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&srimutes oj'uir ir!liltrtrrion in houses bused on tracer gas measurements have usuully assumed the 
house ro be u singlq perjrc:~ mising uhumbvr in which incom~ng air  is instantaneously and uniformly 
di,]kseJ to u11 purrs f l ' r l re  irrlcrior. in,fact. some paro ofrhe howe-[he basement or rooms with 
doors closed-escl~irn~r uir only crry slowly with orher parts so rhar actual mixing b far fiom 
instanwneow, 771i.q ptrper presents rhr throry und murhemarics necessary ro apply rho tracer gas 
method to h u i l l i t ~ ~ s  oj muny chumhrn. 

TRACER gas meuurernents of air infiltration have 
usvolly assumed that the building is a single, prrfcct 
mixing chamber in which incoming air is instantaneously 
and uniformly diffused to all parts of the interior. In many 
cases this is a satisfactory assumption and much valuable 
air infiltration work has been based on itC1.21. It oftcn 
nappens, however, that some parts of the building-thc 
basement or rooms with doors closed--exchange air only 
bery slowly with other pans, so that actual mixing is far 
from instantaneous. If different pam of the building 
aerate a t  different rates. then the tracer gas concentration, 
even ~f initially uniform, may become decidedly nonunl- 
form as time passes. Under these circumstances, measure- 
ments taken at a single point may give misleading 
estimates of the true infiltration rate. Even with intcrnal 
doors open, mixing may be somewhat obstructed by 
partitions. Hunt and BurchC31 for example. report 
differences between upstairs and downstairs tracer gas 
concentration decay patterns in a four bedroom house. 

Building can often be more satisfactorily represented 
as a finire number n of inter-connected perfect mixing 
chambers, where n> 1. The minimum n that must be 
assumed will depend, among other things, on how the 
internal doors are set. If these are all open, then n may be 
as low as 2 (basement and rest of house), but if some are 
closed n may have to be higher. 

This paper presents the mathematical groundwork for 
the n-chamber model in a tutorial fashion. In order to be 
as self-contained as possible, it includes brief proofs of 
some important resu1ts.t The Arst section formulates the 
problem In the way that is simplest from the rnathematical 
point of view: it derives tracer gas concentrations from 
given inter-chamber flows. The second section treats the 
more difficult inverse problem which is actually en- 
countered in infiltration studies: to derive the inter- 
chamber flows from observations of tracer gas concen- 
trations. The third section discusses alternative experi- 
mental techniques which can greatly ease the analytic 
difflcul ties. 
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PAlthouyh many ofthae proofs czn be found. In someform. In 

standard works on mathematics they arc often embedded In 
notauon andconrexrs whlch make them somewhat ~naccas~ble to 
the non-spcclailst. See. however. refs.[l] snd [Sj for the b u l f  
theuw 

I. DERIVIYG TRACER G.G 
CONCESTRATIONS FROM GIVEN FLOWS 

1. &/fusion among n chambers 
Consider n chambers as indicated in Fig. 1 connected 

by one-way passages through which gas is flowing at 
given fixed rates. and suppose mixing within chambers is 

fig. 1. Several interconnected chambers. 

perfect and instantaneous. Suppose further that varying 
amounts of tracer gas have been injected into the different 
chambers. If the initial concentrations are x, (O), . . ., x,(O), 
what are the concentrations x ,  ( t ) ,  . . .. x , ( t )  at later times 
t ?  

Lct 

t; =volume of chamber i 

F i j  =rate of flow from chamber i to chamber j. (F i i  = 0) 
x, =concentration of tracer gas in chamber i. 

Then, 
Fi,x, Prate of mass transfer of tracer from chamber i to 

chambcrj 
and 

Ki ,  =rate of m a s  increase within chamber i. 

Conservation of mass. then, gives: 

mass transfer in mass transfer our 

Since total flow into chamber j must equal total flow out. 
wecan write (using S, to denote the common value): 

r : F , , = Z F , r , = s , .  (2 1 
I 

tlowin flow aut 
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The matrlx of coefficients of the right-hand side of 
equatlon I 1 ) becomes then: 

the matrix of the left-hand side is 

0 . . .  

= "I 
and equation (I), written in vector-matrix notation, 
becomes : 

This is a system of first order, linear differential equations. 
However. it is notjust any systemsince thematrices V and 
F have the following special properties: 

(1) Matrix V is a diagonal matrix with non-negative 
elements. 

