

Recommended criteria for thermal comfort and indoor air quality in International standards (ASHRAE-ISO-CEN)

Professor Bjarne W. Olesen, Ph.D., FASHRAE

bwo@byg.dtu.dk

Society President

International Center for Indoor Environment and Energy

Technical University of Denmark

INDOOR ENVIRONMENT

- THERMAL
- AIR QUALITY
- ACOUSTIC
- LIGHT

EVALUATION OF THE INDOOR ENVIRONMENT

- DESIGN LEVEL
- COMMISSIONING
- TESTING
- COMPLAINTS

STANDARDS

ISO EN 7730-2005

 Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort effects.

ASHRAE 55-2016

Thermal environment conditions for human occupancy

ASHRAE 62.1 and 62.2 -2016

Ventilation and indoor air quality

EN15251

 Indoor environmental input parameters for design and assessment of energy performance of buildings- addressing indoor air quality, thermal environment, lighting and acoustic

EN 13779

 Ventilation for non-residential buildings - performance requirements for ventilation and room-conditioning systems

International Standards Indoor Environmental Quality

prEN16798-1 and ISO 17772-1:

 Indoor environmental input parameters for the design and assessment of energy performance of buildings.

TR16798-2 and ISO TR 17772-2:

 Guideline for using indoor environmental input parameters for the design and assessment of energy performance of buildings.

EN 16798-3 and TR 16798-4

 Ventilation for non-residential buildings - performance requirements for ventilation and room-conditioning systems

MODERATE ENVIRONMENTS

- GENERAL THERMAL COMFORT
 - PMV / PPD, OPERATIVE TEMPERATURE
- LOCAL THERMAL DISCOMFORT
 - Radiant temperature asymmetry
 - Draught
 - Vertical air temperature difference
 - Floor surface temperature

THERMAL COMFORT

- OPERATIVE TEMPERATURE
- -0,5 < PMV < +0,5 ; PPD < 10 %
- SPACES WITH MAINLY SEDENTARY OCCUPANTS:
 - SUMMER CLOTHING 0,5 clo
 - ACTIVITY LEVEL1,2 met
- 23 °C $< t_o < 26$ °C.

GENERAL THERMAL COMFORT

- Personal factors
 - Clothing
 - Activity
- Environmental factors
 - Air temperature
 - Mean radiant temperature
 - Air velocity
 - Humidity

