# Zur rechnerischen Ermittlung von Fugendurchlaßkoeffizienten und Druckexponenten für Bauteilfuger

Mitteilung aus dem Hermann-Rietschel-Institut für Heizungs- und Klimatechnik der Technischen Universität Berlin\*

Von o. Prof. Dr. Ing. Hörst Esdorn und Dipl.-Ing, Jürgen Rheinländer-

Aus den an einfachen Fugenmodellen gewonnenen Zusammenhangen zwischen Druckverlust und Volumenstrom werden unter Anwendung der bekannten Ahnlichkeitsgesetze für die Stromung in Rohren oder Spalten Gesetzmaßigkeiten abgeleitet, die es erlauben, die Luftdurchlässigkeit ublicher Bauteiltugen rechnerisch Fesser vorauszubestimmen, als es bisher mit Hilfe der wenigen bekannten groben Mittelwerte für Fugendurchlaßkoeffizienten a und Drückeyponenten n möglich war.

# Einleitung

Ergebnisse experimenteller Untersuchungen über die Luftdurchlassigkeit von Bauteilfugen, insbesondere an Fenstern, sind in großer Zahl veröffentlicht [z.B. 1 bis 6; 10 bis 17]. In aller Regel ist die Auswertung bei diesen Untersuchungen so vorgenommen worden, daß nur eine Beziehung zwischen Volumenstrom und Druckverlust nach dem 

$$V = d \cdot I \cdot \lambda p \quad (1).$$

Die Ergebnisse sind damit nicht verallgemeinerungsfähig, sondern gelten exakt nur für die jeweils untersuchten: Bauteile unter den zugehörigen Prufbedingungen. Trotzdem ist és aufgrund der großen Fülle vorliegenden Untersüchungsmaterials für die wesentlichsten Bauelementemit Fugenundichtigkeiten (Fenster und Außentüren) möglich. die kennzeichnenden Werte Fügendurchlaßkoeffizient und Drückexponent) üblicher Ausführungen mit einer Toleranzbreite anzugeben, die haufig den im Bauwesen zu stellenden Anforderungen entspricht. Es wird deshalb oftmit dem Naherungswert n = 2/3 des Druckexponenten gerechnet, der auch in DIN 4701 "Regeln zur Berechnung des Warmebedarts von Gebauden" für die Ermittlung der Luftungswarmeverluste angegeben ist.

Durch das Vordringen von Großtafelbauweisen, bei denen auch zwischen den einzelnen Fassadentafeln Fugenundichtigkeiten entstehen, wird die Notwendigkeit dringlicher, für Bauteilfugen einfacher geometrischer Form Eugendurchlaßkoeffizienten ohne eine experimenrelle Prutung allein aufgrund der Fugengeometrie angeben zu können. Dieses gilt, wegen der unbegrenzten Vielfalt möglicher Spaltformen, in noch verstärktem Maße für Bauteiltugen innerhalb des Hauses, wenn die Durchströmung des Gebaudes aufgrund innerer und äußerer Druckfelder berechnet werden soll. Dieses Problem wird wichtig 2 B. für definierte Druckhaltung zum Schutze bestimmter Gebaudebereiche gegen unkontrollierten Luftaustausch

Der experimentelle Teo der Unterstüchung wurde vom Bundesminister hie Raumordnung, Bauwesen and Stadtebau tinanziell geforder

> -----. .

HLH 29 (1978) Nr 3 Marz

mit der Umgebung, z.B. in Krankenhäusern oder in kerntechnischen Anlagen.

Von Reiher, Fraass und Settele [12] wurde schon sehr fruhzeitig der Versuch unternommen, an Fugenmodellen realer Fensterrahmen die Einflüsse der geometrischen Parameter auf den Zusammenhang zwischen Volumenstrom und Druckdifferenz zu ermitteln. Die angegebenen-Beziehungen wurden jedoch rein empirisch aus den vorliegenden Meßdaten gewonnen, so daß sie auf stärker abweichende Fugenformen und Abmessungen nicht anwendbar sind, wie man durch Vergleich mit anderen Veröffentlichungen feststellen kann.

Die vorliegende Arbeit wurde mit dem Ziel durchgeführt, aus den an einfachen Fugenmodellen gewonnenen. Zusammenhangen zwischen Druckverlust und Volumenstrom unter Anwendung der bekannten Ähnlichkeitsgesetze für die Strömung in Rohren oder Spalten Gesetzmaßigkeiten abzüleiten, die es erlauben, die experimentellgewonnenen Ergebnisse mit den kennzeichnenden geometrischen Spaltparametern so zu verallgemeinern, daß die Luftdurchlässigkeit üblicher Bauteilfugen rechnerisch ermittelt werden kann.

#### Formelzeichen

- Fugendurchlaßkoeffizient đ
- Beiwert
- đ Durchmesser
- Stromungsquerschnitt.
- h Spalthöhe
- Spaltlänge
- Exponent der bezogenen Spalttiefe m
- Druckexponent n
- Druck
- Re Revnoldszahl
- Spalttiefe
- Umfang des Strömungsquerschnitts 11
- V Volumenstrom
- цĩ über dem Strömungsquerschnitt gemittelte Strömungsgeschwindigkeit
- Koordinate in Strömungsrichtung
- Anzahl
- 1 Differenz
- absolute Wandrauhigkeit ₽
- Einzelwiderstandsbeiwert
- ž Rohrreibungsbeiwert
- kinematische Zähigkeit
- e Dichte

#### Indizes

- Anlaufstrecke a
- Eintritt e
- h hydraulisch
- Austritt 0
- Umlenkung u

Dabei wird neben der allgemeinen Darstellung nach den Ahnlichkeitsgesetzen aus diesen auch ein Zusammenhang zwischen Volumenström und Druckdifferenz nach dem eintachen Potenzansatz der GL(1) für die üblichen Spaltförmen abgeleitet.