(2) Matrix F has negative diagonal elements and non- 
negative off-diagonal elements. 

(3) In matrix F, all row sums and all column sums are 
zero. This follows directly from flow conservation as 
expressed by equation (2). 
From these properties we will derive a number of useful 
facts about the solution of equation (3). i.e. about the time 
evolution of the concentration in the n chambers: 

A basic property of the system of differential equations 
. (3) is the following: for certain special initial con- 

centrations x(0) the solution has the simple form: 

that is: x , ( t )=x ,  (0)eA,.. .,x,(t)=x,(O)e"'. 

In this special case, the concentrations maintain fixed 
ratios to one another at all times. In general, there are n 
such special solutions (unique to within a scale factor), 
each with its own (or 'eigen-') value of I .  We will denote, 
these special solutions as follows: 

I ! & . - 1 1 ,  

Every other solution can be written as a linear com- 

bination of these: 

To find the special initial conditions that lead to the 
simple form (4), we can substitute this form into the 
original equation (3). After differentiating and cancelling 
the common exponential factor, this yields: 

a static vector eigenvalue problem, whose elgenvectors 
are the required special initial conditions, xi'', . . ., xi"' ". 

The following facts about the eigenvalues and eigenvec- 
tors of (6) can be derived from the special properties of the 
matrices V and F listed above. 

1 .  One eigenralue is always equal to zero and rhe 
corresponding eigencector has equal components (which 
can be normalized to unity): 

Pro05 The left-hand side of (6) is zero because I=O. 
The right-hand side is zero because substitution of xi') 
into the expression Fx yields the row sums of F, which are 
zero. Thus (6) is satisfied. 

Sign@cance. If ail chambers initially have the same 
concentration, then nothing happens. 
m o t e  that XPO, equation (3).] If arbitrary initial 
conditions x(0) are expanded in eigenvecton [equation 
( 3 1  : 

then the coeficient a. is the mean concentration to which 
all xi(t) tend. Later we will let one of the chambers 
represent the outdoors ( V a  P , X  =O). Then the asymp 
totic concentration is always zero. 

2. The.remdning eigenvalues are not necessarily real. 
However, complex rigenvalues and eigenrecrors always 
occur in conjugate poirs, i.e. if 1 + ip and x + iy are an 
eigenvalue and corresponding eigenvector, then I - ip 
and x - iy are also. 

Proofi This follows simply from the fact that the 
matrices V and F are real. Substitution of complex 
unknowns, i.e. x + iy and i.+ ip, into (6) yields 

v(~.x -py) = FX (real part). ( 7 )  

Substitution ofthe conjugate quantities x - iy, i. - ip into 
(6) yields exactly the same equations. 

Signijicance. Real initial conditions xIO) are easily 
expressed as linear combinations of eigenvectors even 
though some eigenvectors are complex. If the coefficients 
of conjugate eigenvetors are real and equal. then the 
imaginary pans cancel out. Moreover. the vector x ( r )  
remains real as time passes. However. the time varying 
exponential kc ton  associated with complex pairs contain 
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jinusoids and thus oscillate indefinitely.' More about 
oscillations below. 

3. All eigmuolues except i, = 0 hove negorire real parts. 
i.e. they lie in the left half of the complex plane. 

Proof. Multiply equations (7)  and (8) respectively by x 
and y and add. This yields 

Fig2. Example with complex eigenvalues. Tracer gas con- 
where the products have the meanings indicated below: centrations x ,  ( r  J, x,(t ). x, (r ) oscillate as they approach quality. 

xVx = z y..c: The eigenvector equation: 
L 

Using equation (3, one can write has a nonzero solution only if the determinant vanishes: 

Similarly, yFy <O. Thus the right hand side of (9) is 
negative. and since all factors on the left except I are 
positive, 1 must be negative. This shows that any non-zero 
eigenvalue has a negative real part, hence lies in the left 
half-plane. 

Significance. This guarantees that all concentrations 
must tend asymptotically to a finite constant. that none 
can grow indefinitely. If any of the eigcnvalucs are 
complex however, the decay may be accompanied by 
endless, though damped, oscillations as noted above. In 
the language of electrical engineering, the system may 
'ring'. albeit with ever diminishing amplitude. Since it may 
seem surprising that a diKusion process could ring. a very 
simple example with complex eigenvalues is given below. I 
hope this will make the possibility of ringing intuitively 
plausible. 