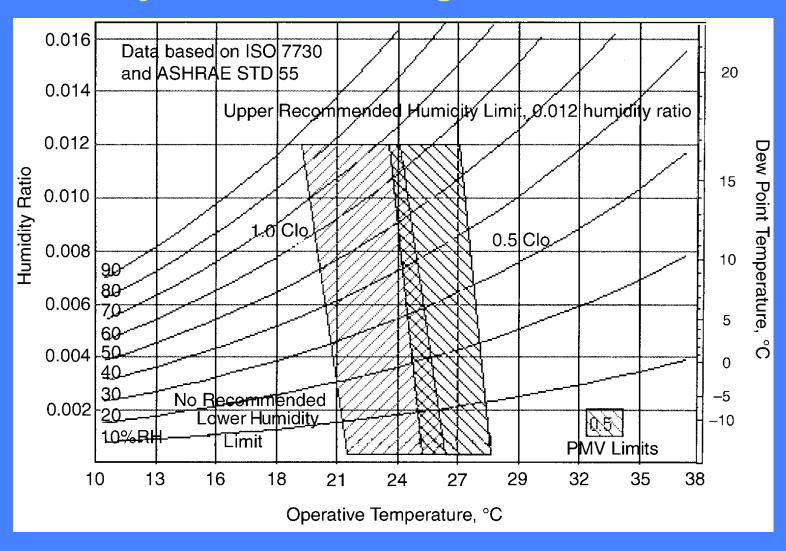
Categories

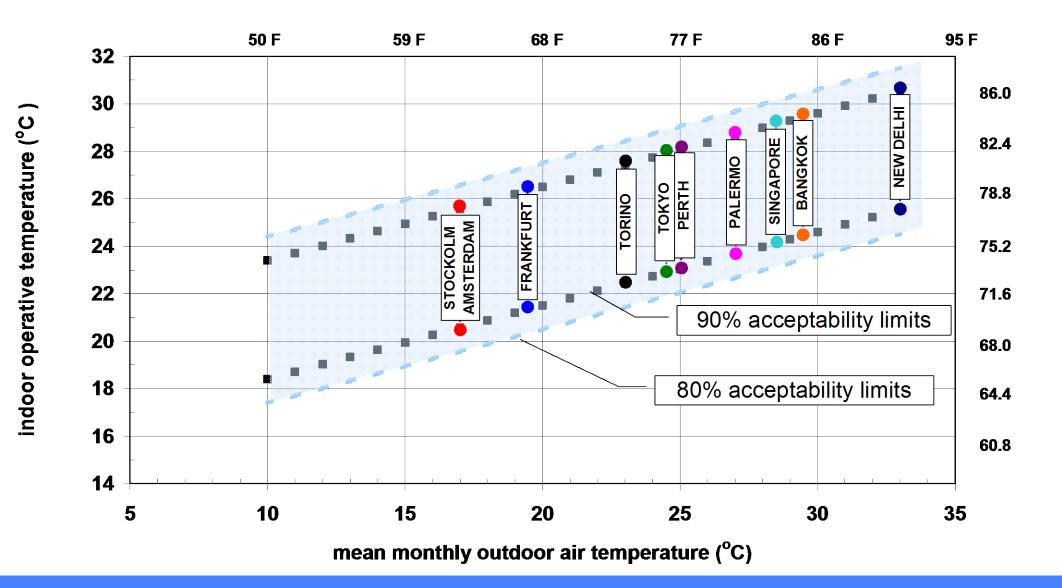
Cate- gory	Explanation
ı	High level of expectation and also recommended for spaces occupied by very sensitive and fragile persons with special requirements like some disabilities, sick, very young children and elderly persons, to increase accessibility.
II	Normal level of expectation
III	An acceptable, moderate level of expectation
IV	Low level of expectation. This category should only be accepted for a limited part of the year

Recommended categories for design of mechanical heated and cooled buildings

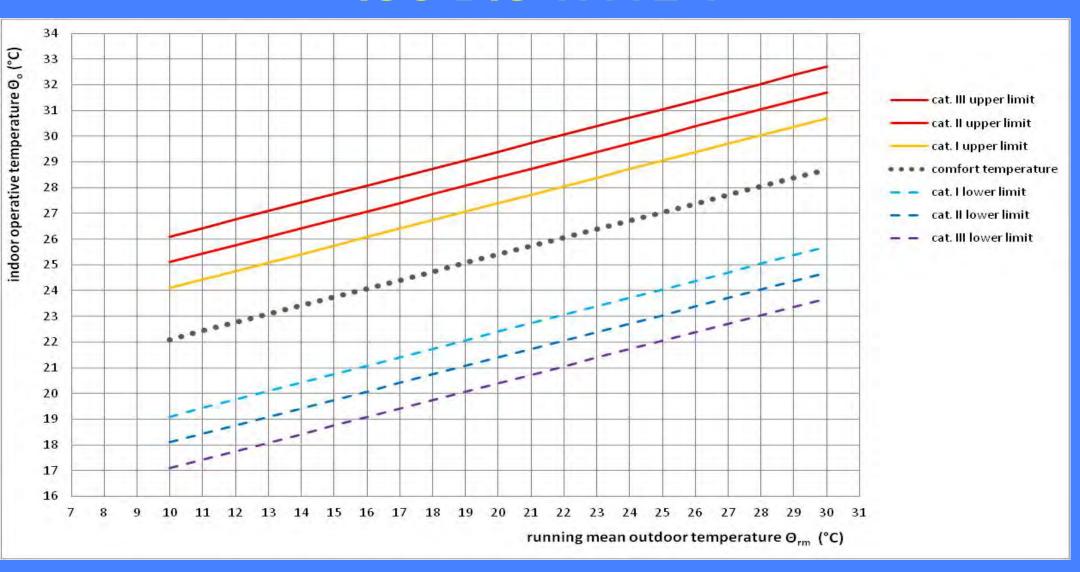
Category	Thermal state of the body as a whole						
	PPD %	Predicted Mean Vote					
I	< 6	-0.2 < PMV < + 0.2					
II	< 10	-0.5 < PMV < + 0.5					
III	< 15	-0.7 < PMV < + 0.7					
III	< 25	-1.0 < PMV < + 1.0					