#### Zur Theorie der Strömung in ebenen Spalten

Grundlegende theoretische und experimentelle Arbeiten liegen von Hahnemann und Ehret [7: 8] für die Strömung in ebenen Spalten sowie von Koch und Feind [9] für die Strömung durch Ringspalte vor. Wenn ein geeigneter hydraulischer Durchmesser d. definiert wird, kann die Spaltströmung in derselben Form wie die Rohrströmung beschrieben werden. Für den ebenen Spalt gilt bei  $h \ll Tin$ bekannter Weise

$$J = \frac{4 F}{1'} = \frac{4 I \cdot h}{2! I + h!} \cong 2 h$$
 (2).

Die Reynoldszahl ergibt sich zu-

$$Rc = \frac{w \cdot d}{v}$$
(3).

Der Grenzwert Re. Lzwischen den Bereichen laminarer und turbulenter Strömung ist für die Spaltströmung nicht genau bekannt.

*Lin* [19, S. 29] ermittelte mit Hilfe einer rechnerischen Stabilitätsanalyse den Wert

$$Rc. = \frac{\frac{3}{2}}{\frac{1}{2}} \frac{h}{\frac{2}{2}} = 5300$$
(4).

Die Umrechnung entsprechend der hier benutzten Definition der Reynoldszahl. Gl. (3), ergibt

$$Rc_{\star} \approx 14.000$$
.

Hahnemann und Ehret [8] beobachteten dagegen bei ihren Messungen

 $Rc_{\rm ell} \approx 3000$ .

Lin diskutiert auf Seite 13 seines genannen Buches die Schwierigkeiten bei der theoretischen Ermittlung der kritischen Reynoldszahl, welche daraus entstehen, daß die Zähigkeit des Fluids einerseits die Ursache der Instabilität ist, andererseits auf dieselbe dämpfend wirkt, sobald sie auftritt. Diese zweifache Wirkung der Zähigkeit analytisch zu modellieren, halt Lin für sehr problematisch. Neuere Versuche in dieser Richtung sind bisher den Autoren nicht bekannt geworden. Angesichts dieser Unsicherheiten bei der Stabilitätsanalvse erscheint das experimentelle Ergebnis von Hahnemann und Ehret verläßlicher. Dennoch ist nicht auszuschließen, daß bei den Versuchen dieser Autören, die mit gut geschliffenen Spaltwanden gearbeitet haben, die für das Entstehen von Turbulenz verantwortlichen Instabilitäten bis zum Wert Re ≈ 3000 gedämpft wurden, während bei weniger glatten Wänden mit dem Umschlag bei noch kleineren Werten der Reynoldszahl gerechnet werden muß. Weil bei Bauteilfugen eher mit turbulenzfördernden Unregelmäßigkeiten wie Graten und großen Wandrauhigkeiten zu rechnen ist, wird im folgenden der für die Rohrströmung bekannte Wert Re., = 2320 angenommen.

Der auf die Spaltlänge bezogene Volumenstrom ist gegeben durch die Beziehung:

$$\frac{1}{l} = \tilde{n} \cdot h \tag{5}.$$

Es besteht daher zwischen diesem und der Reynoldszahl der folgende einfache Zusammenhang:

$$Rc = \frac{2}{r} \cdot \frac{V}{I}$$
(6).

Damit laßt sich für den Umschlag laminar-turbulent bei  $Re_{c} = 2320$  auch ein Grenzwert für den bezogenen Volumenstrom angeben:

$$\left(\frac{V}{V}\right)_{k,l} = 63.1$$
 in m<sup>4</sup>/hm. (7).

# Spalt mit unendlicher Tiefe

Fur den Druckabfall bei der Strömung durch einen unendlich tiefen Spalt mit konstantem Querschnitt gilt analog zur Rohrdurchströmung

$$\frac{\mathrm{d}\rho}{\mathrm{d}\chi} = -\frac{\dot{z}}{d} \cdot \frac{1}{2} \varrho \,\bar{w}^2 \tag{8}.$$

Der Reibungsbeiwert  $\lambda$  ist von der Reynoldszahl abhängig.

Bei ausgebildeter laminarer Spaltdurchströmung wurde von Hahnemann und Ehret [7] analytisch gefunden und experimentell bestätigt, daß

$$\dot{\lambda} = \frac{96}{Rc} \tag{9}$$

ist.

Für die laminare Rohrdurchströmung dagegen gilt nach dem Hagen-Poiseuilleschen Gesetz:

$$\dot{\lambda} = \frac{64}{Re} \tag{10}.$$

Für die ausgebildete turbulente Spaltdurchströmung ist auf theoretischem Wege bisher keine Beziehung für den Reibungsbeiwert gefunden worden. Wie später anhand der Meßergebnisse gezeigt wird, ist es jedoch möglich, dieselbe Beziehung zu verwenden, die für die turbulente Rohrdurchströmung bei hydraulisch glatter Wand von Prandtl [20] errechnet wurde:

$$\lambda' = \left[2 \lg \left(Re \sqrt{\lambda}\right) - 0.8\right] - 2 \qquad (11).$$