2. Simple e.~omple with complex eigenealues 

=0. 
Sj  = 112 Fij + 112 z Fj,. 

I k 

Using this form in (10) and collecting terms in the right 

(see Fig. 2). 
Matrices: 

way, one obtains 
or: 

x F x = x x (  - 1/2Fij(xf - 2 ~ ~ x ~ c . x ~ ) )  
i 1 (L+l ) '= l .  

(1+ 1)  0 - 1 
-1  ( t + l )  0 
0 -1 (1+1) 

1 0 0  

0 0  1 0 1 -1 

*EuIer's cquarlon: eiA""' = rA'lcos pr + I  sln lit). - 
*The cube roors of I .  namely I .  - ( I  2)+i ,  3,L-(1,') - 

- 1 ,  3 . 2  are spaced 120 apart on the unl1 c~rcle in the complex 
plane. 

The eigenvalues are the three solutions of this equation. If 
the cube roots of one are denoted by 1, E,, El, then the 
eigenvalues are: t 

The eigenvectors are also conveniently expressed in terms 
of the cube roots of one: 

Corresponding 
Eigenvalua eigcnvecton 

Any initial conditions can be expressed as a linear 
combination of eigenvecton: 

The subsequent evolution of .x then is 

For example. if the initial concentrations in the three 
chambers are 
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x1  =O For n = 3, equation (3) becomes 

then ~t can be verified that the concentrations evolve as 
descrtbed below. Let points P I ,  P , ,  P, be evenly spaced on 
a circle as shown in Fig. 3. Imagine that the c~rcle 
turns w~th constant angular velocity and simultaneously 
shrinks exponentially in radius. Then the points P,, P2,  P3 
trace out logartthmic spirals as indicated. Their pro- 
jections onto the x-axis are the concentrations, ~,,.Y,,.K, 
in the three chambers. It is evident that these con- 
centrations oscillate indefinitely as they approach the 
equilibrium concentration .x = 2. Intuitively, one can 
imagine a ,blob of concentrated gas cycling around and 
around through the three chambers as it simultaneously 
evens out becoming less and less pronounced. This 
illustrates, then, how even a dinusion process can 'ring'. 

Fig. 3. The points P,. P,, P, move simultaneously inward on 
logarithmic spirals. Their projections on the x-axis represent the 

tracer gas concenrrations in the three chambers. 

3. Two chambers connected to the outdoors 
In this section we calculate the eigenvalues and 

eigenvectors for the important three-chamber case in 
which one chamber has infinite volume and zero 
concentration of tracer gas, and thus serves to model the 
outdoors. The other two chambers may represent, for 
example. the basement and upstairs of a house (see Fig. 4). 

The eigenvalues in this case are always real: the infinite 
volume chamber effectively blocks the kind of cycling that 
led to oscillatory solutions in the previous example. 

Fig.4. The three chamber cue where one chamber (the 
outdoors1 h u  infinite volume and zero tracer _par concentration. 

The infinite volume Vo = c implies, by the first equation, 
that .to = 0. Since the initial value ofx, iszero.xo(t ) remains 
zero for all subsequent time. The first equation and the 
first column of the right hand side may therefore be 
deleted. The eigenvalue equations of the remainins 
system are 

Setting the determinant equal to zero yields the eigen- 
value equation: 

whose roots are the eigenvalues: 

It is easy to verify by inspection that the eigenvalues are 
real and negative. The components x, ,  .t2 of the eigenvec- 
tor corresponding to an eigenvalue I have the ratio: 

4. Numerical example 
A numerical example is shown in Fig. 5. The relative 

sizes of the flows in this hypothetical case correspond 
roughly with observations o f ~ w i n  Rivers houses. ~ i ~ u r e  
6 shows the two eigenvector solutions, which, as noted 
above, are the building blocks for all other solutions. 
Figure 7 shows two such other solutions: the top graph 
shows what happens when tracer gas is injected only into 
Chamber 1 (basement) and the bottom graph shows what 
happens when the tracer is injected only into Chamber 2 
(living space). Note that after a long time has elapsed the 
concentrations in both cases become nearly proportional 
to the components of the dominant eigenvector (the one 
whose eigenvalue is largest). This always happens, 
regardless of initial conditions, except in singular cases. 