Evaluation standard for indoor thermal environment in civil buildings Chinese standard


Table 4.2.4-1 overall thermal comfort index value


Grade Overall thermal comfort index						
1	PPD≤10 %	-0.5≤PMV≤+0.5				
- 11	10% <ppd≤25 %<="" td=""><td>-1 < PMV < -0.5 or +0.5 < PMV < +1</td></ppd≤25>	-1 < PMV < -0.5 or +0.5 < PMV < +1				
Ш	PPD>25%	PMV<-1 or PMV>+1				

Temperature ranges for hourly calculation of cooling and heating energy in three categories of indoor environment


Type of building/ space	Category	Operative Temperature for Energy Calculations °C			
Offices and spaces with similar activity (single		Heating (winter season), ~ 1,0 clo	Cooling (summer season), ~ 0,5 clo		
offices, open plan offices, conference rooms,	I	21,0 - 23,0	23,5 - 25,5		
auditorium, cafeteria, restaurants, class rooms,	II	20,0 - 24,0	23,0 - 26,0		
Sedentary activity ~1,2 met	III	19,0 – 25,0	22,0 - 27,0		
	IV	17,0 – 26,0	21,0 - 28,0		

Humidity limits according to ASHRAE-55-2016

ISO DIS 17772-1

Natural ventilated buildingswithout mechanical cooling

- activity levels lie most of the time in the range of 1,2 - 1,6 met
- clothing insulation can be varied according to momentary preferences from 0,5 to 1,0 clo
- access to operable windows
- less than 4 persons per room
- such as dwellings and office buildings.

GENERAL THERMAL COMFORT

AIR VELOCITY

- Draught
- Preferred air velocity at increased temperature
- Direction of air velocity
- Large individual differences
- Personal control (fans, windows)