# Spalt endlicher Tiele und Einfluß der Anlaufstrecke

Die Strömung durch ebene Spalte mit endlicher Tiefe unterscheidet sich von der durch unendlich tiefe ebene Spalte um die Druckverluste bei der Ein- und Ausströmung. Außerdem ist ein Einfluß der Anlaufstrecke (Länge bei der Rohrströmung etwa 10 + d bis 60 + d) auf den Druckverlust zu erwarten. Diese Einflüsse können als Einzelwiderstände und Exponenten in der über die Spalttiefe t integrier/en GL(8) berucksichtigt werden, um den gesamten Druckverlust am Spalt anzugeben:

$$\Delta p_{res} = \left[\lambda \cdot \left(\frac{t}{d_s}\right)^m + \Sigma \frac{z}{z}\right] \frac{1}{2} \varrho \, \bar{w}^2 \qquad (12).$$

Widerstandsbeiwerte für die Einströmung in Öffnungen sind bekannt. Sie betragen je nach der Ausbildung der Kante:

| scharfe Kanten                    | $\zeta =$      | 0.3   |
|-----------------------------------|----------------|-------|
| gebrochene Kanten                 | 5 =            | 0,1   |
| gerundete Kanten                  | $\zeta =$      | 0,0   |
| Für den Wyderstandsheiwert hei de | er Ausströmung | orilt |

 $\zeta_i = 1.$ 

Wegen des laminaren Anteils innerhalb der Anlaufstrecke ist für den Exponenten der dimensionslosen Kenngröße t.d. immer ein Wert kleiner als 1 zu erwarten. Das heißt, der Druckverlust am Spalt mit Anlaufstrecke wird geringer sein als der an einem gleich tiefen Stück aus einem unendlich tiefen Spalt bei sonst gleichen Bedingungen.

# Messungen an ebenen Fugenmodellen konstanten Querschnitts<sup>1</sup>)

# Meßanordnung

Als Fugenmodelle wurden Winkelprofile aus gezogenem Aluminium verwendet, die zwischen zwei Druckkammern in einem Meßkanal eingebaut waren. Die Fugenlänge / betrug 1000 mm, die Fugenhöhe h wurde durch Einlegen von Lehren zwischen die Winkelprofile auf die Werte 0.4: 0.6: 0.8: 1: 2: 3: 5 und 7 mm eingestellt (s. Bild 1).

Die Spalttiefe *t* wurde bei den Modellen ohne Umlenkungen zwischen den Werten 1: 10: 50: 82 und 100 mm

) Die Messungen wurden von Dipl. Ing. E. Thullner durchgeführt.



· · · · · · · · · · · · · · · · · ·

Bild 1: Fugenmodell mit geradem Spalt

HLH 29 (1978) Nr 3 März



Bild 2: Fugenmodell mit Umlenkungen

variiert, und mit Ausnahme der Tiefe t = 1 mm, bei der nur die Spalthöhe h = 7 mm eingestellt wurde, waren alle Kombinationen zwischen den genannten Tiefen- und Höhenabmessungen in die Untersuchung der Strömung ohne Umlenkungen einbezogen. Fugenmodelle mit Umlenkungen wurden aus Rechteckrohren zusammengebaut, wie auf *Bild 2* gezeigt ist. Es wurden die Fälle mit 1: 2 und 4 Umlenkungen untersucht, wobei sich gemäß den verwendeten Modellen nach *Bild 2* Spalttiefen von insgesamt 100: 150 bzw. 250 mm ergaben.

Die Luftvolumenströme wurden mit Einlaufdüsen und Schwimmermanometern bzw. elektronischen Meßwertgebern (bei Druckdifferenzen unter 1 kp/m<sup>2</sup>) gemessen. Der Meßkanal wurde sorgfältig abgedichtet. Verbleibende Undichtigkeiten wurden durch Eichung berücksichtigt.

# Meßergebnisse

# Gerader Spalt

Die Bilder 3 bis 7 enthalten die Ergebnisse der Einzelmessungen an geraden Spalten. Jedes Bild zeigt die Werte für eine der untersuchten Spalttiefen t mit den jeweiligen Spalthöhen h die am oberen Bildrand als Parameter eingetragen sind. Neben den Meßpunkten sind mit gestrichelten Linien jene Kurven eingezeichnet, die man bei Verwendung der Gl. (12) sowie (9), (10) bzw. (11) erhält. Im Bereich Re < 2320 gilt die untere der beiden Kurven für den Ansatz  $\lambda = 64/Re$ , die obere für  $\lambda = 96/Re$ .

Außerdem enthalten die Bilder den Verlauf einer empirischen Funktion (durchgezogene Kurven), auf die im Abschnitt "Funktionale Darstellung der Meßergebnisse" eingegangen wird. Die zu jeweils einer Kombination von tund h gehörenden gemessenen, aus den Gl. (9) bis (12) berechneten und empirisch aus den Meßwerten gefundenen Ausgleichsfunktionen sind durch Schraffuren miteinander verbunden.



Die bei  $(V/I)_{ki,\ell} = 63.1 \text{ m}^4/\text{h}$  erkennbaren Unstetigkeiten in den Kurven rühren daher, daß für den laminaren und den turbulenten Bereich jeweils verschiedene Funktionsansätze benutzt wurden, die wie bei den bekannten Gesetzmäßigkeiten der Rohrströmung nicht stetig ineinander übergehen.

