 | 1.43 |
| 5WW2 | 51 | 34 | 357 | -23 | 9.0 | 0.54 | 1.07 | 1.31 |
| 5WW3 | 59 | 35 | 369 | -5 | 8.9 | 0.63 | 1.02 | 1.35 |
| 5WW4 | 65 | 36 | 359 | -23 | 8.2 | 0.69 | 0.98 | 1.32 |
| 5WW5 | 71 | 38 | 266 | -16 | 5.1 | 0.76 | 0.83 | 0.98 |
| 5WW6 | 69 | 38 | 355 | -97 | 7.5 | 0.73 | 0.84 | 1.30 |
| 5WW7 | 63 | 38 | 307 | -158 | 6.4 | 0.67 | 0.80 | 1.13 |
| 3EW1 | -50 | 18 | -7 | -139 | 4.9 | -0.53 | -0.46 | -0.51 |
| 3EW2 | -54 | 20 | -8 | -180 | 6.3 | -0.57 | -0.57 | -0.66 |
| 3EW3 | -49 | 17 | -6 | -180 | 7.7 | -0.52 | -0.51 | -0.66 |
| 3EW4 | -44 | 15 | -3 | -136 | 6.1 | -0.47 | -0.39 | -0.50 |
| 3EW5 | -44 | 16 | -2 | -124 | 5.0 | -0.47 | -0.36 | -0.45 |
| 5EW1 | -36 | 14 | 0 | -104 | 4.9 | -0.38 | -0.33 | -0.38 |
| 5EW2 | -40 | 15 | -4 | -152 | 7.5 | -0.43 | -0.44 | -0.56 |
| 5EW3 | -48 | 18 | -4 | -187 | 7.7 | -0.51 | -0.49 | -0.69 |
| 5EW4 | -39 | 14 | 2 | -127 | 6.3 | -0.42 | -0.30 | -0.47 |
| 5EW5 | -38 | 16 | 8 | -135 | 6.1 | -0.40 | -0.29 | -0.50 |
| 3SW1 | -15 | 47 | 408 | -238 | 4.7 | -0.16 | -0.52 | -0.87 |
| 3SW2 | -44 | 44 | 348 | -336 | 7.3 | -0.47 | -0.73 | -1.34 |
| 3SW3 | -23 | 18 | 83 | -205 | 10.1 | -0.24 | -0.44 | -0.75 |
| 3SW4 | -16 | 14 | 107 | -116 | 8.8 | -0.17 | -0.21 | -0.43 |
| 5SW1 | -1 | 55 | 265 | -223 | 4.8 | -0.01 | 0.52 | 0.97 |
| 5SW2 | 12 | 44 | 188 | -173 | 4.2 | 0.13 | 0.45 | 0.69 |
| 3NW1 | -36 | 14 | 4 | -236 | 14.3 | -0.38 | -0.55 | -0.87 |
| 3NW2 | -43 | 19 | 5 | -310 | 14.0 | -0.46 | -0.87 | -1.14 |
| INT | -7 | 10 | 58 | -119 | 11.2 | -0.07 | -0.20 | -0.44 |
| $\mathrm{OH}-\mathrm{U}$ | -59 | 39 | 83 | -305 | 6.3 | -0.63 | -0.61 | -1.12 |
| $\mathrm{OH}-\mathrm{L}$ | 56 | 35 | 417 | -23 | 10.3 | 0.60 | 0.95 | 1.53 |
| WR1A | -42 | 70 | 97 | -567 | 7.5 | -0.45 | -1.06 | -2.08 |
| WR1B | -92 | 78 | 102 | -591 | 6.4 | -0.98 | -1.24 | -2.17 |
| WR1C | -79 | 48 | 77 | -441 | 7.5 | -0.84 | -0.77 | -1.62 |
| WR1E | 10 | 35 | 177 | -298 | 8.8 | 0.11 | -0.41 | -1.09 |
| WR1F | -27 | 25 | 55 | -342 | 12.6 | -0.29 | -0.52 | -1.25 |
| WR2C | -18 | 41 | 88 | -253 | 5.7 | -0.19 | -0.61 | -0.93 |
| WR2E | -2 | 18 | 131 | -129 | 7.1 | -0.02 | -0.30 | -0.47 |
| WR3A | -5 | 26 | 87 | -325 | 12.3 | -0.05 | -0.52 | -1.19 |
| WR3B | 11 | 19 | 154 | -178 | 9.9 | 0.12 | -0.08 | -0.65 |
| WR3C | 4 | 18 | 125 | -148 | 8.4 | 0.04 | -0.22 | -0.54 |
| WR3D | -4 | 22 | 113 | -160 | 7.1 | -0.04 | -0.22 | -0.59 |
| WR3E | 5 | 16 | 84 | -66 | 4.9 | 0.05 | 0.19 | 0.31 |
| WR4C | 11 | 18 | 119 | -54 | 6.0 | 0.12 | 0.23 | 0.44 |
| ER1A | -58 | 24 | 13 | -219 | 6.7 | -0.62 | -0.49 | -0.80 |
| ER1B | -49 | 16 | -5 | -178 | 8.1 | -0.52 | -0.37 | -0.65 |
| ER1C | -45 | 17 | 9 | -225 | 10.6 | -0.48 | -0.37 | -0.83 |
| ER2A | -61 | 39 | 38 | -375 | 8.1 | -0.65 | -0.83 | -1.38 |
| ER2B | -16 | 23 | 84 | -140 | 5.4 | -0.17 | -0.26 | -0. 51 |
| ER3A | 10 | 62 | 121 | -355 | 5.9 | 0.11 | -0.59 | -1.30 |
| ER3B | -44 | 41 | 56 | -299 | 6.2 | -0.47 | -0.66 | -1.10 |

Duration 1024 seconds. $\quad \bar{u}_{10}=12.4 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=10.5 \mathrm{~ms}^{-1} ; \quad \overline{\mathrm{u}}_{3}=9.5 \mathrm{~ms}^{-1}$
$\bar{\beta}=205^{\circ}$.
$\sigma_{u_{10}}=2.8 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{5}}=2.6 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{3}}=2.5 \mathrm{~ms}^{-1}$
$\bar{\theta}=233^{\circ} . \quad \hat{\mathrm{u}}_{10}=21.1 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{5}^{5}=21.0 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{3}=21.0 \mathrm{~ms}^{-1}$