ASHRAE 55-2016

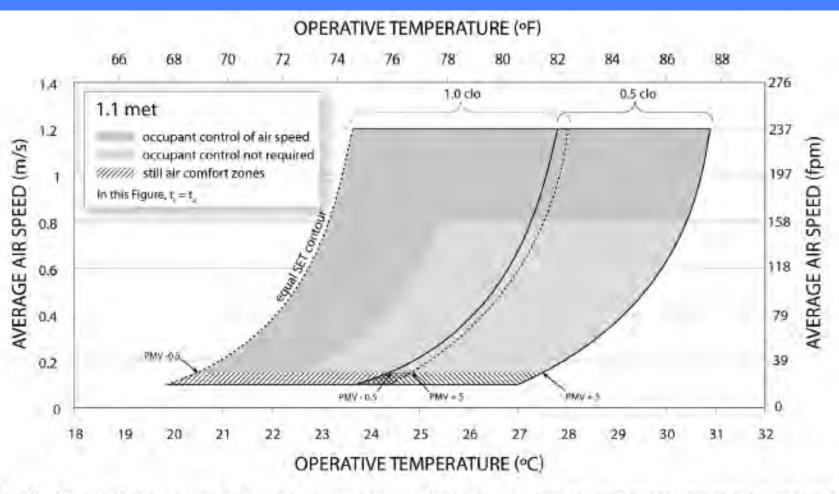


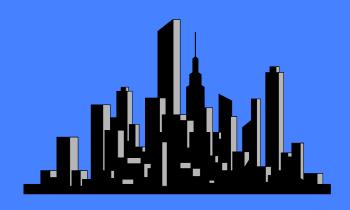
FIGURE 5.3.3A Acceptable ranges of operative temperature (t_o) and average air speed (V_a) for the 1.0 and 0.5 clo comfort zone presented in Figure 5.3.1.1, at humidity ratio 0.010.

LOCAL THERMAL DISCOMFORT

- FLOOR SURFACE TEMPERATURE
- VERTICAL AIR TEMPERATURE DIFFERENCE
- DRAUGHT
- RADIANT TEMPERATUR ASYMMETRI

CRITERIA FOR INDOOR AIR QUALITY ~VENTILATION RATES

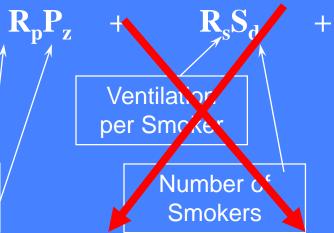
- COMFORT (Perceived Air Quality)
- HEALTH
- PRODUCTIVITY
- ENERGY