# Einfluß der Wandrauhigkeit

Die absolute Wandrauhigkeit v von gezogenen Aluminiumprofilen ist kleiner als  $1.5 \cdot 10^{-1}$  mm [23]. Die auf den hydraulischen Durchmesser bezogene Wandrauhigkeit v/2h lag somit bei den hier untersuchten Spalthöhen von 0.4 bis 7 mm im Bereich ( $\leq 0.11 \cdot 10^{-4}$ ) bis ( $\leq 1.88 \cdot 10^{-4}$ ).

Ermittelt man aus den Meßwerten für jeden der acht vorkommenden Werte 22/iden höchsten dabei erreichten Wert der Reynoldszahl und sucht diese Kombinationen als



Bilder 3 bis 7: Vergleich der Meßwerte für gerade Spalte ohne Umlenkungen mit theoretischen Ansätzen analog zur Rohrströmung und mit der empirisch ermittelten Anpassungsfunktion<sup>3</sup>) Melwerte

| inconcerne.                             |       |      |           |                |  |
|-----------------------------------------|-------|------|-----------|----------------|--|
| empirisch aus den Meßwerten:            | <br>  | <br> | <br>      |                |  |
| Theorie analog zur Rohrströmung.        |       |      |           |                |  |
| Re < 2320 und 2 nach GL (10):           | <br>_ | <br> | <br>      | - <sup>`</sup> |  |
| $Re < 2320$ und $\lambda$ nach Gl. (9): |       |      | <b></b> . |                |  |
| $Re > 2320$ und $\lambda$ nach GL (11): | <br>_ | <br> | <br>_ '_  |                |  |

tr/d auf *Bild 8* auf, dann erkennt man, daß im gesamten Bereich der vorliegenden Messungen die Wandrauhigkeit keinen merkbaren Einfluß hatte, weil alle Punkte nahe der Grenzkurve für hydraulisch glatte (Rohr-)Wand liegen. Bei dieser Überlegung wird angenommen, daß der quantitative Einfluß der Wandreibung bei Spalt- und Rohrwänden gleich ist.

) Die vergroßerten Originale dieser Bilder liegen den Verfassern vor:



Bild 8: Rohrreibungsbeiwert  $\alpha$  in Abhängigkeit von der Reynoldszahl und der relativen Rauhigkeit  $\ell$  d

Hieraus erkiart es sich, daß bei der Berechnung der theoretischen Kurven auf den Bildern 3 bis 7 im Bereich Re > 2320 nur die für Rohrdurchstromung bei hydraulisch glatter Wand bekannte Beziehung (11) zur Anwendung kam. In Fatten mit großeren Werten der bezogenen Wandrauhigkeit (Z.B. Fugen in Holzfenstern) kann der Zusammenhang  $\Delta p_{ij} = f(w,d)$ , wie er für die Rohrdurchstromung gilt, auch für die entsprechende Beziehung  $\Delta p_{cos}$ = f(w,2h) bei der Spaltdurchstromung angenommen werden.

Fur das Übergangsgebiet in den Grenzen

$$\frac{d}{\varepsilon} \log \left(0.1 \frac{d}{\varepsilon}\right) < Re < 400 \frac{d}{\varepsilon} + \log \left(3.715 \frac{d}{\varepsilon}\right)$$

wurde hierbei von *Colebrook* [21] der folgende Ausdruck ermittelt, aus dem bei großer Wandrauhigkeit 2 zu bestimmen ist:

$$\frac{1}{1} = -2 \log \left( 0.27 \frac{r}{J} + \frac{2.51}{R_{\odot} \sqrt{\lambda}} \right)$$
 (13).

Falle mit 
$$Re > 400 \frac{d}{r} + \lg \left(3.715 \frac{d}{r}\right)$$

sind bei Bauteilfügen nicht zu erwarten.

# Einfluß von Umlenkungen-

Auf den Bildern 9 bis 11 sind die Ergebnisse der Einzelmessungen an Spalten mit Umlenkungen eingetragen. Neben den Meßpunkten sind empirisch gewonnene Kurven als durchgezogene und gestrichelte Linien gezeichnet, auf die im folgenden Abschnitt eingegängen wird. Beim Vergleich von Meßwerten ohne und mit Umlenkung (z.B. die Werte für h = 2,0 auf Bild 7 und 9) für gleiche Spalttiefen zund Spalthöhen h ist zu erkennen, daß der Anstieg durch die Meßpunkte gelegter Kurven in beiden Fällen praktisch derselbe ist, daß jedoch wegen des erhöhten Druckverlustes bei Umlenkungen diese Kurven zu niedrigeren Werten des Volumenstroms verschoben sind.

# Funktionale Darstellung der Meßergebnisse

Um zu funktionalen Zusammenhängen zu gelängen, können den Meßwerten empirische Gleichungen mit Hilfe der Methode der kleinsten Summe der Fehlerquadrate angepaßt werden. Es wurden hier zwei verschiedene Möglichkeiten gewählt:

# Empirische Darstellung analog zur Rohrströmung

GL (12) läßt sich allgemeiner in der folgenden Form schreiben:

$$N\rho_{\rm ext} = \left[\lambda \cdot \left(\frac{l}{2h}\right)^m + z_{\rm ext} + z_{\rm ext} + z_{\rm ext} + z_{\rm ext} + z_{\rm ext}\right] \frac{Q \ \tilde{W}^2}{2} (14).$$
  
Bilder 9 his 11: Vergleich der Metlwerte mit der empirisch ermittelten  
Anpassungsfunktion und dem Potenzansatz für Spalte mit 40°-Umlen-





Dabei werden die Einzelwiderstände aufgrund der Einflüsse von Spaltein- und -austritt. Anlaufstrecke und Umlenkungen durch  $\zeta_{1}, \zeta_{2}, \zeta_{3}$  und  $z_{4}, \zeta_{5}$  berücksichtigt.