The next section discusses the inverse problem actually 
encountered in practice: how to deduce the values of the 
flows Fij from the observed concentrations x,(t), i.e. how 
to deduce a picture such as Fig. 5. 

11. INVERSE PROBLESI-DETERhllSISG 
FLOWS FROM OBSERVATIONS OF 

TRACER COSCENTRATIOSS 

1. Counting equations and irnknowns 
In a system of n chambers communicating with each 

other and with the outside. there are (n  + i ,n !lows F , j .  
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(Regarding the outside as a chamber of infinite volume, 
there are n + 1 chambers in all, and each receives a flow 
from the n others.) The (n+ 1)n'flows are, however, not 
independent because they must satisfy the n conservation 
equations 

Note that there are not n+ 1 of these because the 
conservation equation for the (n + 1)s chamber (the 
outside): 

is already implied by the first n equations. 
To determine the Fij ,  then, we need exactly n v u n h e r  

equations. We can obtain these from the differential 
equations (I), which can be rewritten in the form: 

A single observation of the concentrations x,, . . ., x, and 
their derivatives i ,  , . .,&,yields n equations for the Fii. T o  
obtain the necessary n2 equations, the x, and 3, must be 
observed at n different time points. i.e. the data 

must be taken. 

0 
Chamber 

( L ~ v ~ n q  space) 

Time 

Eiqmabe kl. -1.138 
Ratio = -0.38 at all trmer t 

pure form because * requlras one 
concantratlon m be negatlve 

Fig. 6. Eigmvector soluuons for the example of Fig. 5. When the 
initial conditions coinade with an eixenvector las in the cases 
shown), the conantrations rnaintainkxcd proponions to one 

another and decay at the expoaentid rate i 

Time 

Fig. 5. Nurner~cal example. Units are arbitrary. 

Time 

Fig.7. Two other sets of initial conditions lor the example or 
Fig. 5. These and all other solutions are linear combinations 0C 

theeigrnvector solutions shown in Fig. 6. 
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In the case of a single chamber (usually assumed in past 
infiltration measurements). n2 = l and a single obser- 
vation of the pair x..t sulfices to estimate the infiltration 
rate. As n increases. the number of necessary observations 
rapidly becomes unwieldy and several practical difficul- 
ties may occur: 

( a )  The observations of the derivatives 1, are likely to 
be unreliable because of their sensitivity to noise (applies 
also to the case n = 1 ). 

(b )  If the times t , , .  . ., t ,  areclose together, thesystem of 
nZ equations will be badly determined (i.e. the de- 
terminant will be close to zero). If the times t , ,  . . .. r ,  are 
widely spaced. then the assumption that the flows F i j  
remain fixed over the period from t ,  to t ,  may be doubtful. 

(c) If the initial conditions happen to coincide with an 
eigenvector. then the equation sets generated at different 
times are 3L1 thesame, so that no more than n independent 
equations can be obtained. In general. the initial 
conditions must contain strong components of all 
eigenvectors or else the equations will be badly de- 
termined. It is important to recognize that the vector of 
concentrations x , ,  . . .,xu converges to the first eigenvector 
over time for almost any initial conditions. Thus not more 
than one of the time points t, should be so far from the 
injection time that the concentrations are close to the first 
,eigenvector. This constraint can be relieved somewhat by 
making two runs with different initial conditions (see Fig. 
7). but this. ofcourse. leans heavily on theassumption that 
the F i j  are time invariant. 

~ d )  In general. all of the F i j  must be calculated in order 
to calculata any of them. But usually some of the F , j  are of 
more interest than the others. It would be good to have 
simple means for calculating only the ones of greatest 
interest. 

2. Dealing with the difficulties 

The noise can be suppressed somewhat by integrating 
equation ( I  1) over time: 

Integrating over n different time intervals gives nZ 
equations for the Fi j .  Since there are many dinerent ways 
of choosing the n time intervals, there are many different 
systems of nZ equations that can be set up (all in theory 
yielding the same values of F i j ) .  The intervals should be 
chosen to give the best compromise among three 
conflicting desiderata: (1) noise should be suppressed (the 
longer the intervals, the better), (1) the system should be 
well-determined (vectors :c,, . . ..xu in dinerent intervals 
linearly independent). (3) the total time interval covered 
should not beso long that drifts in the values of F ,  become 
important. This problem nerds further examination to see . 

if clever methods of estimation can be devised which 
exploit the special characteristics of air infiltration data. 