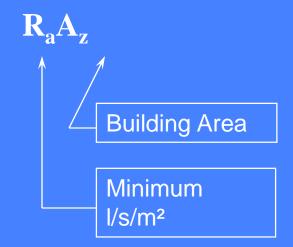

Concept for calculation of design ventilation rate

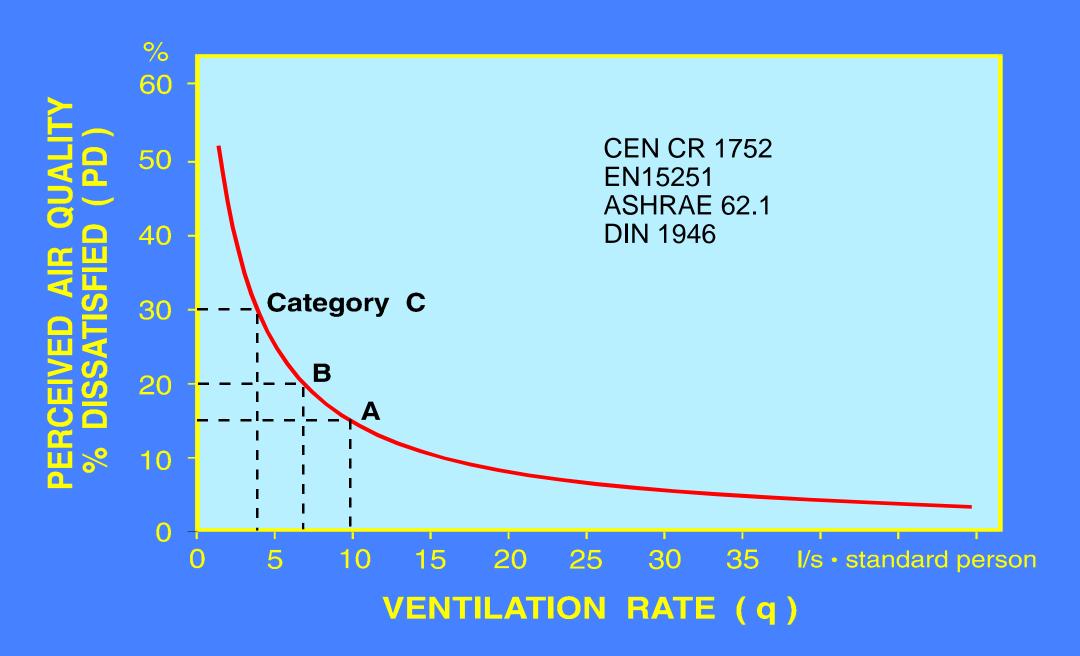
People Component

Building Component

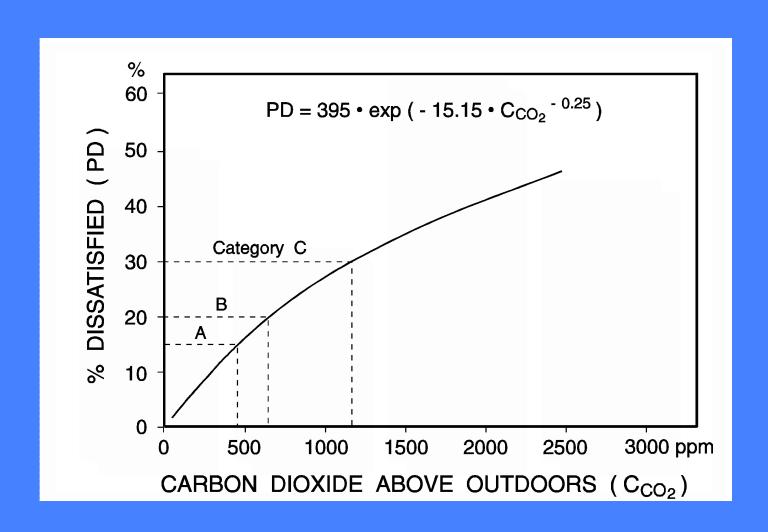
Breathing Zone Outdoor Airflow




V_{bz} = R


Minimum

I/s/Person


Number of
People

CO2 as reference

ASHRAE 62.1

TABLE 6-1 MINIMUM VENTILATION RATES IN BREATHING ZONE
(This table is not valid in isolation; it must be used in conjunction with the accompanying notes.)

	People Outdoor	Area Outdoor		Default Values		
Occupancy Category	Air Rate <i>R_p</i>	Air Rate <i>R_a</i>	Notes	Occupant Density (see Note 4)	Combined Outdoor Air Rate (see Note 5)	Air Class
outigot,	cfm/person	cfm/ft ²	-	#/1000 ft ²	cfm/person	
Office Buildings						
Office space	5	0.06		5	17	1
Reception areas	5	0.06		30	7	1

MINIMUM VENTILATION RATES IN BREATHING ZONE

						Default Values		
Occupancy Category	Occupancy Category People Outdo R _P				Notes	Occupant Density (see Note	Density (see Note Combined Outdoor Air	
	cfm/person	L/s•person	cfm/ft ²	L/s•m ²		#/1000 ft ² (#/100 m ²)	cfm/person	L/s•person
Correctional								
Cell	5	2.5	0.12	0.6		25	10	4.9
Day room	5	2.5	0.06	0.3		30	7	3.5
Guard stations	5	2.5	0.06	0.3		15	9	4.5
Booking/waiting	7.5	3.8	0.06	0.3		50	9	4.4
Educational Facilities								
Daycare (through age	10	5	0.18	0.9		25	17	8.6
Classrooms (ages 5-	10	5	0.12	0.6		25	15	7.4
Classrooms (age 9	10	5	0.12	0.6		35	13	6.7
Lecture classroom	7.5	3.8	0.06	0.3		65	8	4.3
Lecture hall (fixed	7.5	3.8	0.06	0.3		150	8	4.0
Art classroom	10	5.0	0.18	0.9		20	19	9.5

Basic required ventilation rates for diluting emissions (bio effluents) from people for different categories

Category	Expected Percentage Dissatisfied	Airflow per non- adapted person I/(s.pers)
	15	10
II	20	7
III	30	4
IV	40	2,5*

*The total ventilation rate must never be lower than 4 l/s per person ASHRAE Standard 62.1 : Adapted persons 2,5 l/s person (Cat. II)

Design ventilation rates for diluting emissions from buildings

Category	Very low polluting building I/(s m ²)	Low polluting building I/(s m²)	Non low- polluting building l/(s m ²)
I	0,5	1,0	2,0
II	0,35	0,7	1,4
III	0,2	0,4	0,8
IV	0,15	0,3	0,6
Minimum total ventilation rate for health	4 I/s person	4 l/s person	4 I/s person

Example on how to define low and very low polluting buildings

SOURCE	Low emitting products for low polluted buildings	Very low emitting products for very low polluted buildings
Total VOCs TVOC (as in CEN/TS 16516)	< 1.000 μg/m³	< 300 μg/m³
Formaldehyde	< 100 μg/m³	< 30 μg/m³
Any C1A or C1B classified carcinogenic VOC	< 5 μg/m³	< 5 μg/m³
R value (as in CEN/TS16516)	< 1.0	< 1.0

Total ventilation rate

$$q_{tot} = n \cdot q_p + A_R \cdot q_B$$

$$q_{\text{supply}} = q_{\text{tot}} / \epsilon_{\text{v}}$$

- Where
- ε_v = the ventilation effectiveness (EN13779)
- q_{supply} = ventilation rate supplied by the ventilation system
- q_{tot} = total ventilation rate for the breathing zone, I/s
- n = design value for the number of the persons in the room,
- q_p = ventilation rate for occupancy per person, I/s, pers
- A_R = room floor area, m²
- q_B = ventilation rate for emissions from building, I/s,m²

Example of design ventilation air flow rates for a single-person office of 10 m² in a low polluting building (un-adapted person)

Cate- gory	Low- polluting building l/(s*m ²)	Airflow per non- adapted person		design ventilation or the room I/(s*person)	n air flow I/(s* m²)
	"(3 III)	I/(s*person)		n (o porcon)	n (o m)
I	1,0	10	20	20	2
II	0,7	7	14	14	1,4
III	0,4	4	8	8	0,8
IV	0,3	2,5	5,5	5,5	0,55

Type of Occubulding/ pancy gory space person/m ² CEN			Occupants only l/s person		Additional building (a l/s·m ²	Total l/s·m ²			
			ASH- RAE	CEN	CEN low-	CEN Non-low-	ASH- RAE	CEN Low	ASH- RAE
			Rp		polluting building	polluting building	Ra	Pol.	IXI III
Single		A		10	1,0	2,0		2	
office (cellular	0,1	В	2,5	7	0,7	1,4	0,3	1,4	0,55
office)		С		4	0,4	0,8		0,8	
Land-		A		10	1,0	2,0		1,7	
scaped office	0,07	В	2,5	7	0,7	1,4	0,3	1,2	0,48
		C		4	0,4	0,8		0,7	
Confe-		A		10	1,0	2,0		6	
rence room	0,5	В	2,5	7	0,7	1,4	0,3	4,2	1,55
100111		C		4	0,4	0,8		2,4	
	$1 \text{ l/s } \text{m}^2 = 0.2 \text{ cfm/ft}^2$								

The design zone outdoor airflow (Voz)

The outdoor airflow that must be provided to the zone by the supply air distribution system, shall be determined in accordance:

$$Voz = Vbz/Ez$$

Air Distribution Configuration	E _Z
Ceiling supply of cool air	1.0
Ceiling supply of warm air and floor return	1.0
Ceiling supply of warm air 15°F (8°C) or more above space temperature and ceiling return.	0.8
Ceiling supply of warm air less than 15°F (8°C) above space temperature and ceiling return provided that the 150 fpm (0.8 m/s) supply air jet reaches to within 4.5 ft (1.4 m) of floor level. Note: For lower velocity supply air, $Ez=0.8$.	1.0
Floor supply of cool air and ceiling return provided that the 150 fpm (0.8 m/s) supply jet reaches 4.5 ft (1.4 m) or more above the floor. Note: Most underfloor air distribution systems comply with this proviso.	1.0
Floor supply of cool air and ceiling return, provided low-velocity displacement ventilation achieves unidirectional flow and thermal stratification	1.2
Floor supply of warm air and floor return	1.0
Floor supply of warm air and ceiling return	0.7
Makeup supply drawn in on the opposite side of the room from the exhaust and/or return	0.8
Makeup supply drawn in near to the exhaust and/or return location	0.5

ASHRAE 62.1

TABLE 6-2 Zone Air Distribution Effectiveness

HEALTH CRITERIA FOR VENTILATION ISO 17772-1 and prEN16798-1

Minimum 4 l/s/person

Indoor Air Quality Procedure

The required ventilation rate is calculated as:

$$Q = \frac{G}{\left(C_i - C_o\right) \cdot E_v}$$

1/s

where G = Total emission rate mg/s

Ci = Concentration limit mg/l

 $C_o = Concentration in outside air mg/l$

 $E_v = Ventilation effectiveness$

EPA Ambient-Air	Long Term			Short Term				
Quality Standards	Concentration Averaging			Concentration Averaging				
Contaminant	μg/m ²	³ ppm		μg/m³ ppm				
Sulfur dioxide Particles (PM 10) Carbon monoxide Carbon monoxide Oxidants (ozone)	80 50 ^b	50 ^b — 1 year		365 ^a 150 ^a 40,000 ^a 10,000 ^a 235 ^c	0.14 ^a 35 ^a 9 ^a 0.12 ^c	24 hours 24 hours 1hour 8 hours 1 hour		
Nitrogen dioxide Lead	100 1.5	0.055	1 year 3 months ^d					
a Not to be exceeded more than once per year. b Arithmetic mean. c Standard is attained when expected number of days per calendar year with maxi-mal hourly average concentrations above 0.12 ppm (235 μ g/m³) is equal to or less than 1, as determined by Appendix H to subchapter C, 40 CFR 50. d Three-month period is a calendar quarter.								

Pollutant	WHO Indoor Air Quality guidelines 2010	WHO Air Quality guidelines 2005	
Benzene	No safe level can be determined	-	
Carbon monoxide	15 min. mean: 100 mg/m ³ 1h mean: 35 mg/m ³ 8h mean: 10 mg/m ³ 24h mean: 7 mg/m ³	-	
Formaldehyde	30 min. mean: 100 μg/m ³	-	
Naphthalene	Annual mean: 10 μg/m³	-	
Nitrogen dioxide	1h mean: 200 µg/m³ Annual mean: 40 mg/m³	-	
Polyaromatic Hydrocarbons (e.g. Benzo Pyrene A B[a]P)	No safe level can be determined	-	
Radon	100 Bq/m ³ (sometimes 300 mg/m ³ , country-specific)	-	
Trichlorethylene	No safe level can be determined	-	
Tetrachloroethylene	Annual mean: 250 μg/m³		
Sulfure dioxide	•	10 min. mean: 500 µg/m ³ 24h mean: 20 mg/m ³	
Ozone	-	8h mean:100 μg/m³	
Particulate Matter PM 2,5	-	24h mean: 25 μg/m³ Annual mean: 10 μg/m³	
Particulate Matter PM 10	-	24h mean: 50 μg/m³ Annual mean: 20 μg/m³	

WHO guidelines values for indoor and outdoor air pollutants

INDIA-Indoor Environmental Quality

Table3 Threshold values for indoor air quality parameters

Same	Classification					
Units	Class A	Class B	Class C Ambient + 800			
ppm	Ambient + 350	Ambient + 500				
µg/m³	<15	<25	<60			
	<50	<100	<100			
ppm	<9	<9	< 9			
		<400	<600			
	<30	<100	(-)			
	<40	<80	- Na			
	<40	<80	-			
	<50	<100	~			
CFU/m ³	Indoor ≤ ambient	Indoor ≤ ambient	-			
%	90	80	-			
	μg/m ³ μg/m ³ ppm μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	ppm Ambient + 350 μg/m³ <15	Units Class A Class B ppm Ambient + 350 Ambient + 500 μg/m³ <15			