Die Einflüsse von Spalteintritt und -austritt wurden bei den Messungen nicht variiert. Es wurden die entsprechenden Einzelwiderstände mit  $\zeta = 0.3$  und  $\zeta_i = 1$  eingesetzt. Die beste Anpassung der empirischen Funktion an die Meßwerte für gerade Spalte ohne Umlenkungen ergab sich im Bereich Re < 2320 mit

$$\lambda = \frac{97}{Rc}$$
:  $m = 0.84$ :  $\zeta = 0.05$ 

im Bereich Re > 2320 mit

$$\dot{\lambda} = [2 \lg (Re \sqrt{\dot{\lambda}}) - 0.8]$$
;  $m = 0.84; \zeta_{a} = -0.1.$ 

Mit diesen Werten und  $z_n = 0$  wurden aus Gl. (14) die auf den *Bildern 3 bis 7* eingetragenen, durchgezogenen Kurven ermittelt. Die Annäherung an die Meßwerte ist, besonders für hohe Werte des Luftdurchsatzes, zufriedenstellend. Die Standardabweichung zwischen 66 ausgewählten Meßwerten und der empirischen Funktion beträgt 0.28.

Beim Vergleich der theoretisch analog zur Rohrströmung gewonnenen (gestrichelten) Kurven mit den Meßwerten überrascht, daß im Bereich Re < 2320 der theoretische Ansatz mit  $\lambda = 64/Re$  wesentlich näher an den Meßergebnissen liegt als der mit  $\lambda = 96/Re$ , d.h. dem Wert, den Hahnemann und Ehret für unendlich tiefe Spalte auch theoretisch nachgewiesen haben. Der Grund dafür ist der erhebliche Einfluß der Anlaufstrecken, welche bei den meisten gemessenen Kombinationen mehr als die Hälfte der jeweiligen Spalttiefe eingenommen haben dürften.

Beim empirischen Ansatz macht sich dieses darin bemerkbar, daß der Druckverlust nicht proportional der Spalttiefe ist, sondern *t* mit dem Exponenten 0.84 eingeht, dafür aber  $\lambda$  praktisch mit der von Hahnemann und Ehret [7] ermittelten Funktion übereinstimmt und daß außerdem kein besonderer Druckverlustbeiwert  $\zeta_a$  auftritt ( $\zeta_a = 0.05$ liegt innerhalb der Unsicherheit, mit welcher der für den scharfkantigen Einlauf angenommene Wert von 0.3 mindestens behaftet ist). Es hat sich also gezeigt, daß in beiden Bereichen der Reynoidszahl die empirische Näherungsfunktion den Meßwerten besser entspricht als die theoretischen Ansätze analog zur Rohrströmung.

An die Meßwerte für Spalte mit Umlenkungen wurde die empirische Funktion Gl. (14) angepaßt unter Beibehaltung der für die geraden Spalte ermittelten Werte für  $\lambda$ , mund  $\zeta_a$ . Der Ansatz mit dem Glied  $z_a + \zeta_a$  für den Umlenkungseinfluß in Gl. (14) beinhaltet die Annahme, daß sich die Anzahl  $z_a$  der in einer Bauteilfuge vorhandenen 90°-Umlenkungen nicht auf den Wert des Einzelwiderstandes  $\zeta_a$  auswirkt. Wie aus Untersuchungen von Lee [22] über Reihenschaltungen von Bogen bei der Rohrströmung bekannt ist, ergibt sich maximal der Summenwert aller Widerstände für die geraden Strecken und Umlenkungen, so daß die getroffene Annahme allenfalls etwas zu hohe Widerstände errechnen läßt.

Die beste Anpassung ergab sich für  $\zeta_i = 0.82$ , wobei die Standardabweichung für die 116 Meßwerte 0.10 betrug. Mit diesem Wert wurden aus Gl. (14) die empirischen (durchgezogenen) Kurven auf den *Bildern 9 bis 11* ermittelt.

#### Ableitung üblicher einfacher Potenzfunktionen

Wenn die im Abschnitt "Spalt mit unendlicher Tiefe" für die Rohrströmung genannten Gl. (3), (5) und (9) bis (12) annähernd auch für die Strömung in ebenen Spalten gelten, dann ist zu erwarten, daß der Wert des Exponenten zwischen n = 0.5 bei vollkommen turbulenter Strömung und n = 1.0 bei vollkommen laminarer Strömung liegt. Der Fugendurchlaßkoeffizient *a* ist von der Spalthöhe *h*. der Spalttiefe *t*, der absoluten Rauhigkeit der Spaltwände sowie der Reynoldszahl abhängig.

Bei endlichen Spalten sind außer dem Reibungswiderstand im Spalt stets Ein- und Austrittsverluste vorhanden, die dem Quadrat der mittleren Geschwindigkeit proportional sind, so daß der Exponent n = 1 auch aus diesem Grunde (vgl. Abschnitt "Spalt endlicher Tiefe und Einfluß der Anlaufstrecke") nie ganz erreicht wird. Bei engen Spalten und kleinen Druckdifferenzen (kleine Geschwindigkeiten und kleine Beträge der Reynoldszahl) bildet sich









nur dann eine läminare Strömung voll aus, wenn eine ausreichende Spälttiefe vorhanden ist.