With regard to the fourth difficulty listed above-the 
necessity oicalculatiny all F , j  at once-it should be noted 

that there is a special circumstance under which an 
important subset of the F i j  can be obtained simply and 
directly without obtaining the others. If there is a time t at 
which all of the concentrations have the same value x. 
then the n direct infiltration flows from the outside are 
given by 

This follows immediately from equation (1 1). The overall 
infiltration rate. of course. is just 

3. Solution o/ the lncerse problem f o r  t\coo chambers 
connected t o  the outdoors 

This is the case discussed in Part I and illustrated in 
Figs. 4-7. Since it often occurs in practice. its solution is of 
interest in its own right. It will also serve to illustrate the 
points made above. 

The inverse problem is to calculate values for the six 
flows illustrated in Fig. 4 from the observed evolution of 
concentrations in the two chambers. If the tracer gas was 
initially injected into just one of the chambers, then the 
observed concentrations might look. for example, like 
those shown in Fig. 7. 

The first step is to eliminate two of the flow variables by 
means of the conservation equations. There are many 
ways to do this. but a very simple way is just to drop the 
two outward flows F , ,  and Fro .  It is not difficult to verify 
that the remaining four flows, F o l r  Fo2,  F l z ,  F z l ,  are 
independent in the sense that they can be assigned any 
positive values without violating the condition that total 
flow into any chamber must q u a 1  total flow out. Once 
these four flows are determined, the two that were 
dropped can be calculated from the conservation equa- 
tions: 

F , o = F o ,  + F ? ,  - F , z t  

The four unknown flows can be expressed in terms of 
the eigenvalues and eigenvectors. For compactness we 
will represent the eigenvectors simply by the ratios of their 
two components: 

These are ratios ofchamber I concentrations to Chamber 
1 concentrations. They are the two special concentration 
ratios which. when once established. stay fixed over time. 
Since eigenvectors are only determined up to a multipli- 
cative constant. the ratios r ,  and r l  specify the eigenvec- 
tors completely. To express the four unknown flows in 
terms of the four quantities i.,, j.?. r , .  r 2 .  we can invert the 
equations given at the end of Section 3 of Part 1. This 
inversion yields: 
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r lowsjrom outdoors: 

Flows between chambers: 

It remains to estimate I , ,  i.,, r , ,  r ,  from the observed 
data. This is easy in principle, but in practice it may be 
difficult for the reasons given above. Let x ,  ( t ) , . t z ( t )  be the 
observed time evolutions of the concentrations in the two 
chambers. Then. as can be verified using equation (5) the 
functions 

are straight lines with slopes I2 and A, respectively. To 
obtain estimates of r ,  and r ,  one can vary the parameter a 
in the expression 

and pick out those two values of a for which y(t. a )  is most 
linear. One of these values should be positive and the 
other negative, since r ,  > O  and r ,  cO. The slopes of the 
best fitting straight lines can be taken as estimates of i ,  
and i,. In carrying out this procedure one can be as simple 
or elaborate as one chooses. A simple method is to plot 
x,  ( t ) - a , x2 ( t )  on log paper using various values of a until 
a sufficiently linear plot is obtained. An elaborate method 
is to systematically fit ).(a. t )  to straight !ines by linear 
regression for a range of u's and pick those values of a 
which minimize the sum of the squared residuals. 

A preliminary estimate of r ,  and L, can be obtained 
simply by looking at the asymptotic behavior of x ,  ( t )  and 
x 2 ( t ) .  After a long time has passed. the ratio . ~ ~ ( t ) l . ~ ~ ( t )  
w~ll be nearly constant and nearly equal to r , .  and both 
.x, ( t )  and . .rz(t) will decay at nearly the exponential rate i , .  
On log paper, therefore. the plots ofx, ( t )  and . r , ( r )  will be 
asymptotic to straight lines of slope i ,  whose constant 
separation is the ratio r , .  This is true regardless of initial 

and. as can be seen from the equations given above for the 
b u r  unknown flows. all of the eigenvectors and cigen- 
values must be known in order to calculate any of the 
flows. 

Ill. ALTERYATIVE EXPERIYIENTAL METHODS 
WHICH REDUCE THE ANALYTIC.4L 

DIFFICULTIES 

The experimental method discussed so far can be called 
the transient method because it examines the transient 
decay of tracer gas concentrations x ,  ( r ) ,  . . .. x , ( t )  follow- 
ing a single initial injection. Alternatively one can 
consider steady-state methods in which the con- 
centrations x ,,..., x, are held fixed over time.' The 
quantities observed are the rates r , , .  . ., r ,  at which tracer 
gas must be released in the n chambers in order to 
maintain the pre-specified concentrations. This is anal- 
ogous to measuring the thermal leakiness of a house by 
observing the fuel required to maintain a fixed internal 
temperature. 

Of special interest is the case in which all concentrations 
are held fixed and equal: . x ,  = . . . = x, = x, because in this 
case the most important infiltration data can be read off 
directly with no calculation at all. If all concentrations 
equal x. then the n release rates r , , .  . .. r, are proportional 
to the direct infiltration rates F,,, ..., FOR into the n 
chambers from outside. To see that this is the case. note 
that all air entering chamber i from other chambers is at 
the common concentration x. while air entering from 
outside is at zero concentration. Tracer gas is released in 
chamber i at  just the rate needed to bring the outside air 
up to concentration x.t With suitable calibration the 
output numbers r , ,  . . ., r, can be made to read directly in 
Rvmin. 

In order to apply this method, it is necessary to have a 
self-regulating machine which constantly monitors the 
concentration x and adjusts the release rate r accordingly. 
A dificulty is that the machine's response time cannot be 
faster than the mixing time within the chamber. The 
observed release rate r may, therefore. show spurious 
fluctuations related only to the servo mechanism and not 
to real fluctuations of the infiltration rate. Over periods 
that are long compared to m~xing time. however, these 
fluctuations will tend to average out. so that l o ~ g  tenn 
average infiltration rates should be relatively accurate. 

The n direct infiltration rates F,,. . . .. Fo, do not. of 
course. tell the whole story. However, the remaining F,,  
can be determined by a modification of the procedure 
described above. To obtain the n outflows from chamber 
k. i.e. F,,, F,,,. . ..F,,. one places steady state machines in 
all chambers except chamber k and in chamber k one 
places a concentration-measunng machine. TO see what . 
this does. it is convenient to have the general steady-state 
equations for arbitrary but fixed concentrations x, :  

conditions. It occurs because the second eigenfunction , a 

always dies out faster than the first. Unfortunately there is F o p ,  + 1 F i j ( x ,  - . t i )  = r i  j 3 I.. . .. n. 
no correspondingly simple way of estimating r 2  and I:. i l l  

In each chamberj forj = k the concentration .yj is set equal 
'4 good review of the pros and cons of this and other 

experimental methods is given in ref. [hJ. to I and the rate of gas release r j  is measured. In chamber 
K'om~aro this with the transient cabc when 311 concentrations k. r, '0 and ..(k is measured. Putting these values into the 

arc rnommtarlly equal !last paragraph of s u o n  1 Part 11). equations yields 
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1 m 

FkO - i-- FOl - 1 hi. - Xt j =  I 

(Derivation of the last equation requires use of the flow 
conservation equation for chamber k.) 

Assuming that the idlows Foi have been determined by 
the previous method, F,, are given, then, by: 

In the absence of a concentration-measuring machine, 
the relarioe sizes of F, ,  j = 1,. . .. n can still be determined: 
only the scale factor li(l -x,) will be unknown. 

REFERENCES 

1. T. H. Handley & C. J. Barton. Home ventilation rates: a literature survey. Oak Ridge National 
Laboratory, ORNL-TM4318 (Sept. 1973). 

2. P. F. Collet et 01.. Boligers fufisklfre. Byggetekn~k. Teknologak I n s t ~ t u t  Tastrup. Denmark (July 1976). 
3. C. M. Hunt & 0. M. Burch, Air infiltration measurements In a four-bedroom townhouse uslng SF6 as a 

tracer gas. A S H R A E  Trans. 1. 186 11975). 
4. C. R. Zurmiihl. ,tlatri:en und Ihrs fichnrrchen Anwendungen. 4th Edn.. p. 426. Spnnger, Berlin (1961). 
5. F. R. Gantmacher, Theory of ~Uarr~ces.  (Translated from the Russ~an by K. A. Hirsch.) Vol. 1. p. 69, 

Chelsea, New York (1959). 
6. E. R. Hitchin & C. B. Wilson, A review of experimental tcchnrques for investigation of natural ventilation 

in buildings. Bldg Sci. 2,59-82 (1967). 