Residential buildings

Cate gory	Total ventilation including infiltration (1)	g air	Supply air flow per. person (2)	Supply based on IAQ for persons (3)	air flow perceived adapted	Sulply air room level (and the second	Exhaust air flow, I/s peak or boost flow for hi demand		
	I/s,m²	ach	l/s*per	q _p I/s*per	q _B I/s,m ²	Master bed-root I/s	Other bed- room	Kit- chen (3a)	Bath-rooms (3b)	Toilets (3c)
	0,49	0,7	10	3,5	0,25	20	10	28	20	14
П	0,42	0,6	7	2,5	0,15	14	8	20	15	10
Ш	0,35	0,5	4	1,5	0,1	8	4	14	10	7
IV*	0,23	0,4					2,5*	10	6	4

$$Q_{tot} = 0.15 A_{floor} + 3.5(N_{br} + 1)$$
 (SI) (4.1b)

where

 Q_{tot} = total required ventilation rate, L/s

 A_{floor} = dwelling-unit floor area, m²

 N_{br} = number of bedrooms (not to be less than 1)

ASHRAE 62.2 Residential

Occupant density:

Two persons (studio, one-bedroom Plus one person i.e. plus 3.5 L/s for each additional bedroom

TABLE 4.1b (SI) Ventilation Air Requirements, L/s

	Bedrooms						
Floor Area, m ²	-1	2	3	4	5		
<47	14	18	21	25	28		
47-93	21	24	28	31	35		
94-139	28	31	35	38	42		
140-186	35	38	42	45	49		
187-232	42	45	49	52	56		
233-279	49	52	56	59	63		
280-325	56	59	63	66	70		
326-372	63	66	70	73	77		
373-418	70	73	77	80	84		
419-465	77	80	84	87	91		

Example criteria for personalized systems

Aspect	Requirement
'Temperature' control	At workstation level, the (operative/equivalent) temperature is adjustable
winter	with a response speed of at least 0,5 K/minute within a range of 5 K, from
	18 °C to 23 °C.
'Temperature' control	At workstation level, the (equivalent) temperature is adjustable (with a
summer	response speed of at least 0,5 K/minute within a range of 5 K, from 22 °C
	to 27 °C.
Fresh air supply control	Local fresh air supply (per workstation) is adjustable from around 0 to at
	least 7 l/s.
Delivered air quality	For requirements related to air cleaning technology: see Annex K.
Installation noise	Noise level – with the personalized system in the highest setting – should
	not be higher than 35 dB(A).

Air Distribution Effectiveness

$$\varepsilon_V = \frac{C_E - C_S}{C_I - C_S}$$

Concentrations: C_E exhaust air

C_S supply air

C₁ breathing zone

CEN Report CR 1752 (1998)

Mixing v	entilation	Mixing ve	entilation	Displacement ventilation		Personalized ventilation			
—	•								
T supply -	Vent. effect.	T supply -	Vent. effect.	T supply -	Vent. effect.	T supply -	Vent. effect.		
T inhal		T inhal		T inhal		T room			
°C	-	°C	-	°C	-	°C	-		
< 0	0,9 - 1,0	< -5	0,9	<0	1,2 - 1,4	-6	1,2 - 2,2		
0 - 2	0,9	-5 - 0	0,9 - 1,0	0-2	0,7 - 0,9	-3	1,3 - 2,3		
2 - 5	0,8	> 0	1	>2	0,2 - 0,7	0	1,6 - 3,5		
> 5	0,4 - 0,7								

COMFORT-PRODUCTIVITY Building costs

People 100

Maintenance 10

Financing 10

Energy 1

This clearly show that buildings are for people not for saving energy