Aus der empirischen Gl. (14) wurden für alle in dieser Untersuchung behandelten Kombinationen von Spalttiefen t und Spalthohen h die Exponenten n und die Fugendurchlaßkoeffizienten a errechnet. Sie sind in der Tabelle zusammengestellt und auf den Bildern 12 und 13 als Funktionen a = f(t, h) und n = f(t, h) dargestellt. Bild 12 zeigt, daß aim hier interessierenden Bereich mehr von der Spalthöhe als von der Spalttiefe abhängt. Auch für n ist der Einfluß der Spalthohe der entscheidende, wie Bild 13 erkennen laßt. Die dort eingetragenen Kurvenverläufe sind auf den Wert t = 0 extrapoliert. Für  $t \rightarrow 0$  wird der Reibungsanteil zu Null, so daß der Exponent n für alle Spalthöhen  $\neq 0$  den Wert n = 0.5 annehmen muß (reiner Einzelwiderstand).

Fur Bauteilfugen mit Umlenkungen läßt sich Gl. (1) durch folgenden Ansatz erweitern:

$$V = a \cdot / (1 - z_a \cdot c_a) \cdot \Delta p^n$$
(15).

Mit Hilfe der Methode der kleinsten Summe der Fehlerquadrate wurde auch hier der Wert ca für den Einfluß der einzelnen Umlenkung aus den entsprechenden Meßergebnissen bestimmt, wobei die betreffenden Werte für a und n aus den Bildern 12 und 13 abzulesen waren. Es ergab sich c. = 0,1 bei einer Standardabweichung von 0,19 für die 116 Meßwerte. Auf den Bildern 9 bis 11 sind gestrichelt die durch Gl. (15) gegebenen Geraden eingetragen. Beim Vergleich beider empirisch ermittelten Funktionsverläufe mit den Meßpunkten in diesen Bildern ist zu erkennen, daß erwartungsgemäß Gl. (14) genauere Ergebnisse liefert als der einfache Ansatz Gl. (15). Aber auch letzterer ist bei vernachlässigbarer Wandrauhigkeit durchaus brauchbar für Berechnungen in den für Bauteilfugen wichtigen Bereichen der Abmessungen und Druckdifferenzen. Es sei jedoch darauf hingewiesen, daß eine ausreichende Gültigkeit von Gl. (15) für Spalthöhen < 1 mm nicht gewährleistet ist, wie auf Bild 10 die gestrichelte Kurve für h = 0.6mm erkennen läßt.

Bei der Beurteilung der Genauigkeit von Fugendurchlaßkoeffizienten und Druckexponenten für Bauteilfugen ist zu bedenken, daß aufgrund der zahlreichen bauseits gegebenen Störeinflüsse (ungleiche Spalthöhen über die Spaltfläche, Anstriche, Verschmutzungen, unterschiedliche Anpreßdrücke von Schließvorrichtungen usw.) für die genannten Werte immer mit Toleranzen gerechnet werden muß, die mit denen sonstiger Kennwerte wie Wärmeleitfähigkeitskoeffizienten u.ä. nicht vergleichbar sind. Zahlreiche Untersuchungen in der Literatur weisen aus [1: 5:15:16], daß z.B. bei Fenstern unter sonst gleichen Bedingungen durch die genannten Einflüsse mit Verhältnissen bis etwa 1:6 für die Fugendurchlaßkoeffizienten gerechnet werden muß. Mögliche Störeinflüsse sind selbstverständlich relativ um so größer, je geringer die Werte für die Fugendurchlaßkoeffizienten sind. Hier sei außerdem auf die Einflüsse der Anströmrichtung und der Wandrauhigkeit [1] sowie der Einbaufugen bei Fenstern und Türen hingewiesen.

# Zusammenfassung der Ergebnisse

Es wurden meßtechnisch Gesetzmäßigkeiten für die Strömung von Luft durch ebene Spalte ohne und mit Umlenkungen ermittelt. Die Untersuchung beschränkte sich auf die für Bauteile in Frage kommenden Bereiche der Druckdifferenzen ( $0 < \Delta p < 100 \text{ kp/m}^2 \text{ bzw.} \approx 981 \text{ Pa}$ ), der Spalthöhen ( $0 < h \leq 7 \text{ mm}$ ) und der Spalttiefen (1 mm  $\leq t \leq 250 \text{ mm}$ ), wobei Spalttiefen größer als 100 mm nur bei den Fugenmodellen mit zwei oder vier 90°-Umlenkungen untersucht wurden.

Der Druckverlust in endlichen Spalten kann in den genannten Bereichen aus einer aus den Meßwerten gewonnenen Ausgleichsfunktion berechnet werden, wobei die Koeffizienten. Exponenten und Einzelwiderstandsbeiwerte entsprechend der Geometrie, dem Wert der Reyr Idszahl und dem der Wandrauhigkeit einzusetzen und.

Aus den Ergebnissen wurden außerdem die Kennwerte des bekannten Potenzansatzes für den Zusammenhang zwischen Volumenstrom und Druckdifferenz abgeleitet, der für Berechnungen im Bauwesen üblicherweise benutzt wird und für diese Zwecke eine angemessene Genauigkeit hat. Damit können diese Kennwerte (Fugendurchlaßkoeffizienten a, Umlenkungsbeiwerte c, und Druckexponenten n) für übliche Bauteilfugen aus den geometrischen Abmessungen ermittelt werden.

