Air flow through cracks

LP Mopkins BSc
B Hencford

sumamany

This paper contuin a decription of the experimental mathod ued and the rexults obtained in aseries of experments aimed at invetiptimg the characteristics of air fow trough dometic crack, including the "straight through", "Listapot and multicornered" forms found in the construction of a dwellimg.

nomenclatuhe

A	Area (m)
CA	Apparent coefficient
$C^{\text {c }}$	Discharge couficient
d	Crack thictress (width) (m)
D.	Mydraulic diameter (m)
K_{1}	Empirical constant
1	Cract leneth (m)
p	Static premare of huid (Nm^{-})
4	Mresure ditcrence (Nm^{-8})
8	Volume flow of fuid through a crack ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)
Ond	Adventitious volume fow (m*s ${ }^{\text {a }}$)
2.	Total flow ($\left.Q_{\text {a }}=2+0 \mathrm{ab}\right)\left(\mathrm{m}^{2} \mathrm{~s}^{-3}\right)$
He	Reynolds Number based on hydraulic diameter
U.	Centre line velocity through a crack (ms^{-1})
*	Averace velocity over ares A (ms-1)
Z	Centre line ditanoe through a crack (m)
*	Density (Kg m- ${ }^{\text {a }}$)
	Minematic viscosity (m45 ${ }^{\text {a }}$)
$7 *$	Luplacian operator

1 intnoduction

The work being carried out on the ventilation of dwellings nocesittter an accurnte knowledge of the volues of open are then are asociated with typical room componens such as doors and windows. Any computer prograrme written to smulate ventilation eflects it room would require accurate knowledge comcrnimg the flow charcteristics of crucks associted with these room compponents.
The computer method ued at prevent relies on balaxcing fow rates troogh a mutur of openings uaing
a simple law normally applied to flow through thin plate orifces. Decause the flows normally associated with adventitious ventilation are rather different from the turbulent conditions of orifice plate flow it was considered useful to investigate the Reynolds Number dependenue of such flows. This would enable a semiempirical result to be used in the computer method which was more representative of the types of flow experienced.

Fig la: Straigh ahrough cracks.

Fig 1b: L-shaped cracks.

Dumasiows im mm

Fig hc: Multiwornered cracks.

Fig 2: Arrangemens of test box.

Three main crack forms are normally found in a dwelling (see Fig. 1). The first is a "straight through" crack where air passes directly through an opening; for example the gap between a door and the floor. The second is an "L-shaped" crack where the air has to pass round a right-angle bend, an example being a casement window shut against the frame. The third is a "multi-cornered" crack where there are two right-angled bends, such as those in the groove of a sash window.
Various crack geometries were tested with crack thicknesses varying from 0.5 mm to 7.5 mm , these limits being the ones likely to be found in a dwelling. A ventilator test box, shown in Fig. 2, normally used for finding the open area of proprictary air vents, was utilized to draw air through the cracks.

Wis 3: Gregh of wiume fow ascinat $\sqrt{\text { Ap for a rymical }}$ noom.

2 THEORY

It was found in laboratory tests ${ }^{1}$ that the rate of air flow through such openings as ventilators and the cracks around windows and doors is approximately proportional to the square root of the pressure difference acting across the component. This simple law also applies to the flow through a thin plate orifice which for a coefficient of discharge of 0.65 is given by:

$$
\begin{equation*}
\Delta p=\frac{1 \cdot 4 Q^{2}}{A^{2}} \tag{1}
\end{equation*}
$$

So if the rate of flow Q through a component is known for a given pressure Δp across it, the area A of the thin plate orifice to which the component can be regarded as being equivalent may be calculated.
If this relationship is true in practice there will be a straight line relationship between Q and $\sqrt{4 p}$. However, this is not the case, as ahown in Fig. 3.
There can be a number of reasons for this deviation from theory:

1. The open area A increases, as the pressure difference Δp increases, due to distortion of the crack or cracks being invedigated.
2. In equation 1 the numerical constant contains a discharge coefficient equal to 0.65 as mentioned carlier; if there is any variation in the discharge coefficient then this constant will vary, giving rise to a deviation from the theory.
3. The square law approximation is not strictly true for all types of crack, crock seometries and presure differences.
Work was carried out in 1953° in which the fowpressure curves were fitted to quadratic equations. In 1970, a study of matural ventilation by the HVRA produced an equation of the form:

$$
\Delta p=\left(\frac{Q}{I . C}\right)^{m}
$$

IVeing the total leagth of the crack and m an exponent equal to 1.6 but which might take on values anywhere
between I and 3, C is an air leakage coefficient. Considering the above results, experiments performed by Dritish Gas in 1972 showed that equation I with an exponent of 1.65 would give satisfactory resuhts for on-site determination of adventitious open areas. This was not, however, sufficiently accurate for insertion imto a computer prediction technique for ventilation rates within dwellings.
To further clarify the situation an investigation has been undertaken into the variation of discharge cocffcient with Reynolds Number for the types of crack likely to be found in a dwelling.
The equation of motion for the centre-line velocity in a rectangular crack is given by:

$$
\begin{equation*}
U_{a} \frac{\partial U o}{2 z}=-\frac{1}{p} \frac{2 y}{x z}+n\left(T^{a} U a\right) \tag{2}
\end{equation*}
$$

From this equation, the pressure drop across the crack may be given by:

$$
\begin{equation*}
\frac{p_{0}-P}{1 \vec{u}^{2}}\left[\left(\frac{U o}{\bar{u}}\right)^{2} \cdot 1\right]+\frac{2 v}{\frac{u^{2}}{2}} \|^{2}-\left(\nabla^{2} U o\right) d z \tag{3}
\end{equation*}
$$

Where ($p_{0}-p_{x}$) is the pressure drop across the crack. This equation has been integrated by Han^{4} and the pressure drops have been related to a non-dimensional parameter

$$
\frac{Z}{\operatorname{Re}_{k} \cdot D_{k}}
$$

where Re ${ }_{n}$ is Reynolds Number based on hydraulic diameter D_{n} and Z is the centre-line distance.
For engineering purposes equation 3 can be written as:

$$
\frac{p_{s}-p_{z}}{\| p \bar{u}^{*}}=\frac{C_{A} Z}{\operatorname{Re}_{k} D_{k}}
$$

Where C_{A} is an apparent coefficient which varies with aspect ratio and Reynolds Number.
The losses for a rectangular crack with a brupt entrance and exit may be expressed in terms of kinetic energy as:

$$
p_{c}=K_{i} \beta_{W_{i}}
$$

where K_{i} is an empirical constant.
The total pressure drop across the rectangular crack is therefore given by:

$$
\frac{\Delta p}{\Delta \sin ^{2}}=\frac{C_{A} Z}{R_{A} D_{h}}+K_{B}
$$

where

$$
\Delta p=\left(p_{m}-p_{z}-p_{e}\right)
$$

Also

$$
\frac{\Delta p}{\hat{\beta i n}^{2}}=\frac{1}{C_{\Delta}^{2}}
$$

where C_{6} is the discharge coefficient of the crack. So

$$
\begin{equation*}
\frac{1}{C_{d^{2}}} \frac{C_{A} Z}{R_{k} D_{k}} \cdot K_{1} \tag{4}
\end{equation*}
$$

Equation 4 relates the discharge coefficient to the dimensions of the crack for a given Reynolds Number. If this relationship holds in practice it can be usefully employed in a mathematical model to calculate the correct value of the constant in equation 1.
It has not been possible to test this equation in field studies due to the complexity of cracks found in a typical room. It was therefore considered necessary to study the validity of the equation for given crack types under simulated natural conditions.

Fis 4: Perspective view of "Lushaped' crack.

Fig 5: Front view of box.

3 ExPERIMENTAL INVESTIGATION

Twelve forms of crack were used, four of these being of the simple "straight through" type, six beimg "L-shaped" and two "multi-comered". Im onder to

 protioms.

For necuracy and care of hamblimy the portions were made from 6 mox Rerspex as shown in Figs. 4 and 6. The portions were Rxed to the front of the venvilator tcs box as shown in Fig. 5 .
For low rates blow 3 m$^{2} /$ h (000083 mis), air was draw into the box and chrough a rotameter, for fow rates in cxcess of $3 \mathrm{~m}^{2}$ 'h he how rate was measured by a Roots meter. The pressure difterence across the crack was measured usies a micromanometer measuring up to $100 \mathrm{~N} / \mathrm{m}^{2}$ and a sloging gatug measuring up to 500 Nim usimg a piczometer rimg stuated in the internal rame of the test box and a tapping on a shiched extension poimt of the box.
To cbumin a good degrec of accuracy in the experiments, mehod of subtrected adventidiows fows was adopted. Tbe adventitious hows were obtained by scaling up the crack and scting up the required pressure diferences bewwect the incide and owtide of the box. and measwime the fow. Then the Now though the crack was obainct by drawing ain from the box at a known rate and cubtracting from the advenvilious fow at that particular pressure difference. This method was used for the swelve crack geomerries with a new adventitious volume fow test being made for cach new set of readings. From the results of these experiments the discharge coeficient, Co and the

Reymold Number. Re were ohtamed at dowribed in the Amperdin.

4 RESULTS AND DISCUSSION

The theorctical considerations of this work hase produced. in equation f. a relationship berween the dimensions of the crack and the diwharge cooltcient in terms of the Reynolds Number. This is for an ordinary rectangealar oritice and does not vake into consideration such peculiarities as right-angled bonds. This relationship therefore was not considered to he an exaed representation of the practical case. I'sing this as a base for obtaining a graphical represcmation of the empirical data. curves are shown which are typical of the three eypes of crack employed.
Fig. 7A gives results for a straghe-hrough' crack such as that found beneath a door. This is essentially a long rectangular orifec the results for which are in lair agrement with those of previous workers.
Fig. 7a gives a typical result for an "L-shapd" or right-angled bend crack such as that found around a door. The curve is not smooth as suggested by cquation : this deviation from a smooth curve can be explained in the following way. At low Reynold, Numbers the Row is laminar along the whole length of the crack. i.e. in the cmirance length before the bend and in the exit length after the bend with laminar sparation occurring at the sharp edge of the corner. the fow emerges as a jet tin cross-section) from the inside of the cruck. As the Reynolds Number is increased. laminar separation renains as above, but laminar reatachment at well-defned point occurs (provided the exit length is sumiciently long) and subsequen development of a laminar how provile

Fis 7b: Croph of $1 C_{8}^{2}$ crainas Log 2/Ren Dh for creck 9.

Fis 7c: Crwh of $1 / C_{2} 2$ mind Lok $/$ Rel Din for crock H.

along the rest of the crack. Further increase in keynolds Number causes the flow after the bead to become unstable and gives rise to a wavering motion. This wavering cauns a rise in the bydraulic resistance of the crack and a lowering of the discharge cocficient resulting in a rise in $1 / C_{0}^{2}$ so forming a hump in the curve. Further increase in Reynolds Number brings about the detcrioration of the flow pattern after the
bend. A circultaing flow is set up in the separation resion aed the separated fow becomes turbulent, this tramsition reulting in reattachment being distributed over an arce rather than being concentrated at a clearly defred point. The transition raises the hydraulic reistace ouce more, resulting in another hump correppoding to a relevant Reynolds Number. This exphation was arrived at by the observation of flow patterns, in a cross-section of the crack, using flow vienalization by means of smoke. Fig. 7c gives a typical curve for a "multi-cornered' crack and shows the same characteristics as the 'L-shaped. crack except for the extra hump. The explanation for two of these humps is the same as above, the transitions tuking place in the exit length beyond the second bead. The third hump is caused by some effect which occurs in the middle length of the crack. The bove analysis is purely on a qualitative basis, for a quantitative amalysis it was necessary to obtain values of C_{A} and K_{1} of equation 4 for each family of cracks. These values were obtained for each crack from graphr of $\mid / C_{8}{ }^{2}$ against $\log Z /$ Re, $D_{\text {d }}$ each slope gave a value of C_{A} and each intercept a value of K_{1}. Fig. 8 shows curves of CA against aspect ratio for each type of creck from which the relevant value of CA_{A} may be obtained. Fig. 9 shows the spread and trend of the values of K_{1}, obtained for each type of crack.
Taking an average value of aspect ratio for each family of cracks and using the values of C_{A} and K_{1} obtained from Figs. 8 and 9, for given values of $Z / R e_{a} D_{n}$ the corresponding values of $1 / C_{a^{2}}$ can be obtained. Figs. 10a, 10a and 10 c show semi-mpirical curves obtained in this way compared with the experimental points for "straight-through", "L-shaped" and "multi-cornered" cracks reapectively.

The values of C_{A} and K_{1} obtained in this way give close enough agrement to enable the equation to be used in obtaining an independent value of the discharge coefficient for each type of crack for a given Reynolds Number and may be incorporated into the computer technique for predicting the effect of combinations of room components on the ventilation of a building.
It is necessary to use an iterative method to arrive at the correct value of discharge coefficient using equation 1 in the new form:

$$
\Delta p+\frac{K}{A^{4}} Q^{1.65}
$$

where

$$
K=\frac{p}{2 C_{B^{2}}}
$$

5 CONClusions

1. A Square Law Flow relationship is not valid for small openings, but a 1.65 power law gives satisfactory results for the purpose of obtaining adventitious open areas.
2. A variation in discharge cocficient was obtained which did not conform to any available rectangular duck theory, but which could be explained from changes in the flow pattern that was obeerved.

El4

8

$\frac{z}{p}=$
:0 sompar wrym

$$
\frac{(p+1) z}{p \cdot 1}=w
$$

$$
\begin{aligned}
& Q_{1} \text { is the flow measured directly and } Q_{A D} \text { is the adventitious } \\
& \text { fow for that particular crack and pressure diference. }
\end{aligned}
$$

녀줄

$$
a^{2} \delta-{ }^{1} b=0
$$

$$
D_{n}=2 d
$$

Watson Mouse for their assistance in the preparation
of this paper and Dritish Gas Corporation for per-
mission to publish it.

ACKNOWLEDCEKERTS

appendix

evaluation of Ros and D_{n}
presible, lamina fow in rectangular ducts, J. of Applied
Mechawes, A.S.M.E., September 1960 .

Fig Ra: Comparion beween the seminempirical curve and experimental results.

Fit IOS: Conparison bawcer one seminempincal curve and experimental rewils.

Fis 10c: Conamarion berween the semiempirical curve and expermental results. "Dowlle-bend is referred to in texs as $^{\text {D }}$ smallicornered.)

DISCUSSION

Ahtrmon Session

Gharman: MrK W Dake

Ne I Sheno iFabers: © You sid that you are aiming to look at I and Ki. In your first squations you showed the cquation AO + BO: Thex two terms are really cach decribing the proportions of the laminar and turbular parts of the flow. for a particplar type of crack. As you showed the two terms can be compoundad into asimgle power Luw K.O- and ${ }^{\circ}{ }^{\circ}$ will wary for different cracks. However, you have chasen to hold "n" contan for all cracks. The 'n' really is what cell you abour the sphit. Why have you ckcted to do it in this round-abwut way. as it seems to me?
Mr Montine fintly, we wanted to have a simple cquation for the type of crack that we are dealing with. Thex cracks are quite small and for the fieldwork we have oblained some good agreement between the cquations and results by kecping K constant and mominating the value of 1.65 to n . For our computer prediction technique. however. we wanted to look at various flow rates through differemt cracks. This problem becomes rather complex in its simulation in the program and we thought that this cquation approach was the best way to go about it.
Nu Sertes (North Thame Gas): In about 1965 Watson Howse did some work on the same lines on adventitious ventilation and peblished two special bookles which gave nomagrams for calculating the cffect of adventitious ventilation when assessing requirements for rooms. Was any reference made to this former work when this study was underaken. and. if so. what is the basic difference between what you are doing now and the results achieved then?
Dr Hartuman We are aware of the carlier work at Watson Howse. However. we considered that the original work did mot really delve imo the flow mechanics of the problem, and we cndeavoured to take a difterent slamt by looking at the Reynolds Number dependence of the flow. I am not saying that the carlier work is now uscless. What we are trying to do is to get a better insight into what is happening and thercfore to update the data already available to pcople like yourself in North Thames Cas.
Dr We Were (DREI: The auhors are to be congratulated on producing a large quantity of data and experiments. Do they imend to publish their results? This document only contains the resulss for three particular cracks. It would be very interesting if they would do so. I believe that Han's cquations referred to laminar fow. in which case when you were ploting C_{a} against $\frac{Z}{D}$ for the straight through opening one would perhaps expect it. as \mathbb{Z} goes to infinity, to approach of value of 96 . which would be the value expcted for the very long plane crack with laminar flow. Your values seem to be well above this.

Dr Heri-ben The answer to your frm question s: Ye. we will be publishing the results of this and als, future work that we hope to carry out in this paricular fed. One of the conditions that we have not yet bled at is the flow through a crack which has foam-backed weather stripping in it. This presents a rather more advanced flow patern.
With regard to the value of C_{3}. this was a point that worried me. quite honestly. I agree that our results are higher. I think there is a possibility that Han's results are liberal for laminar fow. We would hope that at this paricular poimt we are dealing with pure laminar tow. Perhaps we are not. I would be interested to hear afterwards your comments on that facet of the research. I do not think we have talked about it yet. D. Werne (BRE): I belicve you said in your introduction that you were intending to use the derived equations for a programme. One of the problems in using such an equation is that the Reynolds Number involves the volume flow rate. Do you envisage any dificulies with a large number of different cracks?
Mr L. Hontion This work is still at the experimental stage and this is a problem that we are still thinking about. However, we hope that an interative technique. within the program. will overcome any foresecable difficultics.
Mr Woad: Is N a variable. or is this the figure 1.6. and. If so. on what basis have you surmised that that should be the figure?
Secondly, can you amplify in your appendix the formula $O=Q_{1}-O_{\text {an }}$ with Q_{1} as the flow measured directly and Osen $^{\text {as }}$, the adventitious flow? Is that the total flow or the adventitious flow, to which some other calculating amount has to be added?
Mr L. Moptite: As was said before, the n can vary anywhere between 1 and 2. but we performed some tests in the ficld on adventitious open areas, extracting air from rooms and measuring the pressure differences across all the components in the room. By plotting a graph we obtained an exponent of 1.65 which we intended to use for the sizes of cracks that we were investigating.
With regard to the formula $\mathrm{Q}=\mathrm{O}_{1}-\mathrm{Q}_{\text {ul }}$. this was a method we used for finding the volume flow rates through the cracks in the actual laboratory experiments.
The crack was tightly closed and then air was drawn from the box and the adventitious volume flow measured. The box obviously contained some small perforations and cracks which could not be scaled up with paint and tape. Having taken many flow and pressure drop measurements we drew a graph relating the adventitious flow to the pressure drop. We opened the crack and did our test. then in order to get the correct flow through the crack at a particular pressure drop we substracted the adventitious flow. obtained from the graph. from the measured flow. This ensured
that we were mot uking a part of the fow trough the cract as the five through the advemitions arcas im the bow although thow were very mall.
Mr AF Widered (Nwth Thams Cas Byard): I am trying for relate this to the pevioms paper. I Himk I am right in supproing that this mears that an advemitiones are of say $10 \mathrm{in}^{2}$ at a wind sped of 10 mph would mu be 10 inz at a wind sped of 5 mph. If that is correct. can you say what is the wrder of dilference:
M. I. Meptinn If you had an opex arca comocntrated in the fom of a circulat bole in the wall ten I would agree that the area wowld not change, wo matter what strexth of wind blew on it. But you mos appreciale that the cracks that we are dealing with are not concentrated inte one place. they are distributed over the whole wall. Up to wow, many poople have uried to gen ove the problem of uimg various fow presure cywainns. What we have tried to do to tex our own fow presure cquation to find ous how this open area varics. If we have a very small crack then for a small prosure across is we sall only get a small fow through it. Dut as the presure builds up the fow will go up unil from the cquation we can see that the open arca will appar to open up. Albough we canmut measure it. it docs have an apparenty large open area when there is a large presure difference acros it. With regard to the question. the answer will depend on the nature of the crack.
Nu Whetrealt I am only talling about the order of things.
Mr Westine We would have to look into the question.
Dr Momber Mritish Gas Comporation. Midlands Rexarch Stationl: II we are assuming that the aim is to reduce adventitious ventilation, is it better to have a series of L-shaped cracks or wolld it be better to have one long thin crack around windows and doors?
ME I. Hennian That is a very good point! With a seric of long thin crads we are back to the draught problem. With an L-shapod crack. ahthough there is no apparent restriction to the flow, there is a pos-
sibility of the fow being broken up, depunding on the ecometry of the crack. We have moticed that the fow bcomes turbulent in the cxit kength of the crack and it can be quite unstable over a range of Reymolds number. Om the wholk I think it would be better from the question of reducing the adventitious ventilation to have a scries of L-shaped cracks.
A epear (!' Housimg Deparment: I have never yel seen a crack with uniform polishad sides. Surcly with any irregularities your experimentation techniqu: would be completely irrelevant?
M. IL Hoyking No. You will appreciate that this is haved om a theoreical approach and to be able to repeat tests we had to use a consistent form of crack. We bope in the future to lest irregularly fimished cracks to see what sort of error is induced with roughness etc.

* A epater: I am not at all sure that I fully undersaxd what the experiments have been about. We have on the board an expresion relating pressure drop and the volume. and exponent n.
Mr. Howtins: I am using n equal to 1.65 as mentioned in the text.
Te spener: I would suspect that on the whole you could have related your results by variation of n.
Mr. Mopkies: As I said, we would do that for our tich measurements. The agreement is quite close when assossing the open area in a room using $n=$ 1.65. For our computer program we decided that we needed more accuracy and so we required more detail about cach individual crack.
The epeter: I think you are aiming at pseudoaccuracy. A speaker in the discussion said that the crack may close up or increase in size. and you are supposed to take that into account.
Nur D Coctrol! (Building Services Research Unit. University of Glasgow): Do you have any ideas as to how you would measure the width of these cracks as they occur in practice?
Mr Monim: You might be wondering how we ar rived at these thicknesses. We went round a number of houses with fecker gauges, measuring cracks to get typical values.
- Nambe nove givern