Table 7 Record A38B

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \hline g \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathrm{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 8 | 20 | 188 | -87 | 9.0 | 0.10 | 0.37 | 0.73 |
| 3WW2 | 13 | 18 | 126 | -48 | 6.3 | 0.17 | 0.32 | 0.49 |
| 3WW3 | 19 | 19 | 143 | -34 | 6.5 | 0.24 | 0.40 | 0.56 |
| 3WW4 | 23 | 21 | 171 | -41 | 7.0 | 0.29 | 0.49 | 0.67 |
| 3WW5 | 28 | 21 | 158 | -25 | 6.2 | 0.36 | 0.48 | 0.62 |
| 3WW6 | 41 | 31 | 229 | -144 | 6.1 | 0.52 | 0.61 | 0.89 |
| 3WW7 | 31 | 27 | 165 | -171 | 5.0 | 0.39 | 0.43 | 0.64 |
| 5WW1 | 34 | 22 | 196 | -42 | 7.4 | 0.43 | 0.44 | 0.76 |
| 5WW2 | 43 | 25 | 206 | -48 | 6.5 | 0.55 | 0.52 | 0.80 |
| 5WW3 | 49 | 26 | 212 | -10 | 6.3 | 0.62 | 0.59 | 0.83 |
| 5WW4 | 56 | 28 | 223 | -1 | 6.0 | 0.71 | 0.68 | 0.87 |
| 5WW5 | 63 | 31 | 234 | -10 | 5.5 | 0.80 | 0.73 | 0.91 |
| 5WW6 | 61 | 32 | 236 | -106 | 5.5 | 0.78 | 0.68 | 0.92 |
| 5WW7 | 58 | 34 | 213 | -139 | 4.6 | 0.74 | 0.61 | 0.83 |
| 3EW1 | -40 | 17 | -5 | -116 | 4.5 | -0.51 | -0.40 | -0.45 |
| 3EW2 | -44 | 19 | -8 | -127 | 4.4 | -0.56 | -0.44 | -0. 50 |
| 3EW3 | -41 | 17 | -9 | -119 | 4.6 | -0.52 | -0.39 | -0.46 |
| 3EW4 | -35 | 14 | -3 | -98 | 4.5 | -0.45 | -0.30 | -0.38 |
| 3EW5 | -34 | 14 | 11 | -99 | 4.6 | -0.43 | -0.31 | -0.39 |
| 5EW1 | -28 | 13 | 3 | -94 | 5.1 | -0.36 | -0.28 | -0.37 |
| 5EW2 | -34 | 14 | -2 | -99 | 4.6 | -0.43 | -0.33 | -0.39 |
| 5EW3 | -35 | 15 | -0 | -144 | 7.3 | -0.45 | -0.32 | -0. 56 |
| 5EW4 | -31 | 14 | 0 | -142 | 7.9 | -0.39 | -0.30 | -0.55 |
| 5EW5 | -29 | 14 | 10 | -119 | 6.4 | -0.37 | -0.29 | -0.46 |
| 3SW1 | 1 | 40 | 324 | -185 | 8.1 | 0.01 | 0.48 | -0.72 |
| 3SW2 | 6 | 36 | 172 | -207 | 5.9 | 0.08 | 0.43 | -0.81 |
| 3SW3 | -14 | 13 | 65 | -94 | 6.1 | -0.18 | 0.13 | -0.37 |
| 3SW4 | -9 | 12 | 81 | -75 | 7.5 | -0.11 | 0.13 | -0.29 |
| 5SW1 | 5 | 50 | 361 | -207 | 7.1 | 0.06 | 0.60 | -0.81 |
| 5SW2 | 24 | 39 | 209 | -143 | 4.7 | 0.31 | 0.52 | -0.56 |
| 3NW1 | -27 | 11 | 7 | -91 | 5.8 | -0.34 | -0.28 | -0.36 |
| 3NW2 | -34 | 14 | 4 | -164 | 9.3 | -0.43 | -0.39 | -0.64 |
| INT | 0 | 10 | 53 | -38 | 5.3 | 0 | 0.11 | 0.21 |
| $\mathrm{OH}-\mathrm{U}$ | -64 | 36 | 39 | -261 | 5.5 | -0.81 | -0.75 | -1.02 |
| $\mathrm{OH}-\mathrm{L}$ | 47 | 26 | 229 | -10 | 7.0 | 0.60 | 0.57 | 0.89 |
| WR1A | -59 | 74 | 51 | -641 | 7.9 | -0.75 | -1.81 | -2. 50 |
| WR1B | -108 | 78 | 65 | -580 | 6.1 | -1.37 | -1.41 | -2.26 |
| WR1C | -90 | 42 | 50 | -401 | 7.4 | -1.14 | -1.01 | -1.56 |
| WR1E | 1 | 30 | 96 | -234 | 7.8 | 0.01 | -0.42 | -0.91 |
| WR1F | -19 | 23 | 55 | -218 | 8.7 | -0.24 | -0.33 | -0.85 |
| WR2C | -18 | 44 | 91 | -278 | 5.9 | -0.23 | -0.75 | -1.08 |
| WR2E | -7 | 16 | 57 | -124 | 7.3 | -0.09 | -0.24 | -0.48 |
| WR3A | -10 | 28 | 102 | -427 | 14.9 | -0.13 | -0.62 | -1.67 |
| WR3B | 14 | 22 | 148 | -132 | 6.6 | 0.18 | -0.15 | -0.58 |
| WR3C | 6 | 23 | 90 | -139 | 6.3 | 0.08 | -0.23 | -0.54 |
| WR3D | -3 | 28 | 91 | -156 | 5.5 | -0.04 | -0.38 | -0.61 |
| WR3E | 12 | 20 | 95 | -62 | 4.1 | 0.15 | 0.25 | 0.37 |
| WR4C | 17 | 20 | 89 | -44 | 3.6 | 0.22 | 0.25 | 0.35 |
| ER1A | -40 | 20 | -0 | -162 | 6.1 | -0.51 | -0.40 | -0.63 |
| ER1B | -35 | 13 | 2 | -118 | 6.4 | -0.46 | -0.30 | -0.46 |
| ER1C | -33 | 13 | 3 | -179 | 11.2 | -0.42 | -0.24 | -0.70 |
| ER2A | -48 | 36 | 19 | -339 | 8.1 | -0.61 | -0.84 | -1.32 |
| ER2B | 4 | 21 | 82 | -72 | 3.7 | 0.05 | -0.13 | -0.28 |
| ER3A | 7 | 38 | 62 | -340 | 9.1 | 0.09 | -0.52 | -1.33 |
| ER3B | -11 | 33 | 79 | -167 | 4.7 | -0.14 | -0.43 | -0.65 |

Duration 1024 seconds. $\quad \bar{u}_{10}=11.3 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=9.5 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=8.3 \mathrm{~ms}^{-1}$

$$
\begin{array}{llll}
\bar{\beta}=205^{\circ} . & \sigma_{\mathrm{u}_{10}}=3.1 \mathrm{~ms}^{-1} ; & \sigma_{\mathrm{u}_{5}}=2.8 \mathrm{~ms}^{-1} ; & \sigma_{\mathrm{u}_{3}}=2.7 \mathrm{~ms}^{-1} \\
\bar{\theta}=233^{\circ} . & \hat{\mathrm{u}}_{10}=20.4 \mathrm{~ms}^{-1} ; & \hat{\mathrm{u}}_{5}=19.3 \mathrm{~ms}^{-1} ; & \hat{\mathrm{u}}_{3}=16.1 \mathrm{~ms}^{-1}
\end{array}
$$

Table 8 Record A38C

|  | $\begin{gathered} \overline{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} p_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \hline g \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 11 | 21 | 148 | -79 | 6.5 | 0.15 | 0.35 | 0.71 |
| 3WW2 | 17 | 19 | 130 | -43 | 5.9 | 0.22 | 0.39 | 0.63 |
| 3WW3 | 22 | 20 | 124 | -46 | 5.1 | 0.29 | 0.41 | 0.60 |
| 3WW4 | 28 | 23 | 158 | -32 | 5.7 | 0.37 | 0.48 | 0.76 |
| 3WW5 | 30 | 22 | 161 | -35 | 6.0 | 0.40 | 0.50 | 0.78 |
| 3WW6 | 40 | 33 | 249 | -48 | 6.3 | 0.53 | 0.75 | 1.20 |
| 3WW7 | 30 | 26 | 209 | -48 | 6.9 | 0.40 | 0.63 | 1.01 |
| 5WW1 | 37 | 25 | 226 | -37 | 7.6 | 0.49 | 0.55 | 1.09 |
| 5WW2 | 45 | 26 | 215 | -5 | 6.5 | 0.60 | 0.67 | 1.04 |
| 5WW3 | 52 | 27 | 206 | -2 | 5.7 | 0.69 | 0.69 | 0.99 |
| 5WW4 | 56 | 29 | 226 | -23 | 5.9 | 0.74 | 0.68 | 1.09 |
| 5WW5 | 61 | 32 | 248 | -4 | 5.8 | 0.81 | 0.78 | 1.19 |
| 5WW6 | 59 | 32 | 280 | -10 | 6.9 | 0.78 | 0.87 | 1.35 |
| 5WW7 | 57 | 33 | 307 | -51 | 7.6 | 0.75 | 0.93 | 1.48 |
| 3EW1 | -37 | 15 | -5 | -125 | 5.9 | -0.49 | -0.50 | -0.60 |
| 3EW2 | -42 | 17 | -7 | -129 | 5.1 | -0.56 | -0.54 | 0.62 |
| 3EW3 | -39 | 16 | -5 | -131 | 5.7 | -0.52 | -0.52 | 0.63 |
| 3EW4 | -33 | 13 | 1 | -113 | 6.2 | -0.44 | -0.48 | 0.54 |
| 3EW5 | -31 | 13 | 5 | -105 | 5.7 | -0.41 | -0.41 | 0.51 |
| 5EW1 | -27 | 12 | 4 | -98 | 5.9 | -0.36 | -0.35 | -0.47 |
| 5EW2 | -34 | 13 | -6 | -106 | 5.5 | -0.45 | -0.41 | -0.51 |
| 5EW3 | -34 | 14 | -1 | -113 | 5.6 | -0.45 | -0.43 | -0.54 |
| 5EW4 | -31 | 14 | 0 | -111 | 5.7 | -0.41 | -0.40 | -0.53 |
| 5EW5 | -29 | 14 | 8 | -135 | 7.6 | -0.38 | -0.38 | -0.65 |
| 3SW1 | -7 | 39 | 192 | -252 | 6.3 | -0.09 | -0.47 | -1.21 |
| 3SW2 | -0 | 36 | 178 | -230 | 6.4 | -0.00 | -0.53 | -1.11 |
| 3SW3 | -16 | 13 | 76 | -98 | 6.3 | -0.21 | -0.37 | -0.47 |
| 3SW4 | -8 | 12 | 73 | -68 | 5.0 | -0.11 | -0.19 | -0.33 |
| 5SW1 | -3 | 46 | 358 | -260 | 7.8 | -0.04 | 0.79 | 1.72 |
| 5SW2 | 17 | 37 | 212 | -166 | 5.3 | 0.22 | 0.69 | 1.02 |
| 3NW1 | -26 | 11 | 2 | -87 | 5.5 | -0.34 | -0.36 | -0.42 |
| 3NW2 | -33 | 15 | 10 | -205 | 11.5 | -0.44 | -0.48 | -0.99 |
| InT | 1 | 10 | 42 | -44 | 4.5 | 0.01 | 0.14 | 0.20 |
| OH-U | -74 | 40 | 26 | -316 | 6.0 | -0.98 | -1.00 | -1.52 |
| OH-L | 45 | 28 | 211 | -16 | 5.9 | 0.60 | 0.66 | 1.02 |
| WR1A | -94 | 91 | 39 | -622 | 5.8 | -1.24 | -1.95 | -2.99 |
| WR1B | -117 | 75 | 38 | -679 | 7.5 | -1.54 | -1.92 | -3.27 |
| WR1C | -91 | 41 | 12 | -493 | 9.8 | -1.20 | -1.29 | -2.37 |
| WR1E | -17 | 38 | 90 | -357 | 8.9 | -0.22 | -0.63 | -1.72 |
| WR1F | -24 | 30 | 47 | -225 | 6.7 | -0.32 | -0.63 | -1.08 |
| WR2C | -35 | 46 | 85 | -253 | 4.7 | -0.46 | -0.85 | -1.22 |
| WR2E | -14 | 22 | 48 | -211 | 8.9 | -0.18 | -0.44 | -1.02 |
| WR3A | -15 | 24 | 66 | -27.8 | 11.0 | -0.20 | -0.66 | -1.34 |
| WR3B | 9 | 23 | 116 | -256 | 11.5 | 0.12 | -0.37 | -1.23 |
| WŖ3C | -2 | 29 | 103 | -231 | 7.9 | -0.03 | -0.52 | -1.11 |
| WR3D | -14 | 30 | 107 | -223 | 7.0 | -0.19 | -0.51 | -1.07 |
| WR3E | 10 | 20 | 97 | -84 | 4.7 | 0.13 | 0.35 | 0.47 |
| WR4C | 26 | 19 | 96 | -80 | 5.6 | 0.34 | 0.42 | 0.46 |
| ER1A | -30 | 17 | 14 | -185 | 9.1 | -0.40 | -0.49 | -0.89 |
| ER1B | -26 | 14 | 9 | -101 | 5.4 | -0.34 | -0.36 | -0.49 |
| ER1C | -31 | 13 | 3 | -119 | 6.8 | -0.41 | -0.36 | -0.57 |
| ER2A | -35 | 29 | 34 | -353 | 11.0 | -0.46 | -1.08 | -1.70 |
| ER2B |  | 20 | 109 | -63 | 5.0 | 0.11 | 0.34 | 0.52 |
| ER3A | 31 | 23 | 83 | -199 | 10.0 | 0.41 | -0.32 | -0.96 |
| ER3B | 17 | 21 | 101 | -52 | 4.0 | 0.22 | 0.40 | 0.49 |

Duration 1024 seconds.

$$
\bar{\beta}=205^{\circ} .
$$

$$
\begin{aligned}
\bar{u}_{10} & =11.1 \mathrm{~ms}^{-1} ; & \bar{u}_{5}=9.4 \mathrm{~ms}^{-1} ; & \bar{u}_{3} 8.2 \mathrm{~ms}^{-1} \\
\sigma_{\mathrm{u}_{10}} & =2.7 \mathrm{~ms}^{-1} ; & \sigma_{\mathrm{u}_{5}}=2.6 \mathrm{~ms}^{-1} ; & \sigma_{\mathrm{u}_{3}}=2.5 \mathrm{~ms}^{-1} \\
\hat{\mathrm{u}}_{10} & =18.4 \mathrm{~ms}^{-1} ; & \hat{\mathrm{u}}_{5}=17.1 \mathrm{~ms}^{-1} ; & \hat{\mathrm{u}}_{3}=17.6 \mathrm{~ms}^{-1}
\end{aligned}
$$

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{p} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} g \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 5 | 18 | 117 | -65 | 6.2 | 0.06 | 0.31 | 0.48 |
| 3WW2 | 14 | 17 | 117 | -47 | 6.1 | 0.17 | 0.35 | 0.48 |
| 3WW3 | 21 | 18 | 133 | -34 | 6.2 | 0.26 | 0.38 | 0.55 |
| 3WW4 | 27 | 20 | 152 | -50 | 6.2 | 0.33 | 0.40 | 0.63 |
| 3WW5 | 32 | 20 | 140 | -85 | 5.4 | 0.40 | 0.36 | 0.58 |
| 3WW6 | 45 | 30 | 178 | -165 | 7.0 | 0.56 | 0.56 | 0.74 |
| 3WW7 | 35 | 27 | 158 | -177 | 7.8 | 0.43 | 0.48 | 0.65 |
| 5WW1 | 5 | 11 | 130 | -15 | 11.4 | 0.06 | 0.32 | 0.54 |
| 5WW2 | 50 | 24 | 221 | -11 | 7.1 | 0.62 | 0.65 | 0.91 |
| 5WW3 | 47 | 24 | 194 | -33 | 6.1 | 0.58 | 0.65 | 0.80 |
| 5WW4 | 53 | 25 | 198 | -19 | 5.8 | 0.65 | 0.68 | 0.82 |
| 5WW5 | 56 | 26 | 209 | -18 | 5.9 | 0.69 | 0.70 | 0.86 |
| 5WW6 | 54 | 27 | 188 | -127 | 6.7 | 0.67 | 0.61 | 0.78 |
| 5WW7 | 57 | 30 | 195 | -147 | 5.3 | 0.70 | 0.58 | 0.81 |
| 3EW1 | -46 | 17 | -5 | -131 | 5.0 | -0.57 | -0.48 | -0.54 |
| 3EW2 | -48 | 18 | -5 | -144 | 5.3 | -0.59 | -0.53 | -0.60 |
| 3EW3 | -50 | 18 | -8 | -165 | 6.4 | -0.62 | -0.58 | -0.68 |
| 3EW4 | -44 | 17 | -3 | -159 | 6.8 | -0.54 | -0.55 | -0.66 |
| 3EW5 | -42 | 16 | -3 | -172 | 8.1 | -0.52 | -0.58 | -0.71 |
| 5EW1 | -38 | 15 | -4 | -109 | 4.7 | -0.47 | -0.35 | -0.45 |
| 5EW2 | -42 | 15 | -8 | -115 | 4.9 | -0.52 | -0.41 | -0.48 |
| 5EW3 | -48 | 18 | -5 | -217 | 9.4 | -0.59 | -0.60 | -0.90 |
| 5EW4 | -45 | 17 | -3 | -172 | 7.5 | -0.56 | -0.43 | -0.71 |
| 5EW5 | -45 | 16 | -2 | -137 | 5.7 | -0.56 | -0.48 | -0.57 |
| 3SW1 | -1 | 40 | 162 | -194 | 4.8 | -0.01 | -0.43 | -0.80 |
| 3SW2 | 5 | 35 | 165 | -219 | 6.4 | 0.06 | -0.45 | -0.91 |
| 3SW3 | 5 | 19 | 130 | -85 | 6.6 | 0.06 | 0.32 | 0.54 |
| 3SW4 | -16 | 13 | 88 | -101 | 8.0 | -0.20 | -0.36 | -0.42 |
| 5SW1 | 44 | 47 | 301 | -206 | 5.5 | 0.54 | 0.76 | 1.24 |
| 5SW2 | 30 | 41 | 269 | -158 | 5.8 | 0.37 | 0.65 | 1.11 |
| 3NW1 | -35 | 13 | -4 | -116 | 6.2 | -0.43 | -0.38 | -0.48 |
| 3NW2 | -41 | 16 | 4 | -175 | 8.4 | -0.51 | -0.45 | -0.72 |
| INT | -12 | 9 | 34 | -51 | 5.1 | -0.15 | -0.15 | -0.21 |
| $\mathrm{OH}-\mathrm{U}$ | 5 | 25 | 106 | -113 | 4.4 | 0.06 | -0.19 | -0.47 |
| OH-L | 43 | 24 | 194 | 18 | 6.3 | 0.53 | 0.62 | 0.80 |
| WR1A | 8 | 32 | 133 | -230 | 7.4 | 0.10 | -0.36 | -0.95 |
| WR1B | -18 | 42 | 123 | -410 | 9.3 | -0.22 | -0.65 | -1.70 |
| WR1C | -19 | 29 | 112 | -229 | 7.2 | -0.23 | -0.38 | -0.95 |
| WR1E | 11 | 22 | 112 | -87 | 4.6 | 0.14 | 0.38 | 0.46 |
| WR1F | -8 | 19 | 99 | -126 | 6.2 | -0.10 | -0.18 | -0.52 |
| WR2C | 20 | 19 | 103 | -79 | 5.2 | 0.25 | 0.31 | 0.43 |
| WR2E | 22 | 16 | 114 | -37 | 5.7 | 0.27 | 0.33 | 0.47 |
| WR3A | 8 | 17 | 85 | -202 | 12.3 | 0.10 | -0.24 | -0.84 |
| WR3B | 13 | 12 | 107 | -150 | 13.6 | 0.16 | -0.09 | -0.62 |
| WR3C | 7 | 9 | 67 | -27 | 6.7 | 0.09 | 0.16 | 0.28 |
| WR3D | 6 | 11 | 71 | -69 | 6.8 | 0.07 | 0.19 | 0.29 |
| WR3E | 5 | 11 | 72 | -31 | 6.1 | 0.06 | 0.17 | 0.30 |
| WR4C | -3 | 9.7 | 98 | -75 | 10.4 | -0.04 | -0.17 | -0.31 |
| ER1A | -66 | 27 | -10 | -293 | 8.4 | -0.81 | -0.71 | -1.21 |
| ER1B | -58 | 21 | 2 | -237 | 8.5 | -0.72 | -0.65 | -0.98 |
| ER1C | -55 | 19 | -10 | -204 | 7.8 | -0.68 | -0.48 | -0.84 |
| ER2A | -55 | 29 | -4 | -276 | 7.6 | -0.68 | -0.73 | -1.14 |
| ER2B | -52 | 28 | 52 | -294 | 8.6 | -0.64 | -0.79 | -1.22 |
| ER3A | -14 | 41 | 44 | -347 | 8.1 | -0.17 | -0.98 | -1.44 |
| ER3B | -41 | 23 | 29 | -260 | 9.5 | -0.51 | -0.58 | -1.08 |

Duration 1024 seconds.
$\bar{\beta}=205^{\circ}$.
$\bar{\theta}=233^{\circ}$.
$\bar{u}_{10}=11.5 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=9.7 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=8.5 \mathrm{~ms}^{-1}$
$\sigma_{\mathrm{u}_{10}}=2.6 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{5}}=2.3 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{3}}=2.2 \mathrm{~ms}^{-1}$
$\hat{u}_{10}^{u_{10}}=19.9 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{5}=17.7 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{3}=16.1 \mathrm{~ms}^{-1}$

Table 10 Record A38E

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{aligned} & \sigma_{\mathrm{p}} \\ & \left(\mathrm{Nm}^{-2}\right) \end{aligned}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathrm{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 1 | 18 | 126 | -66 | 6.9 | 0.01 | 0.23 | 0.61 |
| 3WW2 | 11 | 18 | 106 | -40 | 5.3 | 0.14 | 0.32 | 0.51 |
| 3WW3 | 20 | 20 | 163 | -29 | 7.1 | 0.25 | 0.42 | 0.79 |
| 3WW4 | 24 | 23 | 135 | -31 | 4.8 | 0.30 | 0.52 | 0.66 |
| 3WW5 | 30 | 23 | 159 | -24 | 5.6 | 0.38 | 0.57 | 0.77 |
| 3WW6 | 42 | 32 | 233 | -153 | 6.0 | 0.53 | 0.87 | 1.13 |
| 3WW7 | 33 | 26 | 187 | -126 | 5.9 | 0.42 | 0.71 | 0.91 |
| 5WW1 | 28 | 20 | 161 | -37 | 6.6 | 0.35 | 0.48 | 0.78 |
| 5WW2 | 28 | 24 | 152 | -26 | 5.2 | 0.35 | 0.51 | 0.74 |
| 5WW3 | 40 | 25 | 164 | -10 | 5.0 | 0.50 | 0.62 | 0.80 |
| 5WW4 | 45 | 26 | 179 | -24 | 5.1 | 0.57 | 0.69 | 0.87 |
| 5WW5 | 51 | 28 | 196 | -6 | 5.2 | 0.64 | 0.76 | 0.95 |
| 5WW6 | 52 | 28 | 203 | -57 | 5.4 | 0.65 | 0.74 | 0.99 |
| 5WW7 | 53 | 28 | 214 | -104 | 5.7 | 0.67 | 0.78 | 1.04 |
| 3EW1 | -44 | 16 | -9 | -133 | 5.6 | -0.55 | -0.54 | -0.65 |
| 3EW2 | -48 | 16 | -14 | -135 | 5.4 | -0.60 | -0.56 | -0.66 |
| 3EW3 | -51 | 17 | -16 | -136 | 5.0 | -0.64 | -0.58 | -0.66 |
| 3EW4 | -45 | 15 | -9 | -125 | 5.3 | -0.57 | -0.50 | -0.61 |
| 3EW5 | -44 | 16 | 1 | -143 | 6.2 | -0.55 | -0.53 | -0.69 |
| 5EW1 | -39 | 14 | -3 | -125 | 6.1 | -0.49 | -0.48 | -0.61 |
| 5EW2 | -44 | 14 | -9 | -123 | 5.6 | -0.55 | -0.50 | -0.60 |
| 5EW3 | -51 | 17 | -11 | -145 | 5.5 | -0.64 | -0.59 | -0.70 |
| 5EW4 | -49 | 16 | -9 | -134 | 5.3 | -0.62 | -0.54 | -0.65 |
| 5EW5 | -48 | 17 | 4 | -136 | 5.2 | -0.60 | -0.53 | -0.66 |
| 3SW1 | -5 | 38 | 140 | -200 | 5.1 | -0.06 | -0.49 | -0.97 |
| 3SW2 | 3 | 37 | 130 | -151 | 4.0 | 0.04 | -0.50 | -0.73 |
| 3SW3 | 3 | 16 | 125 | -78 | 7.6 | 0.04 | -0.19 | -0.38 |
| 3SW4 | -14 | 12 | 60 | -82 | 6.2 | -0.18 | -0.24 | -0.40 |
| 5SW1 | 6 | 45 | 170 | -197 | 4.2 | 0.08 | -0.71 | -0.96 |
| 5SW2 | 23 | 38 | 175 | -167 | 5.0 | 0.29 | -0.46 | -0.81 |
| 3NW1 | -36 | 13 | -2 | -122 | 6.6 | -0.45 | -0.41 | -0.59 |
| 3NW2 | -43 | 15 | -4 | -141 | 6.5 | -0.54 | -0.52 | -0.68 |
| INT | -16 | 9 | 24 | -61 | 5.0 | -0.20 | -0.21 | -0.30 |
| $\mathrm{OH}-\mathrm{U}$ | 17 | 23 | 120 | -115 | 5.7 | 0.21 | 0.42 | 0.58 |
| OH-L | 34 | 24 | 159 | -18 | 5.2 | 0.43 | 0.57 | 0.77 |
| WR1A | 31 | 27 | 202 | -218 | 9.2 | 0.39 | -0.23 | -1.06 |
| WR1B | 18 | 31 | 187 | -133 | 5.4 | 0.23 | 0.48 | 0.91 |
| WR1C | 11 | 25 | 150 | -143 | 6.2 | 0.14 | 0.42 | 0.73 |
| WR1E | -35 | 26 | 87 | -113 | 4.7 | -0.44 | -0.38 | -0.55 |
| WR1F | -4 | 19 | 85 | -113 | 5.7 | -0.05 | -0.18 | -0.55 |
| WR2C | 32 | 17 | 137 | -74 | 6.2 | 0.40 | 0.41 | 0.67 |
| WR2E | 29 | 20 | 140 | -24 | 5.6 | 0.37 | 0.47 | 0.68 |
| WR3A | 16 | 15 | 99 | -227 | 16.2 | 0.20 | 0.28 | -1.10 |
| WR3B | 15 | 11 | 93 | -70 | 7.7 | 0.19 | 0.23 | 0.45 |
| WR3C | 10 | 8.8 | 65 | -20 | 6.2 | 0.13 | 0.17 | 0.31 |
| WR3D | 8 | 10 | 67 | -31 | 5.9 | 0.10 | 0.17 | 0.33 |
| WR3E | 7 | 11 | 142 | -32 | 12.2 | 0.09 | 0.16 | 0.69 |
| WR4C | -21 | 7.5 | 85 | -63 | 14.1 | -0.26 | -0.18 | -0.31 |
| ER1A | -52 | 20 | -8 | -207 | 7.7 | -0.65 | -0.73 | -1.00 |
| ER1B | -59 | 19 | -18 | -166 | 5.6 | -0.74 | -0.61 | -0.81 |
| ER1C | -62 | 20 | -20 | -175 | 5.6 | -0.78 | -0.59 | -0.85 |
| ER2A | -43 | 18 | 6 | -199 | 8.7 | -0.54 | -0.65 | -0.97 |
| ER2B | -47 | 20 | 3 | -188 | 7.0 | -0.59 | -0.68 | -0.91 |
| ER3A | -14 | 17 | 26 | -142 | 7.5 | -0.18 | -0.52 | -0.69 |
| ER3B | -41 | 20 | 16 | -171 | 6.5 | -0.52 | -0.59 | -0.83 |

Duration 1024 seconds. $\quad \bar{u}_{10}=11.4 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=9.6 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=8.3 \mathrm{~ms}^{-1}$
$\bar{\beta}=205^{\circ}$.
$\sigma_{\mathrm{u}_{10}}=2.6 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{5}}=2.4 \mathrm{~ms}^{-1} ; \quad \sigma_{\mathrm{u}_{3}}=2.3 \mathrm{~ms}^{-1}$
$\bar{\theta}=233^{\circ}$ 。
$\hat{\mathrm{u}}_{10}=18.3 \mathrm{~ms}^{-1}$;
$\hat{\mathrm{u}}_{5}=16.7 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{3}=14.9 \mathrm{~ms}^{-1}$

Table 11 Record A38F

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathrm{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathbf{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} C_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 6 | 19 | 107 | -80 | 5.3 | 0.09 | 0.32 | 0.49 |
| 3WW2 | 17 | 17 | 99 | -56 | 4.8 | 0.27 | 0.34 | 0.45 |
| 3WW3 | 21 | 19 | 101 | -30 | 4.2 | 0.33 | 0.36 | 0.46 |
| 3WW4 | 27 | 21 | 124 | -23 | 4.6 | 0.43 | 0.43 | 0.57 |
| 3WW5 | 30 | 20 | 123 | -25 | 4.6 | 0.47 | 0.45 | 0.57 |
| 3WW6 | 33 | 27 | 172 | -42 | 5.1 | 0.52 | 0.58 | 0.79 |
| 3WW7 | 18 | 20 | 139 | -40 | 6.0 | 0.28 | 0.42 | 0.64 |
| 5WW1 | 31 | 20 | 152 | -59 | 6.0 | 0.49 | 0.48 | 0.70 |
| 5WW2 | 47 | 25 | 176 | -85 | 5.2 | 0.74 | 0.64 | 0.81 |
| 5WW3 | 50 | 25 | 178 | -35 | 5.1 | 0.79 | 0.58 | 0.82 |
| 5WW4 | 49 | 26 | 170 | -23 | 4.6 | 0.77 | 0.58 | 0.78 |
| 5WW5 | 46 | 27 | 175 | -9 | 4.8 | 0.73 | 0.62 | 0.80 |
| 5WW6 | 48 | 26 | 181 | -4 | 5.1 | 0.76 | 0.62 | 0.83 |
| 5WW7 | 39 | 23 | 166 | -16 | 5.5 | 0.62 | 0.54 | 0.76 |
| 3EW1 | -35 | 14 | -6 | -109 | 5.3 | -0.55 | -0.44 | -0.50 |
| 3EW2 | -38 | 14 | -8 | -110 | 5.1 | -0.60 | -0.43 | -0.51 |
| 3EW3 | -39 | 15 | -6 | -132 | 6.2 | -0.62 | -0.50 | -0.61 |
| 3EW4 | -37 | 13 | -8 | -117 | 6.1 | -0.59 | -0.44 | -0.54 |
| 3EW5 | -42 | 16 | 0 | -119 | 4.8 | -0.66 | -0.45 | -0.55 |
| 5EW1 | -28 | 12 | -1 | -88 | 5.0 | -0.44 | -0.36 | -0.40 |
| 5EW2 | -34 | 12 | -8 | -94 | 5.0 | -0.54 | -0.40 | -0.43 |
| 5EW3 | -38 | 15 | -5 | -120 | 5.5 | -0.60 | -0.49 | -0.55 |
| 5EW4 | -39 | 14 | -5 | -114 | 5.4 | -0.62 | -0.44 | -0. 52 |
| 5EW5 | -46 | 16 | -5 | -125 | 4.9 | -0.73 | -0.49 | -0.57 |
| 3SW1 | -47 | 28 | 65 | -244 | 7.0 | -0.74 | -0.48 | -1.12 |
| 3SW2 | -42 | 30 | 53 | -198 | 5.2 | -0.66 | -0.52 | -0.91 |
| 3SW3 | -23 | 17 | 33 | -134 | 6.5 | -0.36 | -0.35 | -0.62 |
| 3SW4 | -24 | 11 | 10 | -84 | 5.5 | -0.38 | -0.26 | -0.39 |
| 5SW1 | 1 | 32 | 158 | -165 | 5.2 | 0.01 | -0.38 | -0.76 |
| 5SW2 | -37 | 34 | 118 | -177 | 4.6 | -0.59 | -0.54 | -0.81 |
| 3NW1 | -47 | 17 | -3 | -135 | 5.2 | -0.74 | -0.49 | -0.62 |
| 3NW2 | -57 | 20 | -2 | -169 | 5.6 | -0.90 | -0.61 | -0.78 |
| InT | -27 | 11 | -3 | -92 | 5.9 | -0.43 | -0.31 | -0.42 |
| $\mathrm{OH}-\mathrm{U}$ | 98 | 26 | 307 | 13 | 8.0 | 1.55 | 0.82 | 1.41 |
| OH-L | 43 | 23 | 148 | -28 | 4.6 | 0.68 | 0.52 | 0.68 |
| WR1A | 38 | 26 | 207 | -48 | 6.5 | 0.60 | 0.59 | 0.95 |
| WR1B | 30 | 33 | 204 | -88 | 5.3 | 0.47 | 0.65 | 0.93 |
| WR1C | 41 | 27 | 184 | -43 | 5.3 | 0.65 | 0.58 | 0.85 |
| WR1E | 33 | 33 | 172 | -44 | 4.2 | 0.52 | 0.59 | 0.79 |
| WR1F | 12 | 24 | 129 | -85 | 4.9 | 0.19 | 0.40 | 0.59 |
| WR2C | 43 | 24 | 170 | -9 | 5.3 | 0.68 | 0.57 | 0.78 |
| WR2E | 52 | 28 | 182 | -7 | 4.6 | 0.82 | 0.63 | 0.84 |
| WR3A | 18 | 15 | 125 | -75 | 7.1 | 0.28 | 0.32 | 0.57 |
| WR3B | 20 | 16 | 120 | -48 | 6.2 | 0.32 | 0.36 | 0.55 |
| WR3C | 19 | 15 | 109 | -39 | 6.0 | 0.30 | 0.32 | 0.50 |
| WR3D | 19 | 17 | 121 | -23 | 6.0 | 0.30 | 0.33 | 0.56 |
| WR3E | 16 | 17 | 114 | -40 | 5.8 | 0.25 | 0.29 | 0.52 |
| WR4C | -12 | 10 | 51 | -90 | 7.8 | -0.19 | -0.13 | -0.41 |
| ER1A | -40 | 16 | 5 | -128 | 5.5 | -0.63 | -0.46 | -0.59 |
| ER1B | -46 | 17 | -12 | -132 | 5.1 | -0.73 | -0.49 | -0.61 |
| ER1C | -50 | 19 | -4 | -183 | 7.0 | -0.79 | -0.59 | -0.84 |
| ER2A | -35 | 16 | 0 | -124 | 5.6 | -0.55 | -0.41 | -0.57 |
| ER2B | -39 | 17 | -0 | -118 | 4.6 | -0.62 | -0.45 | -0.54 |
| ER3A | -16 | 17 | 13 | -141 | 7.3 | -0.25 | -0.42 | -0.65 |
| ER3B | -36 | 16 | 3 | -111 | 4.7 | -0.57 | -0.41 | -0.51 |


| Duration 1024 seconds. | $\overline{\mathrm{u}}_{10}=10.2 \mathrm{~ms}^{-1}$; | $\overline{\mathrm{u}}_{5}=8.3 \mathrm{~ms}^{-1} ;$ | $\bar{u}_{3}=7.1 \mathrm{~ms}^{-1}$ |
| :---: | :---: | :---: | :---: |
| $\bar{\beta}=210^{\circ}$. | $\sigma_{\mathrm{u}_{10}}=2.8 \mathrm{~ms}^{-1}$; | $\sigma_{\mathrm{u}_{5}}=2.4 \mathrm{~ms}^{-1}$; | $\sigma_{u_{3}}=2.2 \mathrm{~ms}^{-1}$ |
| $\bar{\theta}=238^{\circ}$. | $\hat{\mathrm{u}}_{10}=18.8 \mathrm{~ms}^{-1}$; | $\widehat{\mathrm{u}}_{5}=15.9 \mathrm{~ms}^{-1}$; | $\hat{\mathrm{u}}_{3}=14.5 \mathrm{~ms}^{-1}$ |

Table 12 Record A38G

|  | $\begin{gathered} \overline{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \sigma_{\mathbf{p}} \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\max } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{p}_{\min } \\ \left(\mathrm{Nm}^{-2}\right) \end{gathered}$ | $\begin{gathered} \mathrm{g} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ | $\mathrm{C}_{\overline{\mathbf{p}}}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (2 \mathrm{sec}) \end{gathered}$ | $\begin{gathered} \mathrm{C}_{\hat{\mathbf{p}}} \\ (1 / 32 \mathrm{sec}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3WW1 | 10 | 17 | 115 | -61 | 6.2 | 0.24 | 0.64 | 0.84 |
| 3WW2 | 14 | 14 | 93 | -28 | 5.6 | 0.33 | 0.42 | 0.68 |
| 3WW3 | 18 | 14 | 96 | -24 | 5.6 | 0.43 | 0.56 | 0.70 |
| 3WW4 | 19 | 16 | 109 | -21 | 5.6 | 0.45 | 0.60 | 0.80 |
| 3WW5 | 23 | 16 | 115 | -18 | 5.7 | 0.55 | 0.60 | 0.84 |
| 3WW6 | 26 | 22 | 148 | -38 | 5.5 | 0.62 | 0.76 | 1.08 |
| 3WW7 | 16 | 16 | 121 | -36 | 6.6 | 0.38 | 0.54 | 0.89 |
| 5WW1 | 26 | 19 | 131 | -17 | 5.5 | 0.62 | 0.71 | 0.96 |
| 5WW2 | 41 | 20 | 137 | -4 | 4.8 | 0.98 | 0.79 | 1.00 |
| 5WW3 | 38 | 20 | - 148 | -2 | 5.5 | 0.91 | 0.90 | 1.08 |
| 5WW4 | 16 | 20 | 126 | -30 | 5.5 | 0.38 | 0.69 | 0.92 |
| 5WW5 | 15 | 21 | 149 | -33 | 6.4 | 0.36 | 0.71 | 1.09 |
| 5WW6 | 36 | 20 | 198 | -12 | 8.1 | 0.86 | 0.83 | 1.45 |
| 5WW7 | 33 | 18 | 150 | -22 | 6.5 | 0.79 | 0.76 | 1.10 |
| 3EW1 | -21 | 8.7 | 0 | -67 | 5.3 | -0.50 | -0.39 | -0.49 |
| 3EW2 | -22 | 9.3 | 0 | -69 | 5.0 | -0.53 | -0.39 | -0.50 |
| 3EW3 | -23 | 8.9 | -2 | -69 | 5.2 | -0.55 | -0.40 | -0.50 |
| 3EW4 | -20 | 7.5 | 0 | -65 | 6.0 | -0.48 | -0.41 | -0.48 |
| 3EW5 | -23 | 8.9 | 6 | -74 | 5.7 | -0.55 | -0.43 | -0.54 |
| 5EW1 | -15 | 7.5 | 4 | -54 | 5.2 | -0.36 | -0.32 | -0.39 |
| 5EW2 | -20 | 7.4 | -2 | -54 | 4.6 | -0.48 | -0.34 | -0.39 |
| 5EW3 | -22 | 9.0 | 2 | -64 | 4.7 | -0.53 | -0.39 | -0.47 |
| 5EW4 | -22 | 7.8 | -2 | -71 | 6.3 | -0.53 | -0.42 | -0.52 |
| 5EW5 | -24 | 8.7 | 0 | -81 | 6.5 | -0.57 | -0.42 | -0.59 |
| 3SW1 | -31 | 19 | 60 | -174 | 7.5 | -0.74 | -0.63 | -1.27 |
| 3SW2 | -29 | 20 | 86 | -148 | 6.0 | -0.69 | -0.64 | -1.08 |
| 3SW3 | -15 | 13 | 30 | -146 | 10.1 | -0.36 | -0.44 | -1.07 |
| 3SW4 | -11 | 7.2 | 20 | -57 | 6.4 | -0.26 | -0.24 | -0.42 |
| 5SW1 | 19 | 22 | 134 | -89 | 5.2 | 0.45 | 0.65 | 0.98 |
| 5SW2 |  |  |  |  |  |  |  |  |
| 3NW1 | -28 | 10 | -2 | -80 | 5.2 | -0.67 | -0.50 | -0.58 |
| 3NW2 | -35 | 14 | 4 | -140 | 7.5 | -0.84 | -0.72 | -1.02 |
| INT | -12 | 6.1 | 9 | -49 | 6.1 | -0.29 | -0.25 | -0.36 |
| $\mathrm{OH}-\mathrm{U}$ | 90 | 21 | 327 | -7 | 11.3 |  |  |  |
| $\mathrm{OH}-\mathrm{L}$ | 34 | 19 | 142 | -23 | 5.7 | 0.81 | 0.86 | 1.04 |
| WR1A | -8 | 27 | 78 | -242 | 8.7 | -0.19 | -0.73 | -1.77 |
| WR1B | -16 | 27 | 80 | -256 | 8.9 | -0.38 | -0.86 | -1.87 |
| WR1C | -17 | 21 | 79 | -187 | 8.1 | -0.41 | -0.64 | -1.37 |
| WR1E | 7 | 19 | 102 | -63 | 5.0 | 0.17 | 0.40 | 0.75 |
| WR1F | -7 | 14 | 66 | -85 | 5.6 | -0.17 | -0.28 | -0.62 |
| WR2C | 6 | 16 | 72 | -84 | 4.9 | 0.14 | -0.33 | -0.61 |
| WR2E | 20 | 12 | 97 | -18 | 6.4 | 0.48 | 0.42 | 0.71 |
| WR3A | 6 | 6.3 | 49 | -46 | 8.2 | 0.14 | 0.15 | 0.36 |
| WR3B | 5 | 6.3 | 44 | -46 | 8.1 | 0.12 | 0.13 | 0.32 |
| WR3C | 4 | 6.2 | 55 | -45 | 8.2 | 0.10 | 0.13 | 0.40 |
| WR3D | 2 | 7.9 | 52 | -41 | 6.3 | 0.05 | 0.18 | 0.38 |
| WR3E | 5 | 6.8 | 46 | -23 | 6.0 | 0.12 | 0.18 | 0.34 |
| WR4C | -9 | 4.6 | 19 | -32 | 5.0 | -0.22 | -0.18 | -0.23 |
| ER1A | -25 | 11 | 9 | -116 | 8.3 | -0.60 | -0.45 | -0.85 |
| ER1B | -33 | 13 | -2 | -114 | 6.2 | -0.79 | -0.55 | -0.83 |
| ER1C | -34 | 12 | 0 | -155 | 10.1 | -0.81 | -0.71 | -1.13 |
| ER2A | -20 | 11 | 7 | -85 | 5.9 | -0.48 | -0.44 | -0.62 |
| ER2B | -22 | 11 | 11 | -97 | 6.8 | -0.53 | -0.48 | -0.71 |
| ER3A | -4 | 9.4 | 14 | -89 | 9.0 | -0.10 | -0.48 | -0.65 |
| ER3B | -15 | 9.3 | 45 | -68 | 6.5 | -0.36 | -0.35 | -0. 50 |

Duration 1024 seconds. $\quad \bar{u}_{10}=8.3 \mathrm{~ms}^{-1} ; \quad \bar{u}_{5}=6.6 \mathrm{~ms}^{-1} ; \quad \bar{u}_{3}=5.6 \mathrm{~ms}^{-1}$

$$
\begin{array}{lll}
\bar{\beta}=220^{\circ} . & \sigma_{\mathrm{u}_{10}}=2.1 \mathrm{~ms}^{-1} ; & \sigma_{\mathrm{u}_{5}}=1.8 \mathrm{~ms}^{-1} ;
\end{array} \sigma_{\mathrm{u}_{3}}=1.7 \mathrm{~ms}^{-1}, ~\left(\hat{\mathrm{u}}_{10}=14.9 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{5}=13.5 \mathrm{~ms}^{-1} ; \quad \hat{\mathrm{u}}_{3}=12.1 \mathrm{~ms}^{-1} .\right.
$$

## Cuirent papers -recentissues

crasit
$65^{3} 45$
 buldinger:


cpşitb
CP56 75

 possible neens of saving enargy in nousinģ
CP57/45 icp58/75
CP59175:
croots
cp6175
CFB2775
CP68175 CP64/76 cr65if6: cp6ent c86775 CP68775 crespits criton5
CP7475 ce72775: ce73776 cp7475

## CP75 75

Cry 7875
cp77175
cP78776
ср79/75
CP80/75
CP81/75
cР82/75
CP83/75

ces5775


 1974.

Cragai75 Tha decay and presenvation of neturtibuiding storie:
cepofis bulding:foseatchand turureriends:
CFS175 A review ctaceidonts inthe canstructianindusty.









## beterchenne

 JKCHARUESnéstinnes
53Mmbtrone
Scisanukis:

51LHES



Sy Butient
FTTHORNE
GCTEYCHENNK 4. GMDGLEY: SGESAMUELS Mnd AECHENEY
CEflukscow:
ENEEMAM anduentypicht MAKUMFHREZSK
8AYGUNG ondysiasix
fiAREHangra zaUke:
flest
 SFTHORNE
SNASH
2 Petinkter

## 

3HEMESSANTHMDHCLAPR
pep unstay

JMBAKER EROMEERS:
JWWumoreanenduc savory
CAPAICE
3 8.01 Cx
SEfEDEN
AFERAVER
SKCCAREY
 and 8 sing

## Current papers -recentissues