Tabelle: Empirisch ermittelte Fugendurchlaßkoeffizienten a\*) und Exponenten n

| h<br>mm | / mm |          |       |       |      |       |      | · .   |       |        |  |
|---------|------|----------|-------|-------|------|-------|------|-------|-------|--------|--|
|         | 1 mm | 1 mm     |       | 10 mm |      | 50 mm |      | 82 mm |       | 100 mm |  |
|         | a    | n        | a     | n     | d    | п     | a    | n     | e a   | n      |  |
| ).4     | _    | -        | 2,14  | 0.66  | 0.48 | 0.89  | 0,31 | 0.93  | 0 245 | 0.95   |  |
| .6      | -    | -        | 4.67  | 0.60  | 1.75 | 0.77  | 1.14 | 0.82  | 0.88  | 0.87   |  |
| 8.      |      | _        | 7.57  | 0.56  | 3.98 | 0.67  | 2.72 | 0.73  | 2.31  | 0.75   |  |
| .0      | -    | <u> </u> | 11.21 | 0.53  | 7.0  | 0.60  | 5.15 | 0.65  | 4,19  | 0.70   |  |
| .0      | _    | -        | 25.0  | 0.51  | 21.8 | 0.53  | 20.8 | 0.52  | 19.8  | 0.53   |  |
| .0      | -    | -        | 38.0  | 0.51  | 35.8 | 0.51  | 33.5 | 0.52  | 32.6  | 0.52   |  |
| .0      | · -  | -        | 66    | 0,50  | 60,3 | 0.51  | 60.6 | 0,51  | 58    | 0.52   |  |
| .0      | 45   | 0,50     | 93    | 0,50  | 87   | 0.51  | 88.5 | 0.50  | 86    | 0.51   |  |

m'

m h (kp/m:)"

Zur Wahrung der zahlenmäßigen Übereinstimmung mit dem bereits vor längerer Zeit erstellten Forschungsbericht über diese Untersuchung, wurden noch die alten Einheiten des technischen Maßsystems beibehalten. Bei Umrechnung der Druckeinheit gilt hier

$$a \text{ in } \frac{m^3}{m h (Pa)^n} = 9.81^{-n} \cdot \left(a \text{ in } \frac{m^3}{m h (kp/m^2)^n}\right)$$

Mit Hilfe dieser Ergebnisse werden für eine Vielzahl in der bauphysikalischen Praxis vorkommende Bauteilfugen bessere Voraussagen über die Luftdurchlässigkeit möglich. sein als mit dem Druckexponenten 2/3+z.B. DIN 4701) und den bisher bekannten Mittelwerten für a (z.B. [18, Zahlentafel A 15a] und DIN 4701), die aus vielen Untersuchungen mit sehr großen Streubreiten gewonnen wurden.

# Schrifttum

- [1] Benndorf, D. Zur Luftdurchlassigkeit von Fensterfugen. Luft- und Calterechnik 1975-2, S 67-71
- Caemmerer, J. S. u. Hirschbold, F. X.: Der Einfluß der Fensterbauart 121 aut den Luftdurchgang. Ges. Ing. 61 (1938), S. 393/399.
- [3] Duerr, R. Die Lutt- und Warmedurchlassigkeit neuzeitlicher Stahlersterbauweisen, Gessling, 64 (1941), S. 135-142.
- [4] Eberle, Ch. Versuche über die Luftdurchlassigkeit und den Warmeerlust von Fensiern. Geschig. 51 (1928), S. 566-570.
- [5] Isdorn, rf. Luftdurchlassigkeit der Fenster und Druckverteilung im Gebaude, Das Hochhaus der BASF, Julius Holfmann Verlag, Stuttgart (1958), S. 213/218.
- Seiterr, E. Untersuchung über den Zusammenhang zwischen Fugen-[nj dichtheit und Schalldammvermögen von Fenstern. Kurzbericht Bautorsch. n.: 1965), S. 122-126.
- [7] Hahnemann, H.a. Ehret, L. Der Druckverlust der laminaren Stromung in der Anlaufstrecke von geraden, ebenen Spalten, Jahrbuch der deutschen Lultfahrtforschung (1941), S. 121-132.
- Hahnemann, H. u. Ehret, L.: Der Strömungswiderstand im geraden. [8] ebenen Spalt unter Berücksichtigung der Einfaufverluste: Jahrbuch der deutschen Luftfahrtforschung (1942). S. 1186/1207.

- [9] Kich R.u. Feind, K. Druckverlust und Warmeubergang in Ringspalten Chem.-Ing.-Techn. 30 (1458), S. 577-584
- [10] Raison, E: Die Warme- und Luftdurchlassigkeit von Fenstern ver
- chiedener Konstruktion, Ges-Ing, 45 (1422), S. 49 (05) [11] Rassin F: Die Fultdurchlassigkeit von Baustoffen und Baukonstruktionstellen. Ges. Ing. 51 (1428), S. 481-484.
- [12] Reiher, H., Fraas, K. u. Setteie, E: Über die Frage der Luft- und Warmedurchlässigkeit von Fenstern, Warmewirtschil, Nachr 6 (1932-33), H. 4, S. 42, 52, H. 5, S. 55, 59.
- [13] Settele, E. Über die Frage der Luft- und Warmedurchlassigkeit von Fenstern, Warmewirtschftl, Nachr. 6 (1933), S. 111-116.
- [14] Sigwart, K.: Luftdurchlassigkeit von Holz- und Stahltenstern. Ges.-Ing. 43 (1932), S. 515-517.
- [15] Schule, W: Luftdurchlassigkeit von Fenstern, Ges-Ing. 82+1961). S 181-184
- [16] Schule, Wh Untersuchungen über die Luft- und Warmedurchlassigkeit von Fenstern, Ges.-Ing. 83 (1962), S. 153-162.
- [17] van Zuilen, D. u. van Gunst, E.: Warmebedarf ünter besonderer Berucksichtigung der Luftdurchlassigkeit von Fenstern, Gesolng, 79 1-581. 5. 353 363
- [18] Rietschel Raib, Heiz- und Klimatechnik, II. Band, 15, Auflage, 1970. Springer Verlag. Lin, C.C. The Theory of Hydrodynamic Stability, 1955 Campridge,
- [19] iniv. Press.
- [20] Prandtl, L.: Neuere Ergebnisse der Turbulenztorschung, VDI-Z, 77 19331 5, 105-14.
- [21] Colebrook, C.F.: Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe laws J. Instn. Civ. Engrs. 11 (1938-39) S. 133.
- [22] Lee, C.S.: Rohrstromungswiderstände in 90 -Rohrkrummern. Diss TU Berlin, 1968, auch in Gesundheits-Ingenieur 89 (1968) S. 341 – 344. 367 - 376 und 40 (1464) S. 20 - 27.
- Dubbel: Taschenbuch für den Maschinenbau, Band f. 13. Aufl. 1970. [23] 5.312 [H 7e3]

# Die sicherheitstechnischen Kriterien bei der Planung von Heißwassererzeugern

Während der Planung einer Hochdruck-Heißwasseranlage für ein gro-Bes Heizkraftwerk in Süddeutschland standen auf dem Markt keine bauteilgeprüften Sicherheitsventile zur Verfügung; es lagen nur Schätzwerte für die Schließzeiten und für die Ausfluß-Durchsätze der Ventile vor. Dies gab Anlaß, Berechungsunterlagen zusammenzustellen und Diagramme zu entwickeln, die eine sicherheitstechnische Planung von Heißwassererzeugern ermöglichen. S. Pessiridis<sup>1</sup>) berichtete hierüber.

Heißwassererzeuger gelten im Sinn der Dampfkesselverordnung als Dampferzeuger und müssen daher mit besonderen Sicherheitsvorrichtungen versehen sein. Beim Ansprechen eines Vollhub-Sicherheitsventils strömen in kurzer Zeit große Wassermassen aus der Anlage aus. Die damit verbundene plötzliche Druckabsenkung im Heißwassererzeuger und im Leitungsnetz führt u.U. zu einer unerwünschten Dampfbildung, da die Druckhaltesysteme kaum in der Lage sind, die große Druckabsenkung auszugleichen. Andererseits werden beim plötzlichen Schließen der Ventile bereits beschleunigte Wassermas-

sen sehr schnell wieder verzögert, so daß Druckstöße entstehen und zum Zerstören von Anlageteilen Anlaß geben können.

In den einschlägigen Verordnungen und Richtlinien über Sicherheitseinrichtungen (in denen aber weder auf die Bauart noch auf die Leistung der Heißwassererzeuger eingegangen wurde) wird sowohl für Dampfals auch für Heißwassererzeuger vorgeschrieben, beim Bemessen der Sicherheitsventile das einphasige Ausströmen von Wasserdampf zugrunde zu legen. Dies trifft zwar für Dampferzeuger zu: bei den Heißwassererzeugern wäre aber ein Ausströmen von Sattdampf nur beim kritischen Druck von 221.2 bar theoretisch möglich. Man betreibt aber Heißwasseranlagen z.Z. mit Arbeitsdrücken von höchstens 30 bar: aus dem Sicherheitsventil strömt hierbei ein Wasser-Dampf-Gemisch mit einem Dampfgehalt unter 30% aus. Die theoretischen Überlegungen führen zu dem Schluß, daß sich bei einem Durchlaufkessel die Wärmeleistung nur zu rd. 65"<sup>n</sup> für die Dampferzeugung ausnutzen läßt (zu etwas mehr beim Naturumlaufkessel). Hinzu kommt, daß die Reibung in den Kesselrohren die Dampferzeugung im Heißwasserkessel behindert. Normalerweise legt

man diese Kessel wegen des gegenüber Dampf sehr kleinen spezifischen Wasservolumens für niedrige Geschwindigkeiten aus. Im Fall einer Dampfbildung entstünden aber rasch Dampfblasen, die bei zunehmendem Druck stoßartig wieder zusammenfielen. Dies würde an den heißesten Stellen zu einer noch intensiveren Verdampfung und u.U. sogar zu Filmverdampfung mit Zerstörung der Kesselrohre durch Überhitzen führen. Man wählt daher bei den Sicherheitsventilen für Heißwassererzeuger kleinere Querschnitte als bei den Ventilen für Dampferzeuger. Die zuverlässigste Maßnahme zum Absichern der Heißwasserkessel wäre selbstverständlich das Abschalten der Feuerung.

Auf der Grundlage der vorstehend von ihm selbst knapp umrissenen Problematik ging S. Pessiridis im einzelnen auf die folgenden Themen ein: Betriebsbedingungen im Heizkraftwerk. Absicherungssystem der Heißwasserkessel, Arbeitsbereiche für die Ventile. Aufstellen der Temperatur-Entropie- und der Enthalpie-Druck-Diagramme, für die Arbeitsbereiche. Berechnung des Massendurchsatzes, kritisches Druckverhältnis, Volumenänderungen im Flüssigkeits- und im Naßdampfgebiet, Abschalttemperatur. Hah [H 750]

Pessiridis, S.: Die sicherheitstechnischen Kritetien bei der Planung von Heidwassererzeugern. Warme 83 (1977) Nr. 4, S 44 50